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Study of a BVAR(p) process applied to U.S.
commodity market data

Jan Šindelář

Abstract—The paper presents an applied study of a multivariate
AR(p) process fitted to daily data from U.S. commodity futures
markets with the use of Bayesian statistics. In the first part a
detailed description of the methods used is given. In the second
part two BVAR models are chosen one with assumption of log-
normal, the second with normal distribution of prices conditioned
on the parameters. For a comparison two simple benchmark models
are chosen that are commonly used in todays Financial Mathematics.
The article compares the quality of predictions of all the models, tries
to find an adequate rate of forgetting of information and questions
the validity of Efficient Market Hypothesis in the semi-strong form.

Keywords—Vector Auto-regression, Forecasting, Financial,
Bayesian, Efficient Markets.

I. INTRODUCTION

In the sixties E.Fama together with P.Samuelson laid the
ground for Efficient Market Hypothesis (EMH) in Fama’s
PhD. thesis and a series of famous articles [1], [2], [3],
following earlier work of L.Bachelier [4]. Since then, validity
of the hypothesis has been widely examined, but was mostly
accepted by mathematicians and financial engineers, because
of the economic arguments, indecisive experimental proofs
against it and greater ease of computation [5] of related model-
ing problems, mainly on the side of optimization and decision
making. The forecastability of financial market returns remains
an open problem and is discussed for example in [6], [7]. The
second article states that a model able to predict financial
returns has to adapt to market changes quickly and catch
local dependencies in price movements. As such a model, we
propose a vector auto-regression used quite successfully for
forecasting evolution of various time series of non-financial
kind and even economic time series [8].

In this paper, we try to compare two kinds of BVAR(p)
models with the most widely accepted price evolution models
in modern finance (for a continuous-time case see for example
[9]), which are in agreement with the semi-strong form of
EMH. The abbreviation BVAR stands for Bayesian Vector
Auto-Regression process, to be fully defined later. For the
comparison we use daily data from U.S. commodity futures
markets.

To be able to compare the competing models we need to be
able to compute a multi-step ahead prediction of the related
BVAR processes. Such predictions have been already proposed
under the assumptions of classical statistics [10] or when mean
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values of estimated parameters were taken as true values [11].
In this paper we compute an approximate solution of h-step
prediction of evolution of the stochastic process related to the
data in a full distribution form proposed in [12], although
only the first moment of the distribution will be used in the
experimental part. To obtain the distribution we draw Monte
Carlo samples from the estimated parameter distribution, we
let the vector auto-regression process evolve with the sampled
parameters and reconstruct the predictive distribution by a
simple numerical integration.

Since in two of the models we predict variables that are
log-normally distributed, when the values of the parameters
of the model are known, we can work with the related data
channels logarithmized, but then we have to be careful when
computing predictions.

In the paper we give a detailed description of the compu-
tation of predictions, when certain channels are modeled by a
conditionally log-normal auto-regression process.

The paper is organized as follows: In section II the theoret-
ical background to the problem presented is given. Subsection
II-A presents basic terms for the reader to understand the
issue. Subsection II-B presents the model chosen as one
possibility for modeling time series evolution. Subsection II-C
references the reader to a source, where systematic structure
estimation of the model is presented. Subsection II-D guides
the reader through the Bayesian estimation of parameters.
Subsection II-E describes an approximation for time evolution
of parameters through exponential forgetting. Subsection II-F
describes the approximate computation of future price distri-
bution through Monte Carlo sampling and gives a recipe for
finding first two central moments of the distribution.

Finally subsection II-G presents inclusion of log-normal
data channels into the model. Section III presents the results
obtained from selected models, when applied to U.S. com-
modity market data, with description of the quality measures
of point predictions of the individual models. Section IV
concludes the paper.

II. MODELLING

A. Basic concepts and notation

We try to model the time series of a market price yt of some
commodity futures contract, where t is from a discrete finite
set of times – an index set T = {1, . . . , T}. We suppose that
the price evolution is also influenced by other observable data
and we collect all these data channels into a vector of data
dt = (d1;t = yt, d2;t, . . . , dk;t)

′, where the apostrophe stands
for transposition.
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To such data, we try to assign a discrete-time stochastic
process Dt – an adapted stochastic process meaning that now
the Dt are random vectors, defined on a probability space
(Ω,F , μ), where the space is equipped with a filtration Ft

1

(collection of σ-algebras) and for each time s ≥ t the random
vector Dt is measurable Fs and Dt = dt – the realization of
the random vector Dt is known to the observer from time t
on. Capital letters are used for random variables and matrices
and small letters for realizations and values.

We suppose, the joint probability distribution of
D1, . . . ,DT is absolutely continuous with respect to
the underlying Lebesgue measure λTk, so that there exists
a joint probability density f(d1, . . . ,dT ) specifying the
distribution. For a more detailed discussion on this issue see
Chapter 6 in [14].

Remark 1: In the following text densities of a different
functional form can be denoted by f if they differ in arguments
(either in number or type). This is a concept similar to that
of function overloading often used in computer programming
and leads to a less complicated notation.

Except for random vectors Dt, there are other random
variables θ defined on (Ω,F , μ), called parameters, some of
which can describe the relations between D1, . . . ,DT by a
parametric model – one of such will be introduced in the next
section. These variables are not measurable Ft, ∀t ∈ T , but are
measurable F . We again suppose, there exists a joint density
of data and parameters determining their joint distribution.

B. Model choice

There are various ways how to choose an appropriate para-
metric model to describe the behavior of stochastic process
D1, . . . ,DT (see for example [15],[16]). We will use a special
type of ARMA processes - multivariate AR processes reduced
to the first p time-lags (AR processes were first systematically
studied by Box and Jenkins in [17] and are also presented in
detail in [18]). The reason for choosing such processes is their
relative richness and also computational ease, when it comes
to their parameter estimation. We start by splitting the joint
probability density mentioned earlier into factors similar to
each other, but shifted in time with the use of basic theorems
of probability theory [14], [19]

f(d1, . . . ,dT ,θ) = (1)
f(dT ,θT |θT−1, . . . ,θp,FT−1)

f(dT−1,θT−1|θT−2, . . . ,θp,FT−2) · · ·
f(dp+1,θp+1|θp,Fp)

where θ = (θT , . . . ,θp). We start modeling at time p + 1,
when the first p data values are available.

In a general case, the number of parameters θ can be very
large and they can evolve over time similarly to the measured
data. In such a case, we would also need to associate a
stochastic process with the parameter evolution. In such a
situation, we have to index the parameters by t ∈ T and
model them similarly to the data. We would then have to
describe the causal dependence of the parameters in terms

1See [13] page 51 for details

of probability density f(θt|θt−1, . . . ,θp,Ft−1) ∀t ∈ T .
Instead we choose a smaller set of parameters θ, which we
believe evolve slowly over time, so that we can account for
their evolution by applying an exponential forgetting in their
estimation [15],[20]. In this approximation we have

f(θt|θt−1, . . . ,θp,Ft−1) = f(θ|Ft−1) ∀t ∈ T (2)

Remark 2: Since the previously defined set of time-
dependent parameters will not be needed anymore throughout
the text, we used the same notation θ for the restricted set of
time-independent parameters.

We now come to the modeling of individual factors in (1).
We split the factors again to get

f(dt,θ|Ft−1) = f(dt|θ,Ft−1)f(θ|Ft−1) (3)

where the first factor on the right-hand side is the actual
parametric model we will choose now conditioned on the past
and the parameters. The second factor in (3) is the posterior
probability density we will estimate from past data.

