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Abstract—The present work numerically analyzes the transient
heat transfer in the absorber plates of a flat-plate solar collector based
on the dual-phase-lag (DPL) heat conduction model. An efficient
numerical scheme involving the hybrid application of the Laplace
transform and control volume methods is used to solve the linear
hyperbolic heat conduction equation. This work also examines the
effect of different medium parameters on the behavior of heat transfer.
Results show that, while the heat-flux phase lag induces thermal waves
in the medium, the temperature-gradient phase lag smoothens the
thermal waves by promoting non-Fourier diffusion-like conduction
into the medium.
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1. INTRODUCTION

OLAR collectors are special kinds of heat exchangers that

transform solar radiating energy to internal energy of the
transport medium. Among the various types of collectors,
flat-plate collectors are the common choices for this
conversion, probably due to its simple design and ease of
fabrication. A flat-plate solar collector is a device, which
absorbs the incoming solar radiation, converts it into heat, and
then transfers this heat to a fluid flowing through the tubes. This
device has found its wide applications in space heating and
cooling, solar refrigeration systems, solar thermal systems,
industrial process heating, etc. [1]. Among the various
components of a flat-plate solar collector, the absorber plate is
the main accountable for the conversion of solar energy into
thermal energy. Therefore, the thermal performance of a
flat-plate collector is strongly influenced by the performance of
the absorber plate.

The well-known DPL heat conduction model, proposed by
Tzou [2], [3], introduces the phase lags of temperature gradient
and heat flux to account for the microstructural interactions in
the fast, transient process of heat transport and it takes the form:

q(r,t+74) = —kVT(r,t+77)

where 7; is the phase lag of the temperature gradient. The
phase lag 7; is interpreted as the time delay caused by the

Yu-Ching Yang is with Kun Shan University, Tainan, Taiwan, ROC
(corresponding author, phone: 886-6-2050496; fax: 886-6-2050509; e-mail:
yeyang@mail ksu.edu.tw).

Haw-Long Lee and Win-Jin Chang are with Kun Shan University, Tainan,
Taiwan, ROC (e-mail: changwj@mail ksu.edu.tw, hawlong@mail ksu.edu.tw).

microstructural interactions such as phonon—electron
interactions or phonon scattering, while the phase lag 7y can

be interpreted as the relaxation time due to the fast transient
effects of thermal inertia. Ever since its agreement with
experimental results was demonstrated [3], the DPL model has
attracted a considerable interest in a wide variety of scientific
and engineering fields. For example, Hu and Chen [4] solved
the transient temperature field around a partially insulated
crack in a half-plane by applying DPL heat conduction model.
Lee et al. [5] numerically investigated the transient heat transfer
in a thin metal film exposed to short-pulse laser heating. Liu
and Wang [6] analyzed the thermal response for estimating
thermal damage in laser-irradiated biological tissue. Recently,
Afrin et al. [7] analytically investigated the heat conduction in a
gas-saturated porous medium subjected to a short-pulsed laser
heating.

Recently, Kundu and Lee [8] presented an analytical study of
non-Fourier heat conduction for the absorber plates of a
flat-plate solar collector. They concluded that not considering
non-Fourier heat transfer of the absorber plate may not be a
wise decision under certain design conditions. To
accommodate the microstructural effect, the present work
further applies DPL heat conduction model to explore the
transient heat transfer in the absorber plates of a flat-plate solar
collector. The problem is solved numerically and, to the best of
the authors’ knowledge, it is the first time in the literature to
study such a problem based on the DPL heat conduction model.

II. ANALYSIS

A. Physical Model and Mathematical Formulation

The main components of a flat-plate solar collector are the
absorber plate and fluid carrying tubes. The arrangement of the
absorber plate and fluid carrying tubes is shown in Fig. 1. For
the thermal analysis of an absorber plate, a symmetric heat
transfer module which acts as a fin subject to the insulated tip
and a constant base temperature is taken. On the assumption
that t,/L=1, the one-dimensional energy equation for the

absorber plate in a flat-plate collector shown in Fig. 1 can be
written as [8]:

_8q(x,t)_2_h(T_Ta)Jrg:pc OT(x,1t)
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where h is the convection heat transfer coefficient and g is the
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absorbed solar radiation which is an instantaneous value taken
for the development of the solution. In reality, it may change
with time.

