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Strong Limit Theorems

for Dependent Random

Variables
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Abstract—In This Article We establish moment inequality of
dependent random variables,furthermore some theorems of strong law
of large numbers and complete convergence for sequences of de-
pendent random variables. In particular, independent and identically
distributed Marcinkiewicz Law of large numbers are generalized to
the case of mo-dependent sequences.
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I. INTRODUCTION
ET X1, X9, --denote a sequence of random variables
defined on a fixed probability space (92, F,P) ,The
partial sums of the random variables are S, = >, X;,for
n>1and Sy =0,

b+n J
Spm =Y Xi,S(i,j) =Y Xp,1<i<j.
i=b+1 k=i

Definition 1.1 (Fazekas and Klesov, 2000, p. 447) [1] A
sequence of random variables {X,,n > 1} is said to have
the rth (r > 0) moment function of superadditive structure if
there exists a non-negative function g(i,j) of two arguments
such that forallb>0and 1 < k <k +1,

g(b,k) +g(b+ k1) < g(b,k+1) ()
E|Spn|" < g%(b,n),n > 1, forsomea > 1 (2)

Definition1.2 Let X be a real-valued random variable,we
call a Locally Generalized Gaussian, If there exists o > 0,such
that

E(exp(uX)|F) < exp(u®a?/2) a.s. (3)

for any v € R.

Definition 1.3 Given p > 0, a sequence of real-valued
random variables {X,,n > 1} is called a Lacunary System
or an S, system, if there exists a positive constant K, such
that

Bl Y CiXiP < K, () C})P?

for any sequence of real constant {C;} and all n > m.

Definition 1.4 The random variables X7, Xo,---,X,, are
said to be negatively associated if for every n and every pair
of disjoint subsets Aj, Az of {1,2,--- ,n}

Cov(fi(X; i€ Ar), fo(X; 1 j € Az)) <0,
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whenever f; and f> are coordinatewise increasing and this
covariance exists.

Definition 1.5 A stationary sequence {X,} is called
mo-dependent for a given fixed mg if (X1, ---,X;) and
(X, Xj41,- ) are independent whenever j — i > my.

Lemma 1.1 (Dini Theorem, Fikhtengolts, 1954, p. 286) [2]
Let ¢y, co, -+ be non-negative numbers, v,, = ch:” Ci, if
0 < v, < oo for n > 1, then

Y <o (0<8 <) (4)

Lemmal.2 ( Hu, 2005, Theorem 2.1) [3] We assume that
(Xn,n > 1) has the rth moment function of superadditive
structure, ¢(0,n) = g, and g,, non-decreases, {b,} is a non-
decreasing unbounded sequence of positive numbers and

o0

Z 9n ;ﬁn—l < 00,
n=1 n
then g
lim ~* = Oa.s. (5)
n—oo n
and with the growth rate
Sn ﬁn>
— = — ] a.s., 6
bn <bn ( )
where
s
Bn = 11%113§nbkv’“ ,0< 0 <1,

Lemmal.3 ( Hu, 2005, Lemma 1.2) [3] Let by,bs,--- be a
non-decreasing unbounded sequence of positive numbers and
ai,a2,--- be nonnegative numbers. Let r and C' be fixed
positive numbers. Assume that for each n > 1,

E (1I£lagxn‘sl‘> < C’;al, (7)

n o
ZE<OO7 (8)

then (5) and (6) hold .

Lemma 1.4 (Yang, 2000, Corollary 3, Yang, 2001; Shao,
2000)[4][6][7] Let X7, Xo,--- be negatively associated ran-
dom variables with zero means and F|X;|” < oo, where
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r > 1. Then there exists a positive constant C, which does
not depend on n, such that

E(1r<nax 1Skl") < C > EIX[ 1<r<2,
j=1
r 2\r/2
E(1r<nax 1Sk]") < C[Z EIX;["+ () EX})?,r > 2,

j=1
In this paper, we assume that C,C4,--- are some positive
constants (not necessarily always the same) independent of n.

