Strong Law of Large Numbers for *- Mixing Sequence

Bainian Li, Kongsheng Zhang

Abstract

Strong law of large numbers and complete convergence for sequences of $*$-mixing random variables are investigated. In particular, Teicher's strong law of large numbers for independent random variables are generalized to the case of *-mixing random sequences and extended to independent and identically distributed Marcinkiewicz Law of large numbers for *-mixing.

Keywords-*-mixing squences; strong law of large numbers; martingale differences; Lacunary System

I. Introduction

LET (Ω, F, P) be a probability space and let $\left\{X_{n}, n=\right.$ $1,2, \ldots\}$ be a sequence of real-valued random variables defined on (Ω, F, P). For each positive integer n, let F_{n} be the smallest σ-algebra with respect to which X_{n} is measurable and for $n \leq m$, let F_{n}^{m} be the smallest σ-algebra with respect to which X_{n}, \ldots, X_{m} are jointly measurable.

Definition 1.1. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variable, X_{n} is named $*$-mixing if there exists a positive integer N and function f such that $f \downarrow 0$ and for all $n \geq N, m \geq 1, A \in F_{1}^{m}, B \in F_{m+n}^{\infty}$,

$$
\begin{equation*}
|P(A B)-P(A) P(B)| \leq f(n) P(A) P(B) . \tag{1}
\end{equation*}
$$

Evidently, inequality (1) is equivalent to the condition for all $B \in F_{m+n}^{\infty}$,

$$
\begin{equation*}
\left|P\left(B \mid F_{1}^{m}\right)-P(B)\right| \leq f(n) P(B) \text { a.s. } \tag{2}
\end{equation*}
$$

It follows that X_{n} is integrable, and

$$
\begin{equation*}
\left|E\left(X_{m+n} \mid F_{1}^{m}\right)-E\left(X_{m+n}\right)\right| \leq f(n) E\left|X_{m+n}\right| \tag{3}
\end{equation*}
$$

The following strong law for $*$-mixing sequences can be found in Blum[1].

Theorem A. Let $\left\{X_{n}, n \geq 1\right\}$ be a *-mixing sequence such that $E X_{n}=0$, and $E X_{n}^{2}<\infty, n \geq 1$, and $\sum_{i=1}^{\infty} E X_{i}^{2} / i^{2}<$ ∞, then

$$
\begin{equation*}
\sum_{i=1}^{n} X_{i} / n \longrightarrow 0, \text { a.s. } \tag{4}
\end{equation*}
$$

In this paper we shall further generalize Theorem A.

II. Main Results

Theorem 2.1. Let $\left\{Y_{n}, n \geq 1\right\}$ be a nonnegative *-mixing sequence such that $E Y_{i}=\mu_{i} \leq K<\infty$, for all i, and $\sum_{i=1}^{\infty} E Y_{i}^{2} / i^{2}<\infty$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\mu_{i}\right)=0, \text { a.s. } \tag{5}
\end{equation*}
$$

To complete the proof, we need the following lemma
Lemma 2.2. ([2]) Suppose $\left\{Y_{n}, n \geq 1\right\}$ is a *-mixing sequence, $E Y_{i}<\infty, i \geq 1$, for any $\sigma-$ field $B \in F_{1}^{m}, m \geq$ M, then

$$
\begin{equation*}
\left|E\left(Y_{m+n} \mid B\right)-E\left(Y_{m+n}\right)\right| \leq f(m) E\left|Y_{m+n}\right| \tag{6}
\end{equation*}
$$

Proof of Theorem 2.1. Let $X_{i}=Y_{i}-\mu_{i}$, then $E X_{i}=$ $0, E\left|X_{i}\right| \leq 2 K$, it suffices to prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}=0, a . s \tag{7}
\end{equation*}
$$

By lemma 2.2, for any $\varepsilon>0$, there exists $M^{\prime}>0$ for all $n \geq 2$, we get
$\left|E\left(X_{n M^{\prime}+R} \mid F_{M^{\prime}+R}^{(n-1) M^{\prime}+R}\right)\right| \leq f\left(M^{\prime}\right) E\left|X_{n M^{\prime}+R}\right| \leq 2 K \varepsilon$,
where R is a nonnegative integer, and $0 \leq R \leq M^{\prime}-1$. For $R=0,1, \ldots, M^{\prime}-1$, we prove

$$
\begin{equation*}
\sum_{n=2}^{N} X_{n M^{\prime}+R} / N \rightarrow 0(N \rightarrow \infty) \tag{9}
\end{equation*}
$$

