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Abstract—An investigation into Cahn-Hilliard equation was 

carried out through numerical simulation to identify a possible phase 
separation for one and two dimensional domains. It was observed that 
this equation can reproduce important mass fluxes necessary for 
phase separation within the miscibility gap and for coalescence of 
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I. INTRODUCTION 

HE Cahn-Hilliard equation was originally proposed in 
1958 as a mathematical model to describe phase 

separation in binary alloys [1]. This equation has been adopted 
to model many other physical systems [2], [3]. In order to 
solve it, many algorithms have been proposed using a variety 
of discretization methods including finite element, finite 
volume and finite difference [2], [4], [5]. 

Its dynamics can be roughly explained with phase diagrams 
within the framework of classical thermodynamics [6]. An 
example for spinodal decomposition is given in Fig. 1. 
 

 

Fig. 1 Phase diagram given in temperature versus composition with a 
miscibility gap (adapted [6]) 

 
 According to Fig. 1, compositions in the spinodal region 

are unstable, because small fluctuations can produce phase 
separation. On the other hand, compositions outside the 
spinodal, but under the binodal curve, are metastable. In this 
case, phase separation would also decrease the free energy of 
the system, but it can only occur if nuclei of the phases form, 
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since small fluctuations are not sufficiently to promote the 
separation [6], [7]. 

This study aims to evaluate the response of the Cahn-
Hilliard equation in one and two dimensions, with or without 
the energy gradient term, subjected to conditions in which the 
composition is above the binodal curve, between the binodal 
and spinodal curves or below the spinodal curve. 

II. CAHN-HILLIARD EQUATION 

The Cahn-Hilliard differential equation can be written as 
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where ρ is composition, f0 is the free energy density, and Kρ is 
the gradient energy coefficient. 

It can be rewritten in two dimensions and Cartesian 
coordinates as 
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This equation was discretized using the finite volume 

method with explicit formulation.  

III.  NUMERICAL RESULTS 

A. Evolution to Steady State - Adjustment of Phase Quantity 
and Composition  

This study was carried out to analyze how Cahn-Hilliard 
equation predicts the time evolution of a one-dimensional 
system in an initial condition as  
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where L is the length of the domain, and a, b are variables that 
are adjusted to give the average composition according to 
Table I. 

 
TABLE I 

COEFFICIENTS TO GIVE THE INITIAL COMPOSITION IN THE ONE DIMENSIONAL 

SYSTEM 

Average composition a b 
0.9 0.42 0.58 
1.1 0.38 0.62 
1.5 0.30 0.70 
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