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Abstract—The aim of this paper is to study the oblique 

stagnation point flow on vertical plate with uniform surface heat flux 
in presence of magnetic field.  Using Stream function, partial 
differential equations corresponding to the momentum and energy 
equations are converted into non-linear ordinary differential 
equations. Numerical solutions of these equations are obtained using 
Runge-Kutta Fehlberg method with the help of shooting technique. 
In the present work the effects of striking angle, magnetic field 
parameter, Grashoff number, the Prandtl number on velocity and heat 
transfer characteristics have been discussed. Effect of above 
mentioned parameter on the position of stagnation point are also 
studied. 

 
Keywords—Heat flux, Oblique stagnation point, Mixed 

convection, Magneto hydrodynamics 

I. INTRODUCTION 
HE stagnation flow of an incompressible viscous fluid 
over vertical surface is important in various processes. 

The technical process concerning extrusion of polymer sheets, 
rolling and manufacturing artificial fibers, involves the 
stagnation point flow. In stagnation point flow, a rigid wall or 
a stretching surface occupies the entire horizontal axis. The 
fluid domain is normal to that axis and the fluid strikes on that 
surface either orthogonal or at some angle of incidence.  This 
simple model of oblique stagnation point would enable us to 
understand how a boundary layer begins to develop. 

Mixed (combined forced and free) convection in stagnation 
flows is very important. The buoyancy forces take place when 
the temperature difference between the two walls and the free 
stream is becomes high. These forces modify the flow and the 
thermal fields significantly. In such flows, the local heat 
transfer rate and local skin friction can be significantly 
enhanced or diminished in comparison to the pure forced 
convection case. Depending on the forced flow direction, the 
buoyancy forces may assist or oppose the forced flow. This 
results in increase or decrease in heat transfer rate. These 
results have been discussed by Chamkha [1], Chamkha and 
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Issa [2], Kumari [3], Aydin and Kaya [4], and Prasad et al. 
[5].Present research field has attracted many researchers in 
recent years due to its applications. The study of magneto 
hydrodynamic flow of an electrically conducting fluid caused 
by the deformation of the walls of a vessel containing a fluid 
is of considerable interest in modern metallurgical and metal-
working processes. Magnetic field enhances the velocity 
gradient and heat transfer rate at surfaces due to the increase 
in the Lorentz force. Attia [6] investigated effect of increasing 
magnetic field on velocity boundary layer thickness. Kumari 
and Nath [7], [8] investigated the MHD effects on Maxwell 
fluids for steady and unsteady cases. They found that velocity 
gradient at the surface and heat transfer increase with 
magnetic parameter. Singh et al. [9], [10] reported effect of 
magnetic parameter and radiations on stretching sheet for 
steady and unsteady flow.  Ziya et al. [11], [12] investigated 
Magnetohydrodynamic free convection flow of a viscous fluid 
through inclined porous plate in the presence of high 
temperature. All the above mentioned studies confined their 
discussions by assuming orthogonal flow. However, it is 
known that the fluid may incident at some angle on the 
surface. The angle of incidence of fluid leads to a local 
increase/ decrease in the transport phenomena. Therefore, to 
predict the flow behavior accurately it is necessary to take into 
account non-orthogonal flows for incompressible fluids. 

Grosan et al. [13] and Singh et al. [14] analyzed the 
magneto-hydrodynamic oblique stagnation-point flow on a 
flat plate and stretching sheet, respectively. It was found that 
the magnetic parameter causes a shift in the position of the 
stagnation-point. Lok et al. [15], [16] investigated the non-
orthogonal stagnation-point for Newtonian and non-
Newtonian flows towards a sheet. They found that the 
position of stagnation point depend on stretching sheet 
parameter and angle of incidence. Mahapatra et al. [17] and 
Labropulu et al. [18], [19] analyzed oblique stagnation point 
flow of incompressible visco-elastic fluid towards a stretching 
sheet. Tilley and Weidman [20] studied interaction between 
two planar oblique stagnation–point flow of different 
immiscible fluid. The study of heat transfer and flow field is 
necessary for determining the quality of the final product. 
Amaouche and Boukari [21] studied the influence of thermal 
convection on non-orthogonal stagnation point flow.  
The authors in the present paper studied the steady two-
dimensional buoyancy induced mixed convection opposing 
flow of a viscous incompressible fluid striking at different 
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angles of incidence on a vertical semi-infinite flat plate. Fluid 
flow is considered in presence of magnetic field with uniform 
surface heat flux. 