Let $H_{0}=F_{0}=(\Omega, \Phi), H_{n}=F_{M^{\prime}+R}^{n M^{\prime}+R}, n \geq 2$.
Clearly $H_{n} \uparrow$, for fixed R, let

$$
Z_{n}=X_{n M^{\prime}+R}-E\left(X_{n M^{\prime}+R} \mid H_{n-1}\right), n \geq 2
$$

Obviously, $\left\{Z_{n}, H_{n}, n \geq 2\right\}$ is a martingale difference. By virtue of condition expectation, we obtain $E\left\{\left(E\left(X_{n M^{\prime}+R} \mid H_{n-1}\right)\right)^{2}\right\}$

$$
\begin{aligned}
& =E\left\{E\left(X_{n M^{\prime}+R} \mid H_{n-1}\right) \cdot E\left(X_{n M^{\prime}+R} \mid H_{n-1}\right)\right\} \\
& =E\left\{E\left(X_{n M^{\prime}+R} \cdot E\left(X_{n M^{\prime}+R} \mid H_{n-1}\right) \mid H_{n-1}\right)\right\} \\
& =E\left\{X_{n M^{\prime}+R} E\left(X_{n M^{\prime}+R} \mid H_{n-1}\right)\right\} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
E Z_{n}^{2}= & E X_{n M^{\prime}+R}^{2}-2 E\left(X_{n M^{\prime}+R} E\left(X_{n M^{\prime}+R} \mid H_{n-1}\right)\right) \\
& +E\left\{\left(E\left(X_{n M^{\prime}+R} \mid H_{n-1}\right)\right)^{2}\right\} \\
= & E X_{n M^{\prime}+R}^{2}-E\left\{\left(E\left(X_{n M^{\prime}+R} \mid H_{n-1}\right)\right)^{2}\right\} \\
\leq & E X_{n M^{\prime}+R}^{2}
\end{aligned}
$$

it follows that

$$
\begin{align*}
\sum_{n=2}^{\infty} E Z_{n}^{2} / n^{2} & \leq \sum_{n=2}^{\infty} E X_{n M^{\prime}+R}^{2} / n^{2} \\
& =\sum_{n=2}^{\infty} E X_{n M^{\prime}+R}^{2} /\left(n M^{\prime}+R\right)^{2}\left(\frac{n M^{\prime}+R}{n}\right)^{2} \\
& \leq 4\left(M^{\prime}\right)^{2} \sum_{i=1}^{\infty} E X_{i}^{2} / i^{2}, \tag{10}
\end{align*}
$$

ISSN: 2517-9934
Vol:4, No:8, 2010
since $E X_{i}^{2} \leq E Y_{i}^{2}+K^{2}$.
Combined with (10) and $\sum_{i=1}^{\infty} E Y_{i}^{2} / i^{2}<\infty$, we deduce that $\sum_{n=2}^{\infty} E Z_{n}^{2} / n^{2}<\infty$.

By using condition expectation again, one concludes

$$
\begin{equation*}
\sum_{n=2}^{\infty} E\left(Z_{n}^{2} \mid H_{n-1}\right) / n^{2}<\infty \tag{11}
\end{equation*}
$$

From (11) and Theorem 8.1(see Chow[3]), we have

$$
\begin{equation*}
\sum_{n=2}^{N} Z_{n} / N \longrightarrow 0 \text { a.s. } \tag{12}
\end{equation*}
$$

Since (8) implies

$$
\left|E\left(X_{n M^{\prime}+R} \mid H_{n-1}\right)\right| \leq 2 K \varepsilon, n \geq 2
$$

hence

$$
\begin{equation*}
\left|\sum_{n=2}^{N} E\left(X_{n M^{\prime}+R} \mid H_{n-1}\right)\right| / N \leq 2 K \varepsilon \tag{13}
\end{equation*}
$$

Combined with (12) and (13), this yields (9). For $R=$ $0,1, \ldots, M^{\prime}-1$, one has

$$
\left(X_{2 M^{\prime}}+X_{3 M^{\prime}}+\ldots+X_{N M^{\prime}}\right) / N \rightarrow 0,(N \rightarrow \infty) \text { a.s. }
$$