We choose the probability density of data conditioned on
the parameters to be multivariate Gaussian of the form

f(dt|θ,Ft−1) = (4)

1

[2π |R|] 1
2

exp

{
−1

2
tr

[
R−1

[
I

−A

]′ [ dt

φt−1

] [
dt

φt−1

]′ [ I
−A

]]}

where θ = {A,R} are matrices of parameters, φt =
[dt−1 dt−2 · · ·dt−p1]′. Parameter R stands for a covariance
matrix of the model, A are parameters of the auto-regression
relating past observations of data to present or future observa-
tions (more detailed description will follow). There are several
reasons for choosing such a model:

• Bayesian estimation of parameters of such a model is
feasible, since it is from the so called exponential family
of models [15], [20] and reduces the possibly difficult
assimilation of data to a simple algebraic operation.

• The model contains as a subset the kind of models
used by modern Financial Mathematics in the case that
Efficient Market Hypothesis holds. For a more detailed
presentation of financial models of such kind see [13],
[21], [22], [23] and others.
Remark 3: This is not completely true, since the models
used in modern Financial Mathematics are often of the
continuous-time type – they have to be discretized to form
a subset of a discrete-time AR model. Such a discretiza-
tion of a Wiener type processes is rather intuitive and is
discussed in [24].

Since the probability density in (4) represents a conditional
density of random vector Dt, we can use the rules of prob-
ability theory [14] and decompose the random vector into
conditional mean value and innovation

Dt = E [Dt|θ,Ft−1] + εt = AΦt−1 + Σet = (5)
= A1Dt−1 + A2Dt−2 + · · · + ApDt−p + c + Σet

where et is a noise vector having a normal distribution with
mean value 0 and covariance matrix I and E stands for
mathematical expectation. The matrices A1, . . . ,Ap, vector
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c and matrix Σ, representing square root of the covariance R
being now the parameters of the model. If the original noise
is uncorrelated, the matrix Σ is diagonal.

Remark 4: Note we have changed the realizations of data
variables on the right-hand side of (5) to their random variable
representation. Since at time t−1 or greater the σ-algebra Ft−1

is available and Φt−1 is measurable Ft−1, the relationship (5)
therefore holds unchanged. The new feature of (5) is that it
holds also for future times, when the data in the condition are
unknown. This feature will allow us to construct predictions
of data evolution into the future.

For further computation, previous equation can be embed-
ded into a wider scheme to be recursive and have the Markov
property – see [21] page 49⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Dt

Dt−1

Dt−2

...
Dt−p

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Φt

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2

I 0
0 I
...

...
0 0
0 0

· · ·

Ap−1 Ap c
0 0 0
0 0 0
...
I 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Dt−1

Dt−2

Dt−3

...
Dt−1−p

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Φt−1

+

+

⎡
⎢⎢⎢⎢⎢⎣

Σ 0
0 0
0 0
...
0 0

· · ·

0
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Σ

⎡
⎢⎢⎢⎣
et

0
...
0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
et

(6)

where we have used same notation for the embedded as
for some of the original quantities, which should cause no
confusion, as we will speak only of the extended quantities
from now on.

C. Structure estimation

Although we could use a full dimensional model of a
predefined maximal time-lag and predefined number of data
channels k such a practice can lead to large models with
unnecessary AR component or even unnecessary channel,
bringing additional inaccuracy to the model. For that reason
Kárný and Kulhavý [25] have proposed a systematic way of
Bayesian hypothesis testing for finding the best model through
maximum a posteriori likelihood estimation.

D. Parameter estimation

To estimate parameters from past data means to evaluate the
second factor on the right-hand side in (3) at each time. We
will perform the estimation in a Bayesian manner [26],[27]
and use the Bayes theorem. First we have to note that the new
σ-algebra Ft contains only information that has no impact on
parameters or Dτ , ∀τ ∈ T and the information making Dt

measurable Ft. Now we can use Bayes theorem to write

f(θ|Ft) =
f(dt|θ,Ft−1)f(θ|Ft−1)∫

R f(dt|θ,Ft−1)f(θ|Ft−1)dθ
(7)

where R is the range of the parameters. Usually R = R
n,

where n is the number of parameters and R is the set of real

numbers. We can use this procedure at every time step to
update the posterior probability density function (pdf), since
we have already chosen the first factor in numerator on right
hand-side in (4). At the first estimation step we need the initial
condition - the prior pdf. Since we do not know anything
about the time series, before the first data are obtained, we
should choose a non-informative or Jeffrey’s prior pdf. Such a
choice is a special case of a wider class of prior distributions
defined by a conjugate prior density [26]. Since the model
chosen is from the exponential family of models a conjugate
prior pdf can be chosen in a closed form. In [25] it is shown,
such a pdf is of Gauss-Inverse-Wishart (Inverse-Gamma in
one-dimensional case) type

GiW (V, ν) ∝ (8)

|R|− ν+kp+1−k
2 exp

{
−1

2

[
R−1

[
I

−A

]′
V
[

I
−A

]]}

where V is a positive definite extended information matrix
and ν is a positive number of degrees of freedom. These
parameters have to be chosen before the estimation starts.
Such a choice can have a considerable impact on estimation
of parameters A,R, but since in time series analysis T is
usually large, the prior pdf choice can be treated with a little
less care.

As described in [26], conjugate priors are chosen so that
they are self-reproducing when estimation (7) is performed
- the probability density function retains the form (8) with
V, ν replaced by Vt, νt respectively. The estimation step
comes down to simple algebraic operation on these parameters,
written recursively

Vt = Vt−1 +
[

dt

φt−1

] [
d′

t φ′
t−1

]
(9)

νt = νt−1 + 1

where
V0 = V ν0 = ν (10)

Remark 5: For computational reasons, the model can be
decomposed into individual one dimensional regression mod-
els as follows. Because R is a regular positive definite and
symmetric covariance matrix, it can be LD-decomposed [28]
and we obtain

R = ΣΣ′ = LDL′ (11)

L is a lower triangular matrix with units on the diagonal and
D is diagonal with non-negative entries. The inverse L−1 is
also a lower triangular matrix with units on the diagonal. By
multiplying the model in (6) by L−1 and moving additional
terms from left-hand to right-hand side we obtain

Φt =
[
I − L−1

]
Φt + L−1AΦt−1 + D

1
2 et (12)

where the square-root of D is well defined, since all the
diagonal elements of D are non-negative. The channels of
such a model are no longer correlated and the parameters of
the model can be estimated for k univariate models instead.
Then by a backward transformation, the model can be brought
back to its original form. When such a transformation is
carried through, the prior information on the parameters is also
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transformed. Anyhow, in time series analysis, such a change
should not be important for the reasons mentioned.

E. Exponential forgetting

In case of slow parameter evolution, we can use the ex-
ponential forgetting technique, described in [15], page 46.
Before the parameter estimation step a forgetting step is added,
accounting for parameter evolution. This step replaces the pa-
rameter time-update step [15]. A forgetting factor κ ∈ (0, 1) is
chosen and previous parameter probability density is flattened

f(θt = θ|Ft−1) = f(θt−1 = θ|Ft−1)κ (13)

For GiW model, inclusion of the forgetting causes a change
of (9) to

Vt = κVt−1 +
[

dt

φt−1

] [
d′

t φ′
t−1

]
(14)

νt = κνt−1 + 1

The choice of optimal forgetting factor and also the structure
of the forgetting are difficult tasks. These tasks can be left for
consideration of an expert, but attempts were made to choose
this factor systematically [29].

