
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3498

Abstract - Negation is useful in the majority of the real world

applications. However, its introduction leads to semantic and
canonical problems. SEPN nets are well adapted extension of
predicate nets for the definition and manipulation of stratified
programs. This formalism is characterized by two main contributions.
The first concerns the management of the whole class of stratified
programs. The second contribution is related to usual operations
optimization (maximal stratification, incremental updates …). We
propose, in this paper, useful algorithms for manipulating stratified
programs using SEPN. These algorithms were implemented and
validated with STRPRO tool.

Keywords - stratified programs, update operations, SEPN

formalism, algorithms, STRPRO.

I. INTRODUCTION
OGICAL programming constitutes a powerful tool for the
treatment of several problems in particular in artificial

intelligence [1] and deductive databases [2].
Many real world applications need the use of negation for

modeling negative information. Negation introduction leads to
several problems, in particular the definition of a canonical
semantics for these programs [3], [4]. Several works showed
that under certain syntactic restrictions, it is possible to define
a canonical semantics of normal programs. This leads to
stratified programs [3], [4]. The approach based on
stratification received attention on behalf of the researchers.
Unfortunately, implementation aspects, in particular,
representation structures and manipulation algorithms, were
completely neglected.

We propose in this paper an original extension of predicates
nets (EPN), noted SEPN, as representation structure of
stratified programs. In addition to their formal aspect, EPN
nets proved their efficiency in modeling knowledge bases, in
particular in artificial intelligence[1], deductive databases [2]
and expert systems [5]. However, used EPN algorithms
require non acceptable execution time in case of large
programs.

We establish a correspondence between the SEPN and
stratified programs. This correspondence was used for

Manuscript received March 31, 2005.
C. J. is with the Department of Electrical Engineering of National School

of Engineers of Tunis, Tunisia (e-mail: jerad.chadlia @ gawab.com).
A. G.T. is with the Department of Telecommunication and Information

Technologies of National School of Engineers of Tunis, Tunisia (e-mail:
amel.touzi@enit.rnu.tn).

H. O. is with the Department of Computer Science of Faculty of Sciences
of Tunis, Tunisia (e-mail: habib.ounelli@fst.rnu.tn)

building an efficient implementation of this type of programs
and countering EPN problems.

Our approach has two main parts: (1) SEPN and (2)
manipulation algorithms of stratified programs. Due to space
limitation, we devote this paper to the second part. The first
part is the subject of paper [6].

The remainder of the paper is organized in six sections.
Section 2 presents basic concepts of stratified programs.
Section 3 describes the SEPN formalism. Manipulation
algorithms of stratified programs through SEPN are presented
in section 4. Section 5 is devoted to the description of
STRPRO tool. Section 6 concludes the paper and gives some
extensions of our work.

II.� BASIC CONCEPTS
We suppose known basic concepts of logical programming

[7].

A. Stratified programs
We recall briefly, in this section, basic notions related to

stratified programs [3], [4], [8].
Let P be a logical program. A predicate symbol q definition

is the set of all the clauses of the program P having q at the
head of the clause. A program P is stratifiable if there is a
partition P = P1 ∪ … ∪ Pn (where P1 can be empty), called
stratification of P such as for each i = 1, 2,…, n, we have the
following properties:

- if a predicate symbol is positive in Pi then its definition is
contained in ∪ j ≤ i Pj.

- if a predicate symbol is negative in Pi then its definition is
in ∪ j < i Pj.

- Each Pi is called a stratum.
The dependency graph of a program P (Dp) is composed of

a set of nodes connected by arcs. Each node represents a
predicate of P. The arc matching r and q, noted (r, q), belongs
to Dp if there is a clause in P using r in its head and q in its
body. We say r refers to q. If a predicate q appears positively
(respectively negatively) in the body then (r, q) is called
positive (respectively negative). A program is stratifiable if
and only if, its dependency graph does not contain any circuit
containing a negative arc [4], [8]. A stratifiable program can
have several stratifications [8].

A stratification P = P1 ∪ … ∪ Pn is maximal stratification if
each strata cannot be decomposed into different stratum. Let
Pi be a stratum and M a set of facts, we denote by SAT(Pi, M)
the saturation of M by Pi, which is the set of facts obtained by

STRPRO Tool for Manipulation of Stratified
Programs Based on SEPN

Chadlia Jerad, Amel Grissa-Touzi, and Habib Ounelli

L

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3499

the closing of M under the clauses of Pi.
Let P = P1 ∪ … ∪ Pn be a maximal stratification of P, we

define the standard model of the program P (MP), by
proceeding in recursive way the following operation [8]:

M1 = SAT (P1, ∅)
…
MP = M n = SAT (P n, M n-1)

The Mp model has three properties, which are (1) Mp does
not depend on the stratification of P, (2) Mp is a standard
model of P and (3) Mp is a model of completion of P.