$\left(X_{2 M^{\prime}+1}+X_{3 M^{\prime}+1}+\ldots+X_{N M^{\prime}+1}\right) / N \rightarrow 0,(N \rightarrow \infty)$ a.s. $\frac{1}{N}\left(X_{2 M^{\prime}+\left(M^{\prime}-1\right)}+X_{3 M^{\prime}+\left(M^{\prime}-1\right)}+\ldots+X_{N M^{\prime}+\left(M^{\prime}-1\right)}\right)$

$$
\rightarrow 0,(N \rightarrow \infty) \text { a.s. }
$$

From the above results, one has

$$
\begin{equation*}
\sum_{i=2 M^{\prime}}^{(N+1) M^{\prime}-1} X_{i} / N \rightarrow 0,(N \rightarrow \infty) \text { a.s., } \tag{14}
\end{equation*}
$$

which deduces (7) and completes the proof.
Theorem 2.3. ([3]) Let $\left\{X_{n}, n \geq 1\right\}$ be a *-mixing sequence such that $E X_{n}=0, E X_{n}^{2}<\infty, n \geq 1$. Suppose that $\sum_{n=1}^{\infty} a_{n}^{-2} E X_{n}^{2}<\infty$ and $\sup _{n} a_{n}^{-1} \sum_{i=1}^{n} E\left|X_{i}\right|<\infty$, where $\left\{a_{n}\right\}$ is a sequence of positive constants increasing to ∞. Then

$$
\begin{equation*}
a_{n}^{-1} \sum_{i=1}^{n} X_{i} \longrightarrow 0, a . s \tag{15}
\end{equation*}
$$

Proof. Given $\varepsilon>0$, choose $n_{0} \geq N$ so large that $f\left(n_{0}\right)<$ ε.

From Lemma 2.2 we deduce that for all positive integers i and j,

$$
\begin{aligned}
& \left|E\left(X_{i n_{0}+j} \mid X_{n_{0}+j}, X_{2 n_{0}+j}, \ldots, X_{(i-1) n_{0}+j}\right)\right| \\
& =\mid E\left[E\left(X_{i n_{0}+j} \mid X_{1}, X_{2}, \ldots, X_{(i-1) n_{0}+j}\right)\right. \\
& \left.\quad \mid X_{n_{0}+j}, X_{2 n_{0}+j}, \ldots, X_{(i-1) n_{0}+j}\right] \mid \\
& \leq f\left(n_{0}\right) E\left|X_{i n_{0}+j}\right| \text { a.s. }
\end{aligned}
$$

If $n \geq n_{0}$, choose nonnegative integers q and r such that $0 \leq r \leq n_{0}-1$ and $n=q n_{0}+r$. Then

$$
\begin{gathered}
a_{n}^{-1} \sum_{i=1}^{n} X_{i}=a_{n}^{-1} \sum_{i=1}^{n_{0}} X_{i}+a_{n}^{-1} \sum_{i=1}^{q-1} \sum_{i=1}^{q-1} X_{i n_{0}+j} \\
+a_{n}^{-1} \sum_{j=1}^{r} X_{q n_{0}+j}
\end{gathered}
$$

$$
\begin{equation*}
=I_{1}+I_{2}, \tag{16}
\end{equation*}
$$

where $I_{1}=a_{n}^{-1} \sum_{i=1}^{n_{0}} X_{i}, I_{2}=a_{n}^{-1} \sum_{i=1}^{q-1} \sum_{j=1}^{q-1} X_{i n_{0}+j}+$ $a_{n}^{-1} \sum_{j=1}^{r} X_{q n_{0}+j}$.

Obviously, $I_{1} \rightarrow 0$, a.s. $(n \rightarrow \infty), I_{2}$ is dominated by

$$
\begin{aligned}
I_{2}= & \sum_{j=1}^{q-1} a_{n}^{-1} \sum_{i=1}^{q-1} \mid\left[X_{i n_{0}+j}\right. \\
& \left.-E\left(X_{i n_{0}+j} \mid X_{n_{0}+j}, X_{2 n_{0}+j}, \ldots, X_{(i-1) n_{0}+j}\right)\right] \mid \\
& +\sum_{j=1}^{r} a_{n}^{-1} \mid X_{q n_{0}+j}-E\left(X_{q n_{0}+j} \mid X_{n_{0}+j}, X_{2 n_{0}+j}, \ldots,\right. \\
& \left.X_{(q-1) n_{0}+j}\right)\left|+f\left(n_{0}\right) a_{n}^{-1} \sum_{i=n_{0}+1}^{n} E\right| X_{i} \mid .
\end{aligned}
$$