II. FORMULATION OF PROBLEM  
The physical model considered here consist of a viscous, 

incompressible, steady, two-dimensional mixed convection 
flow of an electrically conducting fluid striking at some angle 
of incidence γ  on a vertical semi-infinite flat plate. A 
constant magnetic field oB  is applied in y - direction as 
shown in Figure 1. 

 
Fig. 1 Physical Model of the Problem 

   
The coordinate system in Figure 1 is such that x represents 

the vertical distance or the distance along the surface and y   
represents the horizontal distance or the distance normal to the 
surface. Far away from the plate, the velocity and the 
temperature of the uniform main stream are, 

,cos)(sin yibyjxiaV γγ +−=  and ∞T  respectively, where 
i  and j are unit vectors along the x  and y axes, a and b  are 
the positive constant with dimension (time)-1. The entire 
surface of the plate is maintained at a constant heat flux wq . 
The viscous dissipation, Joule heating and induced magnetic 
field are neglected. The governing equations of continuity, 
momentum and energy under above assumptions with 
Boussinesq approximation are  
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where u  and v  are velocity components along  x  and y  
axes  respectively, ν  is kinematic viscosity, σ  is electrical 
conductivity,  p  is the pressure,  T is temperature of the 
plate, ρ  is density of the fluid, β  is coefficient  of thermal 
expansion,  g is acceleration due to buoyancy and α  is the 
thermal diffusivity.  
Boundary conditions are: 
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∞→∞→−=+= yasTTayvbyaxu ,sin,cossin γγγ (5) 
where, k  is coefficient of thermal conductivity. This flow 
model is called favorable flow for 2/0 πγ ≤≤   and 

unfavorable flow for   πγπ ≤<2/ .  Case ,2/πγ = is known 
as orthogonal flow. 
Eliminating pressure terms from (2) and (3), we get the 
following equations 
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Let ψ   is Stream function defined as yu ∂∂= /ψ   and  

xv ∂−∂= /ψ . Introducing the dimensionless variables defined 
as   
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Equation of Continuity (1) is also satisfied by ),( ηξu  and 
),( ηξv  defined as above and,  (6) and (4) reduces to, 
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respectively. Where αν /=Pr  is the Prandtl number, 
2kν /4l wβq gGr =  is Grashoff  number based on the heat 

flux 0>wq  and ρνσ /22loBM =  is magnetic field 
parameter. We seek solution of (7) in the form of 

),()( ηηξψ gf += where the function )(ηf  and )(ηg are 
referring to the normal and tangential component of the flow. 
Therefore, velocity components are given by,  

)(')('),( ηηξηξ gfu +=  and ).(),( ηηξ fv −=  
From (7) and (8), we have 
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and  boundary conditions becomes, 
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A physical quantity of interest is the skin friction, or shear 
stress wτ   at the wall, which is defined as  
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The dividing streamlines 0=ψ  and the curve 0=u  intersect 
the wall at the stagnation point where 0=wτ , hence the 
location of stagnation point sξ  is given by,    
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f
g

s −=ξ                                                                      (14) 

III. NUMERICAL SIMULATION 
The set of non-linear coupled differential equations (9), 

(10) and (11) subject to the boundary conditions (12), 
constitute a two-point boundary value problem. In order to 
solve these equations numerically, we follow numerical 
shooting technique with Runge–Kutta–Fehlberg integration 
scheme. In this method it is most important to choose the 
appropriate finite values of .∞→η  The solution process is 
repeated with another large value of ∞η  until two successive 
values of )0(''f ,  )0(''g , and  )0(θ  differ only after a 
desired digit signifying the limit of the boundary along η . 
The last value of ∞η  is chosen as appropriate value of the 
limit ∞→η for that particular set of parameters. The three 
ordinary differential equation (9), (10) and (11) were first 
converted into a set of eight first-order simultaneous 
equations. To solve this system we require eight initial 
conditions but we have only five initial conditions )0(f  and 

)0('f on ),(ηf  )0(g  and )0('g  on ),(ηg  and one initial 
condition )0('θ  on )(ηθ . Still there are three initial 
conditions )0(''f , )0(''g  and )0(θ  are not prescribed. 

However the values of ),(' ηf )('' ηg  and )(ηθ  are known at 
∞→η . Now we employ the numerical shooting technique 

where these three ending boundary conditions were used to 
produce three unknown initial conditions at 0=η . Finally, 
the problem has been solved numerically using Runge-Kutta 
Fehlberg integration scheme. 