Remark 6: Exponential forgetting influences the model
structure choice discussed in subsection (B). To the best
knowledge of the author, no satisfactory feasible algorithm
of structure estimation has been proposed yet for κ < 1.
Therefore, the practice used is to estimate model structure
using κ = 1.

F. Prediction using Monte Carlo sampling from parameter
distribution

Let’s now suppose we know the model parameters perfectly
– e.g. their estimated joint probability density is a delta
function f(θ|Ft) = δ(θ − θ0 = [A,Σ]) where A,Σ are
now matrices of numbers, not random variables. We now want
to construct the prediction of the stochastic process Φt up
to a horizon t + h, with the information contained in Ft.
We therefore need to evaluate probability density f(φt+h|Ft),
characterizing the distribution. Since we know the stochastic
process evolves as in (6), if the parameters are known we
obtain a predicted random variable

Φt+h = AhΦt +
h−1∑
i=0

AiΣet+h−i (15)

and we can also compute the mean value (point prediction)
and covariance of this random variable

μh = E [Φt+h|Ft,θ] = (16)

E
[
AhΦt|Ft,θ

]
+ E

[
h−1∑
i=0

AiΣet+h−i|Ft,θ

]
=

AhΦt +
h−1∑
i=0

AiΣE [et+h−i|Ft,θ] = AhΦt

Rh = cov [Φt+h|Ft,θ] = (17)

cov
[
AhΦt|Ft,θ

]
+ cov

[
h−1∑
i=0

AiΣet+h−i|Ft,θ

]
=

h−1∑
i=0

(
AiΣ

)
cov [et+h−i|Ft,θ]︸ ︷︷ ︸

I

(
AiΣ

)′
=

h−1∑
i=0

[
AiΣ

(
AiΣ

)′]

where A0 ≡ I, since we consider a model with
cov [et, es| Ft] = 0 for s > t. These first two moments of
distribution of Φt+h will be important in the next paragraph.
Since et are normally distributed ∀t ∈ T , we obtain the pdf
of random variable on the left-hand side in (15) as

f(φt+h|Ft) = ϕμh,Rh
(φt+h) (18)

where ϕμ,R is the normal multivariate probability density
function with mean value μ and covariance R.

If instead of the delta function, the parameter values are
uncertain, we can proceed with the multi-step ahead prediction
by drawing N Monte Carlo samples θi, where i ∈ {1, . . . , N}
from their probability distribution characterized by f(θ|Ft).
After having evaluated the predictions, we reconstruct the
predictive probability density by simple numerical integration.

In an exact computation, we should consider the predicted
value for t+ 1 to estimate new probability density f(θ|Ft+1)
and we should perform the forgetting (13). Instead, for com-
putational feasibility, we use a so called receding horizon or
moving window approximation. In this approximation

f(θ|Fs) = f(θ|Ft) t < s ≤ t+ h (19)

for purposes of prediction up to time t+h – we do not update
the parameter distribution with the use of estimated data. Once
we obtain new real data at time t + 1, we proceed with
parameter estimation (7), forget (13), again fix the distribution,
draw new N samples and predict up to horizon t+ 1 + h and
so on. This approximation allows us to use the previously
obtained result (18) for multistep-ahead predictive probability
density function, except now we obtain N such result, each
conditioned on the parameter value θi drawn from f(θ|Ft).

We now reconstruct the final predictive probability density
function f(φt+h|Ft) by integrating out the parameters, which
in the Monte Carlo approximation results in an averaging

fN (φt+h|Ft) =
1
N

N∑
i=1

f(φt+h|θi,Ft) (20)

In the moving window approximation such a probability
density function should converge point wise to the distribution
obtained by a general integration for N → ∞.

From the distribution obtained we can generally compute
its central moments, which characterize the distribution of the
predicted values of the stochastic process Φt. For illustration
we now compute the first two central moments of the dis-
tribution. With the first two moments known, we could fit a
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normal distribution to the prediction, although it is certain,
that the uncertainty in parameters θ causes the real predictive
distribution to be heavy–tailed. For the mean value we get

EN [Φt+h|Ft] =
∫

Rkp+1
φt+hfN (φt+h|Ft) dφt+h =

∫
Rkp+1

φt+h

1
N

N∑
i=1

f(φt+h|Ft,θi)dφt+h = (21)

1
N

N∑
i=1

E [Φt+h|Ft,θi]

if the sum and integral can be transposed, which we as-
sume. From knowledge of the covariance matrices Rh;i =
cov(φt+h|θi,Ft) we can compute

cov [Φt+h|Ft] = (22)

EN

[(
φt+h − EN [Φt+h|Ft]

) (
φt+h − EN [Φt+h|Ft]

)′ |Ft

]

=
∫

Ω

⎛
⎝φt+h − 1

N

N∑
j=1

EN [Φt+h|Ft,θj ]

⎞
⎠ ·

(
φt+h − 1

N

N∑
l=1

EN [Φt+h|Ft,θl]

)′

·

1
N

N∑
i=1

f(φt+h|Ft,θi)dφt+h =

1
N3

N∑
i=1

∫
Ω

N∑
j=1

(
φt+h − EN [Φt+h|Ft,θj ]

) ·
N∑

l=1

(
φt+h − EN [Φt+h|Ft,θl]

)′
f(φt+h|Ft,θi)dφt+h =

1
N3

∑
i,j,l

∫
Ω

(φt+hφ′
t+h − φt+hEN [Φt+h|Ft,θl]

′ −

EN [Φt+h|Ft,θj ]φ′
t+h +

EN [Φt+h|Ft,θj ] EN [Φt+h|Ft,θl]
′)f(φt+h|Ft,θi)dφt+h =

1
N3

∑
i,j,l

(EN

[
Φt+hφ′

t+h|Ft,θi

]−
EN [Φt+h|Ft,θi] EN [Φt+h|Ft,θl]

′ −
EN [Φt+h|Ft,θj ] EN [Φt+h|Ft,θi]

′ +
EN [Φt+h|Ft,θj ] EN [Φt+h|Ft,θl]

′) =

1
N

N∑
i=1

Rh;i+
1
N

N∑
i=1

(EN [Φt+h|Ft,θi])(EN [Φt+h|Ft,θi])
′−

1
N2

(
N∑

i=1

EN [Φt+h|Ft,θi]

)⎛⎝ N∑
j=1

EN [Φt+h|Ft,θj ]

⎞
⎠

′

where Ω = R
kp+1. We again suppose, we can transpose sums

and integrals. Higher moments could be computed to obtain a
more accurate approximation of the final distribution.

G. Incorporating log-normally distributed data channels into
the model

In the Bayesian framework models from exponential family
have an exclusive position [15],[26],[27] for feasible parameter

inference. The family is quite restricted, but except for the
normal model described above, it also contains a log-normal
model, which is sometimes a more adequate choice for the
problem at hand, but brings a few difficulties, when used for
multi-step ahead prediction. We will present and resolve these
difficulties in this paragraph. We will also assume a mixed
model containing normal and log-normal components.

Now the data vector dt contains channels nt and to these
channels we associate a normal autoregressive process Nt as
before and channels lt, data that need to be logarithmized in
order to follow a normal stochastic process lnLt. The new
model equation follows to clarify the situation

Dt =
[
lnLt

Nt

]
= (23)

A1Dt−1 + A2Dt−2 + · · · + ApDt−p + c + Σet =

A1

[
lnLt−1

Nt−1

]
+ · · · + Ap

[
lnLt−p

Nt−p

]
+ c + Σet

where et ∼ N (0, I) for all t ∈ T . The first problem is that the
random walk is biased in the space of backward transformed
data.