Based on the fact $\sum_{n=1}^{\infty} a_{n}^{-2} E X_{n}^{2}<\infty$ and Theorem $2.18([3])$, we see that the first two terms here converge a.s. to zero. The second term is convergent to zero since r is fixed, and by $\sup _{n} a_{n}^{-1} \sum_{i=1}^{n} E\left|X_{i}\right|<\infty$, the last term also converges a.s. to zero. We deduce that for all $\varepsilon>0$,

$$
\lim \sup _{n}\left|b_{n}^{-1} \sum_{i=1}^{n} X_{i}\right|<\varepsilon\left(\sup _{n} b_{n}^{-1} \sum_{i=1}^{n}\left|X_{i}\right|\right) \quad \text { a.s., }
$$

which completes the proof.
Lemma 2.4. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of *-mixing random variables satisfying $\sum_{n=1}^{\infty} f(n)<\infty, p \geq 2$. Assume that $E X_{n}=0$ and $E\left|X_{n}\right|^{p}<\infty$ for each $n \geq 1$. Then there exists a constant C depending only on p and f such that
$E\left(\max _{1<j<n}\left|\sum_{i=a+1}^{a+j} X_{i}\right|^{p}\right) \leq C\left[\sum_{i=a+1}^{a+j} E\left|X_{i}\right|^{p}+\left(\sum_{i=a+1}^{a+j} E X_{i}^{2}\right)^{p / 2}\right]$,
for every $a \geq 0$ and $n \geq 1$. In particular, we have
$E\left(\max _{1<j<n}\left|\sum_{i=1}^{j} X_{i}\right|^{p}\right) \leq C\left[\sum_{i=1}^{n} E\left|X_{i}\right|^{p}+\left(\sum_{i=1}^{n} E X_{i}^{2}\right)^{p / 2}\right]$,
for every $n \geq 1$.

Proof.

$$
\begin{aligned}
E\left(\sum_{i=a+1}^{a+j} X_{i}\right)^{2} & =\sum_{i=a+1}^{a+j} E X_{i}^{2}+2 \sum_{a+1 \leq i<j \leq a+n} E\left(X_{i} X_{j}\right) \\
& \leq \sum_{i=a+1}^{a+j} E X_{i}^{2}+2 . \\
& \leq \sum_{a+1 \leq i<j \leq a+n} f(j-i) E\left|X_{i}\right| E\left|X_{j}\right| \\
& \leq \sum_{i=a+1}^{a+j} E X_{i}^{2}+2 . \\
& \sum_{i=a+1}^{a+1 \leq i<j \leq a+n}
\end{aligned} f(j-i) E\left(X_{i}^{2}\right)^{1 / 2} E\left(X_{j}^{2}\right)^{1 / 2} .
$$

ISSN: 2517-9934
Vol:4, No:8, 2010

$$
\begin{aligned}
& \sum_{k=1}^{n-1} \sum_{i=a+1}^{a+n-k} f(k)\left(E X_{i}^{2}+E X_{k+i}^{2}\right) \\
\leq & \left(1+2 \sum_{k=1}^{\infty} f(k)\right) \sum_{i=a+1}^{a+j} E X_{i}^{2} \\
= & C_{1} \sum_{i=a+1}^{a+j} E X_{i}^{2}
\end{aligned}
$$

It is well known that *-mixing is also φ-mixing. Therefore, by [4, Lemma 2.2]) we can immediately complete the proof of Lemma 2.4.

Lemma 2.5. Let $\left\{X_{n}, n \geq 1\right\}$ be a zero-mean *-mixing and $\sum_{k=1}^{\infty} f(k)<\infty$, for some $p \geq 2, \sup _{i} E\left|X_{i}\right|^{p}<\infty$. Then there exists constant $C>0$ depending only on p for any real-valued sequence $\left\{a_{n i}\right\}$, such that

$$
E\left|\sum_{i=1}^{n} a_{n i} X_{i}\right|^{p} \leq C\left(\sum_{i=1}^{n} a_{n i}^{2}\right)^{p / 2} .
$$