In general, SAT function depends on the order of program
clauses. However, this is not the case for a stratum of P.
Indeed, we apply the closed world assumption directly
because the definition of negative literals is on a strictly lower
level. Thus, there is not possibility of deducing new facts
relating to this literal.

B. Update of a stratified program
An update operation is the removal or the addition of a fact

or a rule of a program [8]. An update operation is accepted if
the following conditions are verified: (1) any constant, which
does not belong to the language describing the program, can
not be introduced, (2) the inserted clause must be "Range-
Restricted", this means that the variables appearing in the head
of the clause appear in its body and (3) the obtained program
remains stratified.

An update operation transforms a program P into a program
P'. Consequently, the MP model associated to P is transformed
into a model Mp’ associated to P'. The new updated model
Mp' can be completely different from Mp. In general, the new
Mp' model computation consists on the removal and addition
of facts.

The automatic determination of update operations’ results is
delicate and leads to performance problems related to
execution time. Our approach, based on the SEPN [6], is an
efficient attempt to resolving these problems.

Effects of update operations on stratifiability and standard
model are presented in [6].

III. SEPN FORMALISM
In this section, we describe the SEPN formalism. For

further details concerning this approach, readers can refer to
[6], [9] and [10].

An SEPN is defined by:
- A quintuple N = (P, T, C, V, K), where P, T, C, V and K

are respectively the set of places, the set of transitions, the
set of colours, the set of variables and the set of constants.

- Two relations α and β, where β is a finite subset of T×P
which elements are called unsigned arcs and α is a finite
subset of {+,-}×P×T which elements are called signed
arcs (α+ positive arcs set and α- negative arcs set).

- Two applications Iα et Iβ defined by:
o Iα : α → Z[V ∪ K]
o Iβ : β → Z[V ∪ K]

where Z[V ∪ K] is the set of finite formal combinations of
V ∪ K elements.

- A set Garde, where Garde(t), t being a transition, imposes
firing conditions between tokens contained in input
places.

- A bijective application Cl from T to C, which associates a
color to each transition.

In a SEPN net, tokens are colored [9], [10], [[6]. A colored
token is an element of the set Kn × P (C), where P (C) is a set
of parts of C. A colored token j has then this form:

j = ((x1, x2, …, xn), Col)
where (x1,…, xn) is the argument of j (arg(j)) and Col its

path (path(j)). The path is a set of colors saving the history
deduction.

Dynamic aspects and transition firing process are described
in [6].

IV. MAIN ALGORITHMS
Using the correspondence between stratified programs and

SEPN established in [6], we present in this section main
algorithms for manipulation of stratified programs.

For this purpose, we adapted certain known algorithms on
graphs manipulation, in particular Tarjan algorithm for the
determination of strongly connected components [11].
1) Stratifiability study

Stratifiability study goes back to the detection of negative
circuits’ existence in the net.
2) Maximal stratification determination

The maximal stratification determination of stratifiable
programs amounts to identifying the strongly connected
components of the SEPN. These components correspond to
program strata.
3) Standard model computation

The standard model computation of the stratified programs
goes back to applying SAT function. We obtain the stable
marking of the SEPN net by performing stratified firing of all
transitions [6]. Stratified firing depends on strata order in the
reduced graph, but does not depend on transitions order in the
same stratum. Figure 1 shows the algorithm of the procedure
StratifiedFiring that performs the stratified firing of a RPES.

Procedure SratifiedFiring()
Begin
 For (each stratum sti) Do
 Ver = false;
 While (Var == false) Do
 For (each transition tij ∈ sti) Do
 Fire (tij);
 EndFor
 EndWhile
 EndFor
End.

Fig. 1 : Algorithm of the procedure StratifiedGeneration

4) Non deduced fact update
The update of a non deduced fact [6] is equivalent to the

update of a neutral token (addition or removal). We recall
from [6] the following conclusions. The addition of a token in
a place p may lead to: (1) the addition of other tokens in the
places related positively to p and (2) the removal of tokens
from the places negatively related to p. In opposition, the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3500

removal of a token of a place p' may lead to: (1) the addition
of tokens in the places negatively related to p' and (2) to the
removal of tokens from the places positively related to p'.