II. MAIN RESULTS

Theorem 2.1 Assume that {X,,n > 1} be a Lacunary
System , exists a positive constant K, and p > 2, such that
*P E|X;|P < oo,then for every § > 0,

STL

lim =0,a.s. 9

A, llog ) r (log log ) 797 — 015 (9)
and for

bn = \/ﬁ(logn)l/p(log log n)(1+5)/P’n > no,

n = Kpnp/2 — K,y(n— 1)p/2’

= 3/p

ﬁn o lrfrlk?g('nbkvk 70 < 5 < 17

S” B” : B’n .

b, =0 (bn) a.s.,nli)rxéc—n =0. (10)

Proof From Definition1.3 ,for any sequence of real constant

{Ci}

b+n b+n
E(Y  GXi)P <Ky( > CHP?,
i=b+1 i=b+1

in particulary where C; = 1,we have

b+n
B( Y CiX))P = E|Synl? < Kn?/?,
i=b+1
In Definition 1.1 take
p

gn = g(b’ n) = Kg/pnva = 9’

then
g(b k) = K2/Pk,g(b+k,1) =
2
g(b, k) + g(b+ k1) = K2/P(k+1) < g(bk +1),
E|Spnl? < Kpnp/2 = gp/g(b,n),n >1,p>2,

2
K2/vl

we know that {X,,,n > 1} has the pth moment function of
supersensitive structure, and

3 gl 3 B = (n 1)
el bh el nP/2(log n)(loglogn)i+s

oo

1
<
s¢ E;m n(logn)(loglogn)i+o

n=

< 00,

thus (9) follows from Lemmal.2.

We assume that «, > 0 for infinitely many n.By (8) and
Lemma 1.3, we know that
< 00,

b
= by

it is easy to see that 0 < By < k41 for & > 1,and

Za" >
T,U6

n=1 n=1"n"n

§/r §/r
@ < maxi<i<rk, bﬂ)l maXg, <i<k blvl

b, — by, by,
S/r
maxi<i<g, by, 5/r
e
by,

from (8) and

lim b,, = oo,
n—oo

we get

Eq.(7) and Theorem 1.1 of Fazekas and Klesov (2000) [1]
imply that

E(lrgfag{n|—> 4CZ—<4 iﬁl

hence by monotone convergence theorem, we have

2 (sui5e) = i (s 1) 402 B <

n>1 Pn
so that
Sh,
sup|—| < 00, a.s.,
n>1 Pn
and
B B
<1581 < phsupl 5t = O(5) 0.
nn>1 n n

this completes the proof.

Remark1: Theorem 2.1 improve  result  of
Ryozo,Y.(Corollary 2)[8] and from strictly stationary
strong mixing sequence to .S;, system.

Theorem 2.2 Let (X,,, F},) be a Locally Generalized Gaus-
sian sequence, if sup,{X,} =k < oo, then for any r > 2

a+n a+n
Bl Y GXi["< K.Y, c))? (11)
i1=a+1 i=a+1
furthermore,(9) and (10) hold.
Proof Let A, = 301"  C? u = x/k*A,,,by lemma 1 in

i=a+1
[5], then
a+n
E(exp(u Y C;X;)) = E(exp(uSy)) < exp(u’k®A,/2)
i=a+1
where
a+n
= Z C; X;,forr > 2,
i=a+1
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by Chebyshev’s inequality, we get

a+n

B} ox V_r/ & P(1S| > w)da

i=a+1

< 27’/ " Lexp(—2?/2k%A,,)dx
0

= 27/27‘/4:7’14;/2/ 2"/ 2 exp(—z)da

0
a+n

= K.Y oy
i1=a+1

where K, = 27/2rk" [ 2"/27 ! exp(—x)d,
Therefore, Locally Generalized Gaussian sequence is a
Lacunary system, by Theorem 2.1, (9) and (10) hold.