Lemma 1: Let L be a random vector that when logarith-
mized is jointly normally distributed – lnL ∼ N (μ,R) having
k entries. Then L is characterized by multivariate log-normal
probability density function

f(l1, . . . , lk) = (24)

[2π]−
k
2 |R|− 1

2

k∏
i=1

1
li

exp
{
− [ln l − μ]T R−1 [ln l − μ]

}

where ln l = [ln l1 · · · ln lk]′ and the first two moments of its
distribution for are given by

E [Li] = eμi+Rii/2 (25)

and
cov [Li, Lj ] =

[
eRij − 1

]
eμi+μj+

Rii+Rjj
2 (26)

where i, j ∈ {1, . . . , k}.

Proof: For proof using moment generating functions see
[30].

Application of (25) and (26) to the mixed vector in (23)
leads to a one-step ahead mean-value prediction conditioned
on the parameters

E

([
lt+1

nt+1

]
|Ft,θ

)
=
[

E (lt+1|Ft,θ)
E (nt+1|Ft,θ)

]
= (27)[

exp
(
μl + σ2

l

2

)
μn

]
�=
[
exp E (ln lt+1|Ft,θ)

E (nt+1|Ft,θ)

]

where σ2 = diagR is a vector of diagonal components of
matrix R, μ is the mean-values vector and the indices l and n
specify the parts of the vectors belonging to the normally and
log-normally distributed components. In the above equation we
can see that the prediction of a process associated with a log-
normally distributed data channel i is now positively biased
when backward-transformed into the original data space by a
multiplicative factor of eσ2

i /2.
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We now want to predict in such a model up to horizon h.
We apply equation (15) again, but we now have to be careful
when taking expectations, because we need the backward-
transformed predictions

E
[[

Lt+h Nt+h · · · Lt+h−p Nt+h−p

] ′|Ft,θ
]

=
E
[
φt+h|Ft,θ

]
(28)

To obtain such predictions, we have to combine (15), (25) and
(26) and a little extra

Lemma 2: Let ρ =
[
lnL
N

]
of l + n elements belonging

respectively to the individual parts and φ ∼ N (μ,R). Then

for a vector φ =
[
L
N

]
the mixed covariance

cov [φi, φj ] = rij exp
{
μi +

rii
2

}
(29)

for i ∈ {1, . . . , l} , j ∈ {l + 1, . . . , l + n}.

Proof: We start from the moment generating function

E [exp (t′ρ)] = exp
(
t′μ +

1
2
t′Rt

)
=

E

⎧⎨
⎩
[

l∏
i=1

φti
i

]⎡⎣exp

⎛
⎝ l+n∑

j=l+1

φjtj

⎞
⎠
⎤
⎦
⎫⎬
⎭ (30)

where the third term on the right-hand side is the multivariate
moment generating function of normal distribution [30]. From
here wee see that

E [φiφj ] = lim
tk→0
ti→1

∂

∂tj

[
exp

(
t′μ +

1
2
t′Rt

)]
(31)

for i ∈ {1, . . . , l} , j ∈ {l + 1, . . . , l + n}. Since

cov [φi, φj ] = E [φiφj ] − E [φi] E [φj ] (32)

we use (25) and we plug in the limit values in the equation
above to obtain the desired result.

Corollary 1: The above proposition can be generalized to
a permuted random vector ρP = Pρ, where P is an arbitrary
permutation matrix (|P| = 1, ∀i, j Pij ∈ {0, 1} ,∑i Pij =
1,
∑

j Pij = 1).

III. EXPERIMENTAL RESULTS

The model introduced in previous section was tested on
daily data from 11 U.S. commodity futures markets in period
from 2.1.1990 to 9.8.2005. The markets considered have been

1) Australian Dollar [AD] (Currency, CME)
2) British Pound [BP] (Currency, CME)
3) Cocoa [CC] (Soft, CSCE)
4) Canadian Dollar [CD] (Currency, CME)
5) Light Crude Oil [CL] (Energy, NYMEX)
6) Cotton [CT] (Grain, NYCE)
7) Feeder Cattle [FC] (Livestock, CME)
8) Gold [GC] (Metal, COMEX)
9) Heating Oil [HO] (Energy, NYMEX)

10) Gasoline [HU] (Energy, NYMEX)

11) Wheat [W] (Grain, CBOT)
From these markets we have incorporated 33 information
channels into the model. Among these channels we have
assumed: opening, highest, lowest and closing prices, trading
volume, open interest, spot price, commitment of traders
information and a few others. From this information we tried to
predict the closing price of the futures contracts up to a horizon
of h = 14 days. The data at hand contained 3928 trading days
from which 1700 trading days were used to train the model
and estimate model structure. After the warm-up period multi-
step ahead out-of-sample forecasts of closing price distribution
were made.

Remark 7: Futures contract usually are not traded for a
period of 15 years. Therefore the time series had to be merged
from data of more different contracts. The time series used
were synthesized as follows: The prices at the end of the
trading period are real market prices and as we go back in
time, when the active contract (the contract with highest trade
activity) changes, we switch to the previous active contract
with price adjusted by an additive constant, so that there is no
gap at the time of change. This way we create an artificial time
series, which will differ from the time series of real prices. In
the future this artificial transformation of data will be removed
and the models will be used on a single contract time series.

For prediction, we have used four models of the presented
type. Two of them were obtained from a structure estimation
procedure described above and two were benchmark models
used extensively in todays financial mathematics. Maximum
order p = 2 of the AR process has been chosen for computa-
tional feasibility of the structure estimation.

So far, all the criteria of success measured, were based only
on the conditional value E [Yt+h|Ft] – on the point prediction
of future price evolution. Therefore from now on prediction
always means such a point prediction.

In the first BVAR model with estimated structure and the
first benchmark model the price channels have been trans-
formed using logarithmic transformation. After the prediction
has been made for the future evolution of closing price, the
predictions were backward transformed into the space of real-
world prices – we have obtained point predictions of the
closing price by the methods described in the theoretical part
of the paper.

In the second BVAR model and a second benchmark model,
no transformation was performed and a direct prediction of
future evolution of closing price has been made.

The two univariate benchmark models were the ones com-
monly used in todays financial mathematics. These models are
in agreement with the semi-strong form of Efficient Market
Hypothesis. In the first model the closing price

Yt+1 = Yt exp {α+ σet+1} (33)

or equivalently

lnYt+1 − lnYt = α+ σet+1 (34)

where in the second benchmark model

Yt+1 = Yt + α+ σet+1 (35)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:10, 2009

786

TABLE I
OUT-OF-SAMPLE MEDIAN RELATIVE ERROR COMPUTED FOR THE HIGHEST LIKELIHOOD LOG-NORMAL AND NORMAL BVAR(2) MODEL AND

LOG-NORMAL (33) AND NORMAL (35) BENCHMARK MODEL FOR HORIZONS 1, . . . , 7.THE ERROR IS SHOWN IN PARTS PER MILLE(·103).

horizon 1 2 3 4 5 6 7
mkt. model frg MERE frg MERE frg MERE frg MERE frg MERE frg MERE frg MERE