IV. RESULTS AND DISCUSSIONS  
In the absence of an analytical solution of a problem, 

numerical solution is indeed an obvious and natural choice. 
Thus, the governing boundary layer and thermal boundary 
layer equations (9), (10) and (11) with boundary conditions 
(12), are solved using Runge-Kutta Fehlberg method with 
shooting technique. Different values of γPr,,M  and Gr  
taking step size 0.001 used for numerical simulation. While 
numerical simulation, step size 0.002 and 0.003 were also 
checked and values of  )0(''),0('' gf and )0(θ  were found in 
each case correct up to six decimal places. Hence the scheme 
used in this paper is stable and consistent. It is worth 
mentioning that small values of )1(Pr <<  physically 
corresponds to liquid metals, while 1Pr ≈  corresponding to 
diatomic gases including air. On the other hand, 

1Pr >> corresponds to high viscosity oils and 
7Pr ≈ corresponds to water at room temperature. Due to 

decoupled boundary layer equation (9), it is found that there is 
only a unique value of reduced skin friction for orthogonal 
flow, 232547.1)0('' =f  which is very good agreement with 
the value 232588.1)0('' =f  found by Hiemenz as described 
by [15]. 

TABLE I 
VALUES OF  )0(''f  FOR DIFFERENT VALUES OF ANGLE OF INCIDENCE γ  AND 

MAGNETIC FIELD PARAMETER .M   
Value of )0(''f  γ  

0=M  2=M  3=M  5=M  
2/πγ =  1.232547 0.673195 0.563531 0.442988 
3/πγ =  0.993354 0.510987 0.425230 0.333031 
4/πγ =  0.732891 0.345180 0.285313 0.222559 
5/πγ =  0.555448 0.240682 0.197979 0.154020 

 
Effect of striking angle γ  on flow has been shown in 

Figure 2 and Table I. It is found that boundary layer thickness 
increase as striking angles increases for favorable flow 
whereas thermal boundary layer thickness decrease as striking 
angle γ  increases as shown in Figure 3. Values of boundary 
layer separation part sξ   for assisting  flow are given in Table 
V and VI for 71.0Pr = and .2,0=Gr  Table V has been 
calculated with the help of Table[I-III] and (14). It has been 
observed from Table V that stagnation point shifts towards 
origin as striking angle increased from 5/π   to 3/π  for any 
value of .Gr  Stagnation point move away from origin as 
magnetic parameter increased. Grashoff number Gr gives the 
effect of buoyancy. Thus, it is the dominant parameter in free 
convection. Effect of Gr can be seen from Table V and  Table 
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VI  that, in presence of buoyancy parameter ( 2=Gr ) shifting 
of stagnation point is more  pronounced  than absence of 
buoyancy parameter ( 0=Gr ) . 

TABLE II 
VALUES OF  )0(''g  FOR DIFFERENT VALUES OF ANGLE OF INCIDENCE γ  AND 

MAGNETIC FIELD PARAMETER M  WHEN 0=Gr  AND .71.0Pr =  
Value of )0(''g when .71.0Pr0 == andGr  γ  

0=M  2=M  3=M  5=M  
2/πγ =  0000000 0000000 0000000 0000000 
3/πγ =  0.303986 0.476635 0.489487 0.496290 
4/πγ =  0.430050 0.683305 0.696812 0.703562 
5/πγ =  0.492542 0.788989 0.800624 0.806185 

 
TABLE III 

VALUES OF  )0(''g  FOR DIFFERENT VALUES OF ANGLE OF INCIDENCE γ  AND 

MAGNETIC FIELD PARAMETER M  WHEN 2=Gr AND .71.0Pr =  
Value of )0(''g when .71.0Pr2 == andGr  γ  

0=M  2=M  3=M  5=M  
2/πγ =  2.461249 2.788737 2.782362 2.668363 
3/πγ =  3.145002 3.650082 3.605141 3.409448 
4/πγ =  3.905048 4.408292 4.257602 3.916950 
5/πγ =  4.661233 4.990125 4.717270 4.240459 

 
TABLE IV 

VALUES OF  )0(θ  FOR DIFFERENT VALUES OF ANGLE OF INCIDENCE γ  AND 

MAGNETIC FIELD PARAMETER M  WHEN 0=Gr    AND .71.0Pr =  
Value of )0(θ when .71.0Pr0 == andGr  γ  

0=M  2=M  5=M  
2/πγ =  2.005102 2.734561 3.453440 
3/πγ =  2.153887 3.005146 3.723532 
4/πγ =  2.380482 3.389551 4.054505 
5/πγ =  2.603000 3.718932 4.297356 

 
TABLE V 

VALUE OF STAGNATION POINT   sξ  FOR DIFFERENT MAGNETIC FIELD 

PARAMETER  M  AND ANGLE OF INCIDENCE γ  WHEN ,0=Gr  71.0Pr = . 