Theorem 2.3 Let { X,,,n > 1} be a NA sequence, satisfying
sup,, | X, |P < oo ,then forany 0 < p < 2,ap > 1,p/2 <4 <
1,2 >0,

> nermUEIPLS, | > an} < oo, (12)
n=1
where S, = > i, X;.
Proof From lemma 1.3, when C; = 1,we have
a+n
Z X1|p < Kpnp/27
i—=a+1
By Markov’s inequality we get

& o ozp—l—éE S|P
Zn“p_(l+6)P{|Sn| > an®}< Z n Sl

n=1 n=1

rPnepP

oo 11—

3 nep 1 6np/2
<Kery LT
nep
n=1

8

_ 1
:Kpr pZW<OO
n=1

Theorem 2.4 Let {X,,,n > 1} be a m( dependent sequence
with zero mean, if sup,|X,|” < oo ,then for any 1 < r < 2,

Sh
l/r
where S,, = Zi:l X
Proof for every ¢t = 0,1,--- ,mo — 1, {Xttmtmok, k =
1,2,---} be a independent sequence,and

— 0(n — o0),a.s., (13)

mo—1 ng

Z C;X; = Z Zcm+t+m0ka+t+m0k7

t=0 k=0

by C, inequality ,we get

mo—1 no
| E C X ‘ < mg § E § Cm+t+mgka+t+mgk)
j=m t=0 k=0

mo—1 ng

— E E 2 2
=mg Om+t+mgkEXertJr'rnOk
t=0 k=0

n n
_ 2 1y 2 2
=mo Yy CIEX? <kmo ) Cj,
j=m j=m

{X,,n > 1} be a Sy system, by Jensen’s inequality , for
1<r<2,

B(Y_ CiXx;)r<c(d ey,
j=m Jj=m

in particular,when C; = 1,we obtained
E|S,|" < Cn'/2.
In Definition 1.1 take

K2/T77,7 a= 1/7‘7

gn = g(b,n) = g, b, =n
then
g(b k) = K"k, g(b+ k,1) = K*/"1
g(b k) +gb+ k1) = K" (k+1) < g(b, k +1),
E|Spn|" < Kn'/? = g"2(b,n),n > 1,1 <r < 2,

we know that {X,,,n > 1} has the pth moment function of
superadditive structure, and

> o’ =gl _ 3 K@’ = (=17
= br — n
> pr/2-1 oo 1
< CZI 2:1 ey < 00,

thus (13) follows from Lemmal.2.

Remark 2 This result extends independent and identically
distributed Marcinkiewicz Law of large numbers for mg-
dependent sequences.

ACKNOWLEDGMENT

This work was supported by the Project Ministry of Educa-
tion of PR China (10YJC630143) and the science Foundation
of the Anhui Province (KJ2010B001,2010sk226,2011sk162).

REFERENCES
i

—

Fazekas, 1., Klesov, O., 2000. A general approach to the strong law of
large numbers. Theory Probab. Appl. 45, 436-449.

Fikhtengolts, G.M., 1954. A Course of Differential and Integral Calculus.
People’s Education Press, Beijing (in Chinese).

Hu Shuhe,2005. A general approach rate to the strong law of large
numbers.Statistics & Probability Letters 76,843-851

Shao, Q., 2000. A comparison theorem on maximal inequalities be-
tween negatively associated and independent random variables.J. Theoret.
Probab. 13 (2), 343-356.

[5] Shao, Q., Yu, H., 1996. Weak convergence for weighed empirical pro-
cesses of dependent sequences. Ann. Probab. 24, 2098-2127.

Yang, S., 2000. Moment inequalities for partial sums of random variables.
Sci. China (series A, Chinese) 30 (3), 218-223.

Yang, S., 2001. Moment inequalities for partial sums of random variables.
Sci. China (series A, English) 44, 1-6.

Ryozo, Y.,1980. Moment Bounds for Stationary Mixing Sequences,Z. W.
verw. Gebiete 52, 45-57.

2

—

3

=

[4

=

[6

=

[7

—

[8

=

520