BVAR(log) 3 4.68 17 6.87 2 8.70 14 10.40 3 11.46 3 12.47 3 13.67AD
benchmark(log) 4 4.70 6 6.91 3 8.57 1 10.02 2 11.48 3 12.56 4 13.84
BVAR(normal) 3 4.68 5 6.89 4 8.73 3 10.27 3 11.57 3 12.65 2 13.78

benchmark(normal) 6 6.91 2 8.57 1 10.04 2 11.47 1 12.57 1 13.65 2 14.41
BVAR(log) 7 3.34 6 4.90 5 6.08 5 7.13 3 8.09 5 9.16 4 10.12BP

benchmark(log) 3 3.31 5 4.79 1 5.99 18 7.04 2 8.01 7 8.93 3 9.88
BVAR(normal) 7 3.36 6 4.89 5 6.08 4 7.08 5 8.09 5 9.15 5 10.12

benchmark(normal) 4 4.77 1 5.89 2 6.97 2 7.92 17 8.93 1 9.77 2 10.29
BVAR(log) 21 9.79 11 13.39 4 16.89 3 19.11 6 22.20 3 24.61 5 26.73CC

benchmark(log) 21 9.77 12 13.44 4 16.89 2 19.07 4 22.28 3 24.92 5 26.81
BVAR(normal) 21 9.78 17 13.41 3 17.05 2 19.18 4 22.13 3 24.49 4 26.64

benchmark(normal) 2 13.43 1 16.80 1 19.05 1 22.18 2 24.71 4 26.91 11 29.14
BVAR(log) 6 2.40 5 3.56 6 4.47 10 5.23 2 6.09 10 6.59 21 6.94CD

benchmark(log) 3 2.45 5 3.60 2 4.53 2 5.33 1 6.11 1 6.72 3 7.10
BVAR(normal) 7 2.42 5 3.58 10 4.46 7 5.25 21 6.01 20 6.55 14 6.98

benchmark(normal) 4 3.57 1 4.46 1 5.33 1 6.06 1 6.70 1 7.09 1 7.56
BVAR(log) 10 7.06 2 10.47 9 12.66 6 14.80 13 16.62 9 18.82 6 19.81CL

benchmark(log) 11 6.99 2 10.34 3 12.53 4 14.78 6 16.66 3 18.64 9 19.93
BVAR(normal) 4 7.12 3 10.59 5 12.88 4 15.44 6 18.34 7 NaN 7 NaN

benchmark(normal) 1 10.34 1 12.59 3 14.96 7 16.73 1 18.64 2 19.68 3 20.79
BVAR(log) 17 5.36 4 7.65 2 9.65 5 11.17 1 12.30 3 13.59 4 15.09CT

benchmark(log) 7 5.42 17 7.67 21 9.62 3 11.20 1 12.44 3 13.74 1 14.94
BVAR(normal) 10 5.37 6 7.62 6 9.64 2 11.15 14 12.58 2 13.68 4 15.11

benchmark(normal) 11 7.66 6 9.54 1 11.18 1 12.33 1 13.33 1 15.02 1 15.91
BVAR(log) 6 4.82 4 7.20 1 8.75 9 9.91 13 10.88 21 12.15 7 13.30FC

benchmark(log) 6 4.79 8 7.17 12 8.77 7 9.91 21 10.86 19 12.23 4 13.40
BVAR(normal) 6 4.78 6 7.18 5 8.74 9 9.90 19 10.91 21 12.27 4 13.39

benchmark(normal) 5 7.17 1 8.72 1 9.93 18 10.98 11 12.23 5 13.33 3 14.36
BVAR(log) 21 3.95 5 6.00 8 7.64 7 8.65 6 9.94 4 11.31 4 12.65GC

benchmark(log) 14 3.93 2 5.94 5 7.52 9 8.53 5 9.76 2 11.02 5 12.20
BVAR(normal) 12 3.92 4 5.93 4 7.51 7 8.53 3 9.77 3 10.93 4 12.15

benchmark(normal) 3 5.96 5 7.58 3 8.49 3 9.71 3 10.96 4 12.16 5 12.95
BVAR(log) 7 10.14 4 14.98 2 18.46 3 22.10 2 24.50 5 27.87 3 29.85HO

benchmark(log) 17 10.16 4 14.79 3 18.33 5 21.71 3 24.22 2 27.08 11 29.42
BVAR(normal) 5 10.13 5 14.93 2 18.42 5 21.82 3 24.40 2 27.49 5 29.56

benchmark(normal) 1 14.66 1 17.93 2 21.83 1 24.07 2 27.09 2 29.10 7 30.82
BVAR(log) 4 7.17 8 10.78 4 13.58 6 15.59 5 17.76 16 18.88 10 19.92HU

benchmark(log) 3 7.18 4 10.66 3 13.51 2 15.41 7 17.66 7 19.02 6 19.97
BVAR(normal) 4 7.16 6 10.74 3 13.55 4 15.68 8 17.70 6 19.09 5 20.13

benchmark(normal) 1 10.62 1 13.53 2 15.46 4 17.75 9 19.09 8 19.91 3 21.16
BVAR(log) 13 5.86 5 8.27 4 9.96 5 11.58 5 13.30 4 14.14 12 15.53W

benchmark(log) 9 5.86 2 8.19 5 9.86 7 11.61 3 13.17 12 14.18 4 15.40
BVAR(normal) 6 5.85 2 8.20 4 9.91 6 11.59 4 13.16 5 14.07 5 15.51

benchmark(normal) 2 8.24 4 9.88 2 11.61 1 13.09 3 14.09 3 15.49 4 16.90

Both these models are in the set of models considered in
the structure estimation step and are ruled out because of
a lower likelihood, but we still measure their out-of-sample
performance, against the out-of-sample performance of their
highest likelihood BVAR counterparts.

Twenty forgetting factors κi have been chosen as values of

κi = 1 − exp{−xi} (36)

where x1 = 4, x2 = 4.5, x3 = 5, . . . , x20 = 14 so that the
forgetting factor ranges from about 0.98 to almost 1. The
forgetting factor has been kept constant for all channels and
parameters.

As the measure of success of the prediction we first take
the median relative error of the forecast

MERE = median

∣∣∣∣∣∣∣ E [Yt+k|Ft]︸ ︷︷ ︸
ŷt+k

/yt+k − 1

∣∣∣∣∣∣∣ k ∈ {1, . . . , h}

(37)
where ŷt+k is the already mentioned point estimate of price
at time t+ k and yt+k is real price at the same time. Median
error is chosen for its robustness, since some of the models
that are unstable may produce heavily outlying predictions.

Remark 8: The predicted change in price is small compared
to the price in vast majority of cases and especially in the cases
with small prediction error. Therefore negative prices are not
predicted and the ratio in MERE computation stays positive,
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TABLE II
OUT-OF-SAMPLE MEDIAN RELATIVE ERROR COMPUTED FOR THE HIGHEST LIKELIHOOD LOG-NORMAL AND NORMAL BVAR(2) MODEL AND

LOG-NORMAL (33) AND NORMAL (35) BENCHMARK MODEL FOR HORIZONS 8, . . . , 14. THE ERROR IS SHOWN IN PARTS PER MILLE(·103).

horizon 8 9 10 11 12 13 14
mkt. model frg MERE frg MERE frg MERE frg MERE frg MERE frg MERE frg MERE