Two procedures are used for this purpose AddTooken and
RemoveToken. AddToken(p, j) procedure allows the addition
of a neutral token j to the place p passed as parameter, the
update of maximal stratification and the update of the standard
model. RemoveToken(p, j) procedure allows the removal of a
token j from the place p passed as parameters if the token j is
not a deduced one, the update of maximal stratification and the
update of the standard model.

These two procedures call UpdateIncPlace(p) and
UpdateDecPlace(p) procedures:

- UpdateIncPlace(Place p) : this procedure (Fig. 2) is
released when the marking of the place p, passed as
parameter, has increased. The marking of the places
related positively to p will increase; this is done by firing
related transitions. The marking of the places related
negatively to p will decrease. This procedure is recursive
and calls the two procedures UpdateDecPlace et
ModifyThenDelete.

- UpdateDecPlace(Place p) : this procedure (Fig. 3) is
released when the marking of the place p, passed as
parameter, has decreased. The marking of the places
related negatively to p will increase; this is done by the
firing the related transitions. The marking of the places
related positively to p will decrease. This procedure is
also recursive and calls the two procedures
UpdateIncPlace et ModifyThenDelete.

- ModifyThenDelete(Transition t) : this procedure (Fig. 4)
updates history paths of the tokens contained in the output
place of the transition t. If the path of a token becomes
empty, the token is removed from the list of tokens of the
place.

Procedure UpdateIncPlace (Place p)
Begin
 For (each ti ∈ Inc(p)) Do
 Fire (ti);
 pi = outputPlaceOf(ti);
 If (pi increased) Then UpdateIncPlace(pi);
 EndFor
 For (each tj ∈ Dec(p)) Do
 ModifyThenDelete(tj);
 Fire(tj);
 pj = outputPlaceOf(tj);
 If (pj decreased) Then UpdateDecPlace(pj);
 EndFor
End.

Fig. 2: Algorithm of the procedure UpdateIncPlace

Procedure UpdateDecPlace (Place p)
Begin
 For (each ti ∈ Dec(p)) Do
 Fire (ti);
 pi = outputPlaceOf(ti);
 If (pi increased) Then UpdateIncPlace(pi);
 EndFor
 For (each tj ∈ Inc(p)) Do
 ModifyThenDelete (tj);
 Fire (tj);
 pj = outputPlaceOf(tj);

 If (pj deceased) Then UpdateDecPlace(pi);
 EndFor
End.

Fig. 3 : Algorithm of the procedure UpdateDecPlace

Procedure ModifyThenDelete (Transition t)
Begin
 p = outputPlaceOf(t);
 For (each token j ∈ p) Do
 If (color(t) ∈ path(j)) Then
 path(j) = path(j) \ color(t);
 If (path(j)={∅}) Then Destroy(j);
 EndFor
End.

Fig. 4: Algorithm of the procedure ModifyThenDelete

5) Clauses update
Clause update is more delicate than fact update, since it can

affect the program stratifiability. Clause removal goes back to
the removal of the corresponding transition and its related
arcs, the stratification update and the standard model update.
The addition of a rule amounts to testing, first of all, if the
transition does not create recursion through negation in the
dependency graph. In case of validity, the transition is added,
then the reduced graph is updates, and, finally, the standard
model is updated.

V. STRPRO TOOL
In order to help understanding the stratification concept, we

have built the tool STRPRO [10]. This tool is plate-form
independent since it is developed with Java.

First, we selected an open source tool PetriTool [12], used
in editing and simulating ordinary Petri nets. Then, we made
up required modifications to adapt it to SEPN concept. After
that, we added necessary modules for the manipulation of
stratified programs. Finally, we added layers of graphical user
interfaces.

STRPRO interface (Fig. 4) is composed of a Menu Bar and
four panels. The program edition is done in the Edition panel.
The Gr Panel holds the reduced graph. The Strat Panel
contains the composition of each stratum. The Status Panel
displays messages to users (stratification result, compilation
results…).

Fig. 4. STRPRO interface

Menu Bar

Edition Panel

Strat Panel Gr Panel

Status Panel

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3501

STRPRO is composed of eight main modules:
1. Editor module: STRPRO offers two different ways for the

edition of a normal program: textual and graphical. In
addition, users can save and reload their programs into and
from files.