The one-dimensional DPL constitutive equation for the
absorber plate can be expressed as [9]:

T,
oX T

O°T(x,1)
otox

qx +z, aq(é;(,t) — K

@

Elimination q(x,t) from (1) and (2) yields the following
hyperbolic heat conduction equation of this problem as:

o'T oT o T
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Initial and boundary conditions are [8]:

T(Xt)=T,,for t=0 4)
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Fig. 1 Schematic of a symmetric heat transfer module in an absorber
plate

The following dimensionless variables are introduced:

CT-T, X §—a—t gl
T T TR E T A R i
B=L2h/kt,  v=\Jalr,  V,=zy/L (8)

where V, is the Vernotte number. Based on z; , the

propagation speed V is defined in (8). It is also known as the
thermal wave speed. Introducing these dimensionless
parameters in (8) into (3)—(7) leads to the following
dimensionless differential equation of the present problem as:

2 2
2_€+ T“zai 0’0 2200 o VzaG
n onos o¢ o¢
_00 .00
N g e 2

subjected to the dimensionless boundary and initial conditions:

9002:8) _ ap =0 (10)
on
0,5 =1,at n=1 (11
0(n,&)=0,for £=0 (12)
20, &) _ _
o =0, for £=0 (13)

where Ry, =7, /7,

B. Numerical Analysis

The method of the Laplace transform is employed to remove
the time-dependent terms from (9)—(11) with the initial
conditions (12) and (13). The Laplace transforms of (9)—(11)
give:

20

O rg-r (14)
d
—des’;’s) =0,at 7=0 (15)
0(n,s)=1/s,at p=1 (16)
where,

oG
G+| V) —e™d
FE (s+8°)(s- V2+1) [ -[ g ¢

,R= 17
(S'RTq e +1) ( )

(s ReVe +1)
Subsequently, (14) can be discretized by using a control
volume formulation. Integration of (14) within a small control
volume [7, —1/2,n,+1/2] for the ith interior node can be

written as [10]:

w2 420
J.,,,-l/z [dnz

0 -Rldn=0 (18)
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where | is the distances between two neighboring nodes.

As illustrated by Liu and Wang [6], 0 in (18) can be
approximated by using the nodal temperatures and shape
functions within a small control volume before performing the
integration of (18). Liu et al. [11] stated that the selection of the
shape functions is an important step in order to obtain more
accurate numerical results of the problem. A poor selection of
the shape functions will affect the accuracy and stability of the
numerical results. It can be found from the previous works that
the hyperbolic shape functions derived from the associated
differential equation in the transform domain can be
successfully applied to suppress numerical oscillations in the
vicinity of the jump discontinuity [5], [12]. Thus, the shape
functions in the present study will be derived from the
following associated homogeneous differential equation:

de

1 2—12§:O,f0r n<n<n,,i=,2,.,N-1 19)
n

The following simple notations will be also used:
9_(77|) = 0_| and g(’]iﬂ) = §i+l (20)

The general solution of (19) in the interval [7,,7,,,] with the

boundary conditions shown in (20) is:

o(n) = [sinh(A(, +1-7)), +sinh(A(7-7,))0,,] €2y

1
sinh(Al)

Similarly, the analytical solution of (19) in the interval
(70,11 1s:

) = m[smhu(m )., +sinh(A(—n,+1)8]  (22)

It is evident that (18) can be rewritten as:

a0
dn

L o T U R T (23)

ni—1/2

nj—1/2
ni+/2 d77 n-1/2

Inserting the approximations for 0, (21) and (22), and then
evaluating the resulting integrals can produce the following
discretized form for the interior nodes as:

B0, +B0 +B..0

i+17i+1

=F, for i=23,.,N-1 (24)

The coefficients B, , B, , Bi.i,and F are given as:
B, =B, =1,B;, =—2cosh(4l), F, =Rlsinh(4l)/ 1 (25)

Rearrangement of (24) in conjunction with the discretized
forms of the boundary conditions yields the following matrix
equation:

[B1{0 }={F} (26)

where [B] is a matrix with complex numbers, { 0 } is a column
vector representing the unknown dimensionless nodal
temperatures in the Laplace transform domain, and {F } is a
column vector representing the forcing term. Thereafter, the
numerical inversion formula, known as the Fourier series
technique [13], can be applied to yield the nodal temperatures
{ @} in the physical domain.