BVAR(log) 3 14.48 2 15.17 3 16.41 3 17.18 2 17.73 2 18.23 2 19.59AD
benchmark(log) 4 14.41 1 15.08 3 16.02 1 16.88 2 17.65 2 18.20 2 19.54
BVAR(normal) 3 14.54 3 15.10 4 18.56 4 224.97 4 NaN 4 NaN 4 NaN

benchmark(normal) 1 14.99 1 15.95 1 16.82 2 17.44 2 17.93 1 19.17 1 20.35
BVAR(log) 6 10.57 4 11.43 4 12.26 6 12.78 5 13.58 5 14.12 7 14.62BP

benchmark(log) 4 10.37 14 11.10 2 11.93 5 12.58 6 13.31 19 13.86 17 14.43
BVAR(normal) 6 10.61 5 11.36 5 12.31 6 14.26 7 232.98 7 NaN 7 NaN

benchmark(normal) 2 11.05 2 11.92 4 12.46 2 13.24 9 13.86 2 14.38 2 14.99
BVAR(log) 9 29.13 11 31.54 7 33.20 18 34.99 14 36.30 21 37.57 21 37.90CC

benchmark(log) 6 29.02 4 31.34 5 33.17 4 34.73 4 36.08 2 36.73 19 37.84
BVAR(normal) 4 29.00 3 30.70 4 32.46 2 34.77 4 36.83 3 37.60 4 38.45

benchmark(normal) 2 30.83 2 32.93 3 34.83 4 35.70 2 36.60 21 37.77 3 38.55
BVAR(log) 7 7.50 18 7.87 7 8.52 7 8.87 5 9.40 8 9.69 15 10.06CD

benchmark(log) 8 7.65 8 8.04 5 8.74 2 9.05 2 9.60 2 10.03 3 10.35
BVAR(normal) 18 7.51 14 7.84 14 8.48 12 8.86 11 9.34 10 9.65 7 10.04

benchmark(normal) 21 8.05 1 8.64 1 8.99 4 9.58 4 9.99 2 10.28 3 10.60
BVAR(log) 4 21.01 5 22.24 6 23.37 6 24.44 4 25.69 6 27.75 5 28.92CL

benchmark(log) 2 21.01 2 21.64 3 23.01 2 24.46 3 26.13 2 27.60 2 28.63
BVAR(normal) 7 NaN 7 NaN 7 NaN 7 NaN 7 NaN 7 NaN 7 NaN

benchmark(normal) 2 21.65 2 22.74 2 23.88 2 25.71 2 27.47 1 28.54 2 28.65
BVAR(log) 4 15.97 3 17.13 3 18.31 3 19.41 5 20.40 3 21.27 3 22.33CT

benchmark(log) 2 15.88 3 17.11 4 18.13 5 19.46 5 20.48 4 21.28 3 22.13
BVAR(normal) 2 15.84 3 17.15 4 18.17 2 19.53 4 20.56 4 21.61 3 22.49

benchmark(normal) 3 16.87 3 18.21 4 19.26 4 20.44 4 21.03 3 22.03 4 23.10
BVAR(log) 6 14.28 3 15.02 8 15.67 6 16.58 6 17.47 6 18.14 7 18.59FC

benchmark(log) 4 14.41 14 15.26 13 15.76 5 16.58 4 17.51 4 18.19 21 18.89
BVAR(normal) 3 14.38 9 15.35 21 15.89 11 16.55 3 17.45 4 18.55 7 18.83

benchmark(normal) 2 15.24 18 15.90 7 16.57 2 17.39 2 18.36 10 18.93 6 19.32
BVAR(log) 5 13.25 5 14.45 5 15.44 5 16.18 6 17.23 7 17.81 8 18.24GC

benchmark(log) 5 13.08 3 13.90 4 14.94 4 15.78 4 16.59 21 17.25 4 17.32
BVAR(normal) 6 12.96 4 13.98 5 15.00 5 15.66 5 16.54 6 17.24 5 17.28

benchmark(normal) 3 13.87 3 15.09 4 15.84 4 16.47 19 17.29 6 17.31 5 18.23
BVAR(log) 4 31.72 4 33.13 3 35.09 5 36.90 6 38.60 4 40.30 6 41.35HO

benchmark(log) 12 30.73 11 32.36 19 34.16 10 35.42 3 37.96 3 39.13 14 40.17
BVAR(normal) 5 31.07 7 33.02 4 34.38 7 NaN 7 NaN 7 NaN 7 NaN

benchmark(normal) 2 32.34 3 33.97 3 34.66 2 36.38 2 38.19 20 39.81 8 41.91
BVAR(log) 4 21.46 3 22.84 3 24.32 5 25.27 4 27.06 3 27.89 11 29.09HU

benchmark(log) 3 21.24 3 22.70 3 23.87 4 25.08 2 26.47 2 27.42 2 28.49
BVAR(normal) 4 21.39 5 22.81 4 24.28 5 24.99 4 26.72 2 27.62 3 28.61

benchmark(normal) 3 22.84 2 23.96 3 24.87 2 26.07 3 27.20 2 28.12 2 29.84
BVAR(log) 8 16.86 7 18.12 6 19.27 3 20.51 5 21.42 6 22.64 3 23.17W

benchmark(log) 4 16.94 6 18.27 6 19.35 3 20.68 5 21.63 6 22.67 3 23.16
BVAR(normal) 3 16.82 4 18.15 5 19.18 3 20.46 6 21.45 5 22.72 3 23.24

benchmark(normal) 5 18.21 5 19.23 3 20.55 2 21.46 6 22.49 5 23.27 3 23.65

so that it is a good measure of a relative error. Asymmetry
between positive and negative relative error is neglected.

The results for h = {1, . . . , 7} and h = {8, . . . , 15} are
summarized in Tables I and II respectively. The index of
forgetting factor κi with minimal MERE chosen for each
model and each horizon is written in the first column, the error
per mille of the actual price in the second one. At every given
horizon, the results of the model with lowest MERE among
the four competitors is highlighted by the use of a bold font.

For the purposes of a real agent trading in the markets
the magnitude of prediction error is not the most important
indicator of trading success. For an honest measure of such
a success a Dynamic Programming optimization should be
performed for the predictions, see [31], [32], transaction fees
should be considered and constraints should be set for number

of held futures contracts or trading capital. All these properties
of trading have to be taken seriously, but are out of scope of
the presented paper. We instead measure something, possibly
called ”trading potential”.

If the direction of the trade misses the direction of market
evolution, the agent looses money even if MERE is low, where
if the directions agree, she makes money even if the error is
high. The situation is shown in Figure 1, where ŷt+1 and ȳt+1

are the two possible predictions made at time t for time t+ 1
and yt, yt+1 are the real prices at times t, t+ 1 respectively.
We therefore use a second simple measure of trading success
based on a an open-loop buy and hold strategy. The agent
at time t buys a single contract if she expects the closing
price to rise ŷt+k > yt and sells if she expects a price fall
– ŷt+k < yt for a given k. We compute a cumulative gain
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TABLE III
TRADING POTENTIAL COMPUTED FOR THE HIGHEST LIKELIHOOD LOG-NORMAL AND NORMAL BVAR(2) MODEL AND LOG-NORMAL (33) AND NORMAL
(35) BENCHMARK MODEL FOR HORIZONS 1, . . . , 7. THE POTENTIAL IS SHOWN IN US$, TRANSACTION COSTS AND LIMITED TRADING CAPITAL ARE NOT

TAKEN INTO ACCOUNT.

horizon 1 2 3 4 5 6 7
mkt. model frg GAINS frg GAINS frg GAINS frg GAINS frg GAINS frg GAINS frg GAINS

