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 
Abstract—The objective of this work is to study the effect of two 

key factors - external magnetic field and applied current density 
during template-based electrodeposition of nickel nanowires using an 
electrode distance of 20 mm. Morphology, length, crystallite size and 
crystallographic characterization of the grown nickel nanowires at an 
electrode distance of 20mm are presented. For this electrode distance 
of 20 mm, these two key electrodeposition factors when coupled was 
found to reduce crystallite size with a higher growth length and 
preferred orientation of Ni crystals. These observed changes can be 
inferred to be due to coupled interaction forces induced by the 
intensity of applied electric field (current density) and external 
magnetic field known as magnetohydrodynamic (MHD) effect during 
the electrodeposition process. 
 

Keywords—Anodic alumina oxide, electrodeposition, nanowires, 
nickel. 

I. INTRODUCTION 

AGNETIC 1 dimensional nanostructures are interesting 
not only from their fundamental properties perspective 

but also for the range of applications that include high-density 
magnetic storage, sensors, planer microwave circuit and 
medicine. Nickel (Ni) is among four elements which has 
excellent ferromagnetic properties, along with good corrosion 
stability. Several methods and processing conditions have 
been developed to synthesize 1-D nanostructures of various 
sizes, morphology and composition that have resulted in 
exciting and fundamentally different configurations [1], [2].  

1-D magnetic nanostructures can be produced by a number 
of techniques indulging vapor-liquid-solid growth [3], focused 
ion beam [4], sol-gel [5], nanolithography [6], molecular beam 
epitaxy [7] and electrodeposition [8]. Metal electrodeposition 
into channels of porous materials (such as anodic alumina 
membranes, track-etched polymer membranes, nanochannel 
glass, block copolymer and mesoporous silica) is one of the 
common and elegant methods to produce one-dimensional 
nanostructures [8]-[10].  

In an electrodeposition process, crystallization of 
electrodeposited metal is influenced not only by the 
composition and concentration of the electrolyte but also by 
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the processing conditions such as current density, temperature, 
electrolyte pH and agitation [11]. Another factor in the process 
is also electrode distance and ensuring the repeatable, correct 
electrode distance. The effect of current density on the 
structure and quality of the electrodeposit is particularly 
significant as it principally changes the cathodic potential [12]. 
Application of an external magnetic field during 
electrodeposition can induce currents in a conductive fluid 
which in turn can create forces acting on the fluid. The 
primary influence of an external magnetic field is due to the 
Lorentz force that acts on the moving electrolyte ions. As 
suggested by [13] and later verified by [14], this force induces 
a convective flow of the electrolyte near the template surface. 
This effect known as the magnetohydrodynamic (MHD) effect 
in electrodeposition process [15], [16] causes a decrease in the 
thickness of the diffusion layer, increase in the mass-transport 
of active species (ions) [17]-[19]. Structural and morphology 
changes due to independent [14], [20] and coupled effects [22] 
at a larger electrode distance have been studied. Present paper 
reports our recent data based on an electrode distance of 20 
mm while employing two electric field (current density) 
conditions, with and without an external magnetic field. The 
morphology, growth length, crystallographic orientation, and 
crystallite size of Ni nanowires embedded inside the 
nanochannels of anodic alumina oxide (AAO) membrane at an 
electrode distance of 20mm are presented.  

II. EXPERIMENTAL DETAILS 

A. Nickel Nanowire Synthesis 

In our present work, 1-D Nickel nanowire arrays were 
prepared by electrodeposition of Ni ions into the pores of 
Anopore® alumina oxide (AAO) template with an average 
pore diameter of 200 nm (Whatman, Germany). Further 
details of the electrodeposition method followed are presented 
in [22]. Prior to the electrochemical deposition, a special 
holder was fabricated using 3D printing technology so as to 
enable precise control of the distance and alignment of 
electrode, template and magnetic field direction for the present 
20 mm electrode distance. Fig. 1 (a) shows the image of the 
holder fabricated with a span distance of 20mm (electrode 
distance) used in the present study. This holder was placed in 
the electrochemical bath for electrodeposition as shown in Fig. 
1 (b). Nanowire synthesis was performed either with or 
without magnetic field. For nanowire synthesis with magnetic 
field, known magnetic field intensity was placed close to the 
template and electrode (with magnetic field parallel to 
nanowire growth). All parameters such as the solution pH, 
agitation conditions, temperature, external magnetic field, 
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