Value of sξ when ,0=Gr 71.0Pr =  γ  
0=M  2=M  3=M  5=M  

3/πγ =  − 0.3060 − 0.9328 − 1.1511 − 1.4902 
4/πγ =  − 0.5868 − 1.9796 − 2.4422 − 3.1612 
5/πγ =  − 0.8867 − 3.2781 − 4.0439 − 5.2343 

 
TABLE VI 

VALUE OF STAGNATION POINT   sξ  FOR DIFFERENT MAGNETIC FIELD 

PARAMETER  M  AND ANGLE OF INCIDENCE γ  WHEN ,2=Gr  71.0Pr = . 

Value of sξ when ,2=Gr 71.0Pr =  γ  
0=M  2=M  3=M  5=M  

2/πγ =  − 1.9968 − 4.1425 − 4.9373 − 6.0235 
3/πγ =  − 3.1660 − 7.1431 − 8.4780 − 10.2376 
4/πγ =  − 5.3283 − 12.7709 − 14.9225 − 17.5996 
5/πγ =  − 8.3918 − 20.7332 − 23.8271 − 27.5318 

 
The magnetic parameter M  represents the importance of 

magnetic field on the flow. The presence of transverse 
magnetic field sets in Lorentz force, which results in retarding  

 
Fig. 2 Velocity profile )(' ηf  versus η  for different values  γ   

when .0=M  

 

Fig. 3 Temperature profile )(ηθ  versus η  for different values  γ   
when 71.0Pr = and .0=Gr  

 
Fig. 4 Velocity profile )(' ηf  versus η  for different values M  

when  .3/πγ =    
force on the velocity field and therefore as magnetic parameter 
increases, so does the retarding force and hence the velocity 
decrease. This is shown in Figure 4. Same effect is on 
temperature that can be seen from Figure 5. Value of 
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)0(''f for favorable flow is decreases as magnetic parameter 
increase as shown in Table I. It is observed from Table IV that 

)0(θ  increases with increase in magnetic parameter. 

 
Fig. 5 Temperature profile )(ηθ  versus η  for different values M  

when 0,71.0Pr == Gr  and .3/πγ =  

 

Fig. 6 Temperature profile )(ηθ  versus η  for different values Pr  
when 0=Gr  and .3/πγ =  

 
TABLE VII 

VALUES OF  )0(θ  FOR DIFFERENT VALUES OF PRANDTAL NUMBER Pr ,  
GRASHOF  NUMBER  Gr AND MAGNETIC FIELD PARAMETER M  WHEN 

.3/πγ =  
Value of )0(θ when .3/πγ =  

0=Gr  2=Gr  Pr  
0=M  2=M  0=M  2=M  

01.0Pr =  4.881763 4.949856 4.881762 4.949856 
71.0Pr =  2.153887 3.005146 2.153886 3.005152 
2Pr =  1.444979 2.015458 1.444988 2.015452 
5Pr =  1.030096 1.404208 1.029961 1.404171 

 
It is observed from Figures (6) that the temperature profile 

decreases with an increase in the Prandtl number Pr  for 
striking angle .3/πγ =  This is in agreement with the 
physical fact that at higher Prandtl number, fluid has a thinner 
thermal boundary layer and this increases the gradient of 
temperature. Value of )0(θ  decreases as Prandtl number 

increase as shown in Table VII.  
 

V. CONCLUSION 
The two dimensional oblique stagnation point flow on 

vertical plate with uniform surface heat flux in presence of 
magnetic field is studied. A numerical solution for the 
governing equations is obtained which allows the computation 
of the flow and heat transfer characteristics for various values 
of the magnetic parameter, striking angle, Grashoff number 
and the Prandtl number. The main results of the paper can be 
summarized as follows: 
1)   The velocity boundary layer thickness decreases as 

striking angle decreases. 
2)     Stagnation point shifts towards origin as striking angle 

increases. 
3)     Thermal boundary layer thickness increases as striking 

angle decreases. 
4)     Velocity and temperature decrease as magnetic field 

increases. 
5)     Temperature decreases with increase in the Prandtl 

number. 
6)     In absence of bounacy forces stagnation point  moves  to 

left of origin, while in presence it moves  right of origin 
as striking  angle decreases. 

7)     Stagnation point move away from origin as magnetic 
parameter increases. 

These results have potential technological applications in 
liquid-based systems. 
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