BVAR(log) 2 58530 3 66020 3 109600 3 165450 3 202520 3 246260 3 272440AD
benchmark(log) 4 44290 4 86720 4 132440 4 174750 4 207700 4 251200 4 291300
BVAR(normal) 1 50230 2 74600 3 128460 2 144950 2 189300 2 221980 2 248100

benchmark(normal) 3 47530 1 14600 2 45880 1 63930 1 88780 1 130520 2 166000
BVAR(log) 15 78019 6 32037 6 42437 1 -7375 2 33637 2 -22706 7 -24363BP

benchmark(log) 6 40481 6 82350 6 112475 6 129925 6 173300 6 202419 6 230325
BVAR(normal) 7 79006 9 44900 6 101825 6 80825 6 74025 6 76569 4 50112

benchmark(normal) 15 14406 11 42875 11 74250 8 32988 3 29688 3 62156 3 100275
BVAR(log) 20 7970 14 15170 15 25230 15 33020 18 43370 12 41320 12 45200CC

benchmark(log) 20 8930 15 12490 16 17590 17 23020 17 29030 17 34620 17 40380
BVAR(normal) 9 5750 9 11450 9 17170 9 23020 9 29030 9 34620 9 40380

benchmark(normal) 2 1810 20 17790 4 7010 3 16000 2 43630 3 49740 3 81440
BVAR(log) 9 75040 18 82420 6 102470 10 123990 12 175630 12 211200 12 244690CD

benchmark(log) 5 23720 6 40860 5 63330 5 82270 5 103330 5 125220 5 142590
BVAR(normal) 7 73460 8 80320 7 102970 7 118950 7 159190 7 177760 10 201390

benchmark(normal) 4 17200 7 12100 5 12710 8 41810 1 59350 1 83160 2 103470
BVAR(log) 5 57450 5 56610 5 98100 6 165720 6 212610 6 271300 6 336040CL

benchmark(log) 3 55730 3 91710 3 131320 3 170840 3 216690 3 249800 3 300700
BVAR(normal) 6 48230 1 -10250 1 -9180 1 -15020 3 64650 12 70840 12 91420

benchmark(normal) 7 -30050 5 11910 1 29040 3 54000 3 65170 4 78620 1 120460
BVAR(log) 16 58725 7 55050 4 72775 4 123240 4 147110 4 172970 4 201075CT

benchmark(log) 5 21335 4 32770 4 51135 5 70160 5 98080 5 125150 5 139445
BVAR(normal) 7 61515 7 59470 4 73065 3 93760 4 131210 4 171070 4 199745

benchmark(normal) 16 5225 4 72090 3 88135 1 73400 4 66290 2 76290 4 106125
BVAR(log) 8 29775 11 46950 20 103675 9 132825 8 149813 16 163250 18 139813FC

benchmark(log) 4 21500 11 41500 11 61825 11 82175 11 102062 11 121275 11 140538
BVAR(normal) 11 20525 11 41500 11 61825 11 82175 11 102062 11 121275 11 140538

benchmark(normal) 2 -45325 4 -15000 1 20150 1 7250 2 10813 2 26500 2 60288
BVAR(log) 5 36010 7 38270 1 37700 2 46050 2 44230 2 66420 2 40930GC

benchmark(log) 5 18430 5 39130 5 55040 5 76070 5 93750 5 111820 5 131470
BVAR(normal) 4 15570 4 29910 4 41600 4 57470 5 73110 4 90560 4 101790

benchmark(normal) 12 4710 2 -14450 2 -4960 4 -2450 4 2250 5 26800 5 31270
BVAR(log) 3 42067 3 107785 3 133426 3 190180 3 232877 3 263668 3 250631HO

benchmark(log) 4 51778 4 105827 6 156500 6 204620 6 255146 4 310514 4 370726
BVAR(normal) 14 22109 3 74277 3 91812 3 148214 3 189164 3 246162 4 285449

benchmark(normal) 6 -22554 7 -323 10 8560 1 15628 1 63995 2 88847 2 158634
BVAR(log) 3 62513 6 68813 6 119910 6 169088 6 195002 6 241878 6 266692HU

benchmark(log) 16 63731 16 128268 16 193603 16 258010 12 321766 12 384350 12 448266
BVAR(normal) 4 81942 7 50946 7 90989 5 184720 5 260791 5 287759 5 358176

benchmark(normal) 5 -35465 3 21193 12 -21420 3 40627 3 70892 3 154837 5 155123
BVAR(log) 15 5000 11 38275 15 47463 17 68750 17 70500 16 82750 14 93538W

benchmark(log) 2 23525 7 33450 7 47688 7 60950 7 76100 7 86800 7 102638
BVAR(normal) 7 21375 7 34850 7 47713 7 61750 7 76950 7 91025 7 104788

benchmark(normal) 7 10375 13 6650 2 18413 15 23175 4 50500 4 70750 3 63063

from this strategy by simply adding up all the profits (losses)
at times t ∈ {1700, . . . , T} from such a strategy, where we
compute the sums for all horizons k ∈ {1, . . . , h = 15}.

The results are presented in Tables III and IV. The tables
are organized similarly to Tables I, II. In the first column for
each horizon is the index of forgetting factor κi with maximal
gain potential and in the second column the trading potential
in US$.

IV. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have proposed a method for computing prediction of
a normal and log-normal stochastic BVAR(p) process and
applied it to U.S. commodity market data. We have compared

the prediction power of such models to two benchmark models
commonly used in todays financial practice. Due to the curse
of dimensionality we have used only a BVAR(2) model to
obtain the experimental results now to be presented.

As we can see from Tables I,II,III,IV the results of the
comparison is highly market-dependent.

In case of median relative error (MERE), there are mar-
kets, such as the British Pound and the energy markets
(CL,HO,HU), where the benchmark model performs better and
we were not able to employ the information at hand to reach a
better result with the BVAR(2) model of either normal or log-
normal kind. On the other hand, there are markets, although
fewer in number, where a linear structure of the BVAR kind
seems to be present. In our selection, these markets are mainly
Canadian Dollar, Feeder Cattle and Gold. In the rest of the
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TABLE IV
TRADING POTENTIAL COMPUTED FOR THE HIGHEST LIKELIHOOD LOG-NORMAL AND NORMAL BVAR(2) MODEL AND LOG-NORMAL (33) AND NORMAL

(35) BENCHMARK MODEL FOR HORIZONS 8, . . . , 14. THE POTENTIAL IS SHOWN IN US$, TRANSACTION COSTS AND LIMITED TRADING CAPITAL ARE
NOT TAKEN INTO ACCOUNT.

horizon 8 9 10 11 12 13 14
mkt. model frg GAINS frg GAINS frg GAINS frg GAINS frg GAINS frg GAINS frg GAINS

BVAR(log) 3 308910 3 338740 3 362290 3 400340 3 403990 3 433220 3 479660AD
benchmark(log) 4 324530 4 361840 4 396130 4 429480 4 465610 4 511880 4 546160
BVAR(normal) 3 273450 2 320440 4 258570 18 112800 18 102750 18 107280 18 110620

benchmark(normal) 1 159890 3 169500 3 230950 2 219740 2 270630 2 285260 3 378500
BVAR(log) 6 11331 3 63194 1 158200 1 204087 1 241256 1 274994 1 327856BP

benchmark(log) 6 261094 5 289794 5 316500 5 348150 5 370031 5 396619 5 432356
BVAR(normal) 5 59894 5 66194 5 36363 1 -16800 4 124994 9 173844 4 105856

benchmark(normal) 3 48506 3 79506 3 129700 3 117500 4 162681 4 186544 4 216994
BVAR(log) 16 49860 18 54010 3 67280 3 90550 3 100070 3 102760 5 105580CC

benchmark(log) 17 46220 17 52190 17 57980 17 63650 17 69470 21 75160 17 80760
BVAR(normal) 9 46220 9 52190 9 57980 9 63650 9 69470 9 75120 9 80760