2. Compiler module: the edition of normal programs in
textual mode should be followed by compilation. This
operation consists on the syntax analysis of the given
normal program and its mapping - in case of validity - into
its corresponding SEPN.

3. Stratifiability Checker module: STRPRO contains a module
that checks the stratifiability property of a given program.
This operation consists on the verification of absence of
recursion through negation in the SEPN.

4. Maximal Stratification Extractor module: Once the normal
program is stratifiable, user can call the “Stratify”
command in order to extract the reduced graph Gr.

5. Standard Model Computation module: After the
stratification of the program, we can compute its standard
model.

6. Query Evaluation module: Since the standard model
corresponds to net marking, query evaluation in STRPRO
is simply the token existence test.

7. Update Operations module: After each update operation,
the tool checks the program stratifiability. In case of
validity, the new maximal stratification is determined.
After that, the standard model is updated.

8. The Debugger module: STRPRO provides users with the
ability to debug their programs by the means of the
Debugger (Fig. 5). The Debugger shows a graphical
interface that presents the internal modelling of a given
program (its corresponding SEPN). Using this interface,
we can perform all already cited operations.

Fig. 5. STRPRO Debugger

VI. CONCLUSION
Stratification of normal programs received attention on

behalf of researchers in the fields of the artificial intelligence
and the deductive databases. Unfortunately, implementation
aspects, in particular, representation structures and

manipulation algorithms of stratified programs, were
completely neglected. We proposed in this paper a complete
implementation of stratification for the definition and
manipulation of stratified programs. This implementation
was validated with STRPRO tool. Proposed algorithms benefit
from known algorithms in graph theory with an adaptation of
some of them to SEPN context.

As we know, this tool is the first of its kind. It constitutes a
complete and convivial compiler for stratified programs.
Obtained results are encouraging for programs of nearly thirty
clauses. We think that this tool helps understanding basic
concepts of stratification. It can be used as a pedagogic tool
with logic programming courses, and be used as a kernel
component in expert systems and deductive databases.

In the future, we plan to:
1. Study the algorithms complexity in case of programs with

significant clauses number (hundreds or more).
2. Extend STRPRO to support object paradigm and fuzzy

logic.

REFERENCES
[1] J. L. Laurière, "Intelligence artificielle, résolution de problème par

l’homme et la machine", (Ed) Eyrolles, 1986.
[2] G. Gardarin, "Bases de Données Objet et Relationnel", (Ed) Eyrolles,

2000.
[3] A. Grissa-Touzi, "Contribution à l’Etude, à la Conception et au

Prototypage des Bases de Données Déductives", Ph. D. thesis. Dept. of
Computer Science, Faculty of Sciences of Tunis, Tunisia, 1994.

[4] G. Jager and R. F. Stark, "The defining power of stratified and
hierarchical logic programs", Journal .of Logic Programming, 1993, pp.
55-77.

[5] H. Farreny, "Les systèmes experts principes et exemple", (Ed)
Cepadues, Novembre, 1986.

[6] A. Grissa-Touzi, C. Jerad and H. Ounelli, “New approach for
Manipulation of Stratified Programs”, submitted for publication in AISC
2005.

[7] J.W. Lloyd, "Fondement de la Programmation logique", (Ed) Eyrolles,
Paris, 1988.

[8] R. K. Apt and H. A. Blair, "Arithmetic Classification of Perfect Models
of Stratified Programs", Fundamenta Informaticae, vol. 14, 1991, pp.
339-343.

[9] A. Grissa-Touzi, C. Jerad and K Barkaoui, " Nouvelle Approche pour la
Définition et la Manipulation de la Négation par les Programmes
Stratifiés", Maghrebian Anales of Engineers, vol 19, N°1, 2005.

[10] C. Jerad, " Outil d’Analyse des Bases de Données Déductives Formulées
à l’Aide des Réseaux à Prédicats Etendus Stratifiés", Master memory,
Dept. of Electrical Engineering, National School of Engineers of Tunis,
Tunisia, July, 2003.

[11] C. Froidevaux, Mr. C Gaudel and M. Soria, "' Types of Data and
Algorithmes' ', Ediscience International, 1990.

[12] R. S. Brink, ''A Petri Net Design, Simulation, and Verification Tool'',
http://www.csh.rit.edu/~rick, Rochester Institute of Technology,
Rochester, New York, 1996.