III. RESULTS AND DISCUSSION

The purpose of the present work is to numerically study the
thermal behavior in the absorber plates of a flat-plate solar
collector based on the DPL heat conduction model. In the
following computations, the distance between two nodes
I =0.005 is applied. For the illustration of numerical analysis,
the present study assumes that the solar energy is incident on
the plate with a constant rate of G = 1, although it can be any
function in the above analysis [8].

Fig. 2 depicts the temperature distributions in the absorber
plate at various times with 7, /7, =0.1, V,=02,G=1, and

£ =0.5 for a constant temperature =1 at n=1. These results
are obtained while maintaining an isothermal condition of the
plate at the boundary 7 =1. The curves with 7 =0 correspond
to the thermal wave solutions. With the thermal wave model, it
can be found in Fig. 2 that the temperature near interior
boundary 7=0 is undisturbed during the initial stage of
heating before jumping instantaneously. This may be viewed as
the wave-front emerging from the finite propagation of the
thermal wave or the existence of the relaxation time 7, . The

transmitted wave in the absorber plate at & =0.22 has impacted
the interior boundary 7 =0 and reflected. The results from the
DPL model exhibit dissimilar behavior and differ from the
results of thermal wave model. Unlike thermal wave model, no
wave behavior is observed in the DPL model as expected, but a
non-Fourier diffusion-like behavior exists due to the second
thermal relaxation time z; whose effect is to weaken the
thermal wave, thereby destroying the sharp wave-front.

Fig. 3 illustrates the effect of the design parameter £ on the
temperature response in the absorber plate. The results in Fig. 3
are obtained at £=0.15 with 7, /7, =0.1, V, =02, and G=1
for a constant temperature =1 at n=1. The parameter f
decreases the magnitude of the temperature response by
increasing the thermal resistance. However, the nature of the
response is unaltered. In addition, the variation of parameter

has no effect on the propagation speed v of the thermal wave,
which can be expected from the definition of v.
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DPL, t,/1=0.1
Hyperbolic, 1, = 0

Fig. 2 Temperature distributions in the absorber plate at various times
with 7 /7,=0.1,V,=02, G=1,and f=0.5
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Fig. 3 Temperature distributions in the absorber plate at &=10.15
with 7, /7,=0.1, V,=0.2,and G=1

DPL, 1, /7,=0.1
L. eeeeeeee- Hyperbolic, 7, =0 A

Fig. 4 Temperature distributions in the absorber plate at &=0.15
with 7, /7, =0.1, G=1,and =05

The temperature distributions for various values of Vernotte
number V, at §=0.15 are shown in Fig. 4 with 7, /7, =0.1,

G=1, and #=0.5 for an isothermal boundary temperature
0=1 at n=1. It can be found that the thermal wave travels
with a longer distance for a smaller value of V, . This

phenomenon can be explained by observing the definitions of
the Vernotte number and the propagation speed Vv of the thermal
wave as shown in (8), which states that a smaller value of the
Vernotte number V, implies a smaller relaxation time z, and

thus a faster propagation speed of the thermal wave. In
addition, the sharp wave-fronts are smoothened and the
portions of pulse thermal disturbances are dissipated by the
diffusive effect of z; .

DPL, ./ T* 0
--------- Hyperbolic, 7, =0
0.75

0.5

0.25

Fig. 5 Temperature distributions in the absorber plate at &=0.15
with V, =04, G=1,and =05

Fig. 5 demonstrates the effect of ratio 7 /z, on the

temperature profile in the absorber plate. Those results in Fig. 5
are calculated at £=0.15 with V, =04, £=0.5,and G=1 for

a constant temperature =1 at  =1. As can be seen from Fig.
5, for the hyperbolic case (7, =0 ), the delay of 7, induces a

thermal wave with sharp wave-front separating heated and
unheated zones in the absorber plate. Nevertheless, no obvious
wave-fronts can be found for the DPL cases, which are
attributable to the stronger dissipation from the mixed
derivative term (kz,0°/0x*(0T /&t) ), as shown in (3). The results

are almost the same for all different values of z, /7, ratio. The
sharp wave-fronts due to 7, are smoothened by the promoting
conduction of z; , and the effect is more noticeable with
increasing values of 7, /z, ratio, leading to the non-Fourier

diffusion-like conduction [14].
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