benchmark(normal) 5 54620 5 79590 5 90140 4 41850 4 57770 4 67900 4 96480
BVAR(log) 12 278990 7 300180 15 339290 15 367700 15 404580 15 434040 18 466440CD

benchmark(log) 5 160850 5 177360 6 192830 5 215480 5 238300 5 256660 5 275200
BVAR(normal) 8 224350 7 252360 7 284930 7 306360 7 342700 7 371740 7 406200

benchmark(normal) 1 114770 1 123000 1 129130 1 132520 1 127520 1 131820 1 155860
BVAR(log) 5 393480 5 473520 5 535720 5 592150 5 611360 7 655530 6 700250CL

benchmark(log) 3 349860 3 375780 3 426520 3 461990 3 510580 3 562910 3 600650
BVAR(normal) 19 115740 1 123820 12 157120 12 189390 12 178480 12 154890 12 187070

benchmark(normal) 1 191140 1 214280 3 238200 3 298310 3 301900 3 327670 3 321610
BVAR(log) 4 222130 4 238225 4 259605 4 293320 4 297530 4 309045 4 344085CT

benchmark(log) 4 148410 4 179785 4 197195 4 215060 4 231390 4 261075 4 276165
BVAR(normal) 4 223640 4 246795 4 279925 4 298600 4 319340 4 347265 4 369055

benchmark(normal) 4 93550 4 98475 4 92515 4 97260 4 117380 4 99095 4 106705
BVAR(log) 17 162850 21 175938 6 180475 6 207275 7 221363 7 247600 7 272075FC

benchmark(log) 11 159700 11 178963 11 198850 11 219450 11 239487 11 259250 11 279475
BVAR(normal) 11 159700 11 178963 11 198850 11 219450 11 239487 11 259250 11 279475

benchmark(normal) 4 82950 4 74438 4 83300 4 114500 4 126538 2 142025 2 154125
BVAR(log) 2 16610 3 -22570 1 -63550 1 -57690 7 -49970 1 -64860 2 -75770GC

benchmark(log) 5 147930 5 163830 5 186690 5 203630 5 224170 5 245980 5 266790
BVAR(normal) 5 111990 4 132710 5 145190 5 161770 5 178470 5 196660 5 215330

benchmark(normal) 5 33990 5 63690 5 54610 5 90510 5 88510 4 101560 3 132170
BVAR(log) 3 280720 3 302072 2 377198 2 497981 2 557075 2 657842 2 739255HO

benchmark(log) 4 412264 5 462084 5 519343 5 563930 5 621134 5 674533 5 738440
BVAR(normal) 3 346693 3 387374 3 292089 12 233138 20 191743 12 237707 20 290611

benchmark(normal) 2 214368 3 258989 3 245024 3 326185 3 356727 3 376039 2 414233
BVAR(log) 6 323463 6 346794 5 421294 5 464646 5 493374 5 534341 5 581385HU

benchmark(log) 12 513286 12 576752 12 640441 12 704155 12 769835 12 834767 16 900182
BVAR(normal) 5 442625 5 512736 5 584018 5 666112 5 743627 5 835220 5 934168

benchmark(normal) 3 166492 5 255259 2 254671 2 316168 2 289019 2 369760 2 303328
BVAR(log) 14 106513 11 118513 21 127500 10 140800 10 159863 10 165900 10 174725W

benchmark(log) 7 116838 7 130563 7 140725 7 156450 7 172638 7 184950 7 199550
BVAR(normal) 7 124263 7 137463 7 154225 7 169725 7 187913 7 201400 7 218400

benchmark(normal) 4 65363 4 66913 3 88250 3 119875 3 125863 3 161150 3 163000

markets the presence of a BVAR structure is uncertain.
From the point of view of market potential the situation

should be somewhat similar, although here we only measure
the success of sign prediction, where in case of MERE we
measure the success of prediction of the joint pair sign-
amplitude. We see from Tables III,IV that the markets, where
BVAR models are more suitable for sign prediction than their
benchmark counterparts are again Canadian Dollar and Feeder
Cattle, but now also Wheat and Cotton and at longer horizons
Light Crude Oil.

We see that in certain markets, the BVAR(2) models were
outperformed by the simple benchmark models, especially
the one, where the distribution of prices conditional on the
parameters is log-normal. Such an outcome is in agreement
with the Efficient Market Hypothesis and can be a result of an

efficient market – low information value of the data channels
used, but there are other possibilities that should be a part of
future research. The structure estimation procedure could not
be performed for a model with forgetting κ < 1. That can lead
to an overparameterized model.

At further horizons the difference between the point predic-
tions of the competing models is lower. This effect is caused
by the dominating effect of the constant term in the VAR
process on prediction, when h is higher.

An interesting result in agreement with [7] is, that the ideal
forgetting factor is often around 0.9975 (indices i = 3, 4, 5, 6)
and is in the lower part of the range chosen for our experi-
ments. In the graphs of error dependence on forgetting factor
observed while performing the experiments, a quite robust
minimum could be observed around this value. A slow shift
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Fig. 1. The picture shows that lower error does not necessarily mean higher
gain. The absolute error for one-step ahead prediction ȳt+1 is greater than
the one for ŷt+1, but the trader gains only if he buys. The figure clearly
illustrates such situation for an absolute error, for MERE the ratios have to
be considered.

in optimal forgetting toward one was observed as h grew. In
a few markets, an ideal forgetting was rather close to 1.

The gains presented in Tables III and IV are much higher
than a real market gain. Even if we forget the transaction
fees, the unlimited trading capital is not a realistic assumption.
The result should serve as an illustration of success of the
competing models.

B. Future Work
In the future, further research of the modeling of price

evolution is needed. The structure estimation of a BVAR model
should be questioned. One possibility for a correct estimation
of structure is parallel computation of few most promising
candidates for best BVAR models, where the maximum like-
lihood model would be chosen as the locally correct one. The
original structure estimation procedure would be used only
to select promising candidates (or possibly only to select the
most important data channels), where the maximum likelihood
model selected in the original procedure would be used as
an upper bound for parameter matrix A regarding non-zero
parameters of the model.

Once we have a reliable model to build upon a task at least
as difficult as the modeling is the optimization of trading under
limited capital and transaction costs. A solution to this problem
can be very difficult, since the predictive random variables are
not independent (In case of independent variables, the problem
has been quite successfully solved, see for example [33],[34])
and analysis of the associated Bellman function (optimal cost
to go) is difficult. Approximate solution has been proposed by
a member of our project in the case of a flat utility function
[35], but since we obtain the full predictive distribution of
future price, we could perform a mean-risk, mean-variance
or full utility function optimization for an adequate utility
function of the agent.

The models should be tested for different frequencies of data
from high frequency data gathered during the day to monthly
data. Raw futures data for single expiration futures contracts
should also be used for future experiments.

Finally, different models of price prediction should be tested
in the future, where wavelet transform or neural network
models seem as promising candidates.
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International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:10, 2009

791

REFERENCES

[1] E. Fama, “The behavior of stock market prices,” Journal of Business,
vol. 38, p. 34105, 1965.

[2] P. Samuelson, “Proof that properly anticipated prices fluctuate ran-
domly,” Industrial Management Review, vol. 6, pp. 44–49, 1965.

[3] E. Fama, “Efficient capital markets: A review of theory and empirical
work,” Journal of Finance, vol. 25, pp. 383–417, 1970.
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[15] M. Kárný, J. Böhm, T. Guy, L. Jirsa, I. Nagy, P. Nedoma, and
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