Proof. Let $a_{n i}=0, i>n$, since $\sum_{k=1}^{\infty} f(k)<\infty$, $\sup _{i} E\left|X_{i}\right|^{p}<\infty$. By Lemma 2.4, we have

$$
\begin{aligned}
E\left(\left|\sum_{i=1}^{n} a_{n i} X_{i}\right|^{p}\right. & \leq C\left[\sum_{i=1}^{n} E\left|a_{n i} X_{i}\right|^{p}+\left(\sum_{i=1}^{n} E a_{n i} X_{i}^{2}\right)^{p / 2}\right] \\
& \leq C\left[\sum_{i=1}^{n}\left|a_{n i}\right|^{p}+\left(\sum_{i=1}^{n} a_{n i}^{2}\right)^{p / 2}\right] .
\end{aligned}
$$

Since $p \geq 2$, it follows that

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}\left|a_{n i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n} a_{n i}^{2}\right)^{1 / 2} \\
& \quad \Leftrightarrow\left(\sum_{i=1}^{n}\left|a_{n i}\right|^{p}\right) \leq\left(\sum_{i=1}^{n} a_{n i}^{2}\right)^{p / 2}, \text { which proves the }
\end{aligned}
$$ statement.

Remark 1.

(1) Lemma 2.5 implies that *-mixing is a Lacunary System.
(2) If $a_{n i}=1$, we have

$$
E\left(\left|\sum_{i=1}^{n} X_{i}\right|\right)^{p} \leq c n^{p / 2}
$$

III. LARGER DEviAtions FOR *-mixing

Theorem 3.1. Let $\{X n, n \geq 1\}$ be a zero-mean *-mixing, $\sum_{k=1}^{\infty} f(k)<\infty$, for some $p>2, E\left|X_{i}\right|^{p}<\infty$. If there exists $1 / 2<r \leq 1, \theta=2 r-1$ and positive constant K such that $\sum_{i=1}^{n} a_{n i}^{2} \leq K n^{\theta},(i=1,2, \ldots, n)$, then

$$
\begin{equation*}
n^{-r} \sum_{i=1}^{n} a_{n i} X_{i} \longrightarrow 0, \quad \text { a.s. } \tag{17}
\end{equation*}
$$

Proof. Denote $S_{n}=\sum_{i=1}^{n} a_{n i} X_{i}$, by Markov's inequality, we have

$$
P\left\{S_{n} \geq n^{r} x\right\} \leq \frac{E\left|S_{n}\right|^{p}}{x^{p} n^{p r}}
$$

From lemma 2.5, we obtain

$$
\begin{aligned}
\sum_{n=1}^{\infty} P\left\{\left|S_{n}\right| \geq n^{r} x\right\} & \leq \sum_{n=1}^{\infty} \frac{E\left|S_{n}\right|^{p}}{x^{p} n^{p r}} \\
& \leq \sum_{n=1}^{\infty} \frac{C\left(\sum_{i=1}^{n} a_{n i}^{2}\right)^{p / 2}}{x^{p} n^{p r}} \\
& \leq \sum_{n=1}^{\infty} \frac{C K}{x^{p} n^{p / 2}}<\infty
\end{aligned}
$$

Inequality (17) follows from Borel-Cantelli lemma.
Remark 2. Marcinkiewicz Law of large numbers of independent and identically distributed variables has been extended to the case of $*$-mixing.

Theorem 3.2. Let $\left\{X_{n}, n \geq 1\right\}$ be a zero-mean *-mixing, $\sum_{k=1}^{\infty} f(k)<\infty$, for some $p>2, E\left|X_{i}\right|^{p}<\infty$. If there exists $1 / 2<r \leq 1, \theta=1-2 / p$ and positive constant K such that $\sum_{i=1}^{n} a_{n i}^{2} \leq K n^{\theta},(i=1,2, \ldots, n)$, then

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} a_{n i} X_{i}}{\sqrt{n \log n}} \longrightarrow 0, a . s . \tag{18}
\end{equation*}
$$

Proof. By Markov's inequality and lemma 2.5, we obtain
$\sum_{n=1}^{\infty} P\left\{\left|\sum_{i=1}^{n} a_{n i} X_{i} / \sqrt{n \log n}\right| \geq x\right\}$
$\leq \sum_{n=1}^{\infty} \frac{E\left|S_{n}\right|^{p}}{x^{p} n^{p / 2}(\log n)^{p / 2}}$
$\leq \sum_{n=1}^{\infty} \frac{C\left(\sum_{i=1}^{n} a_{n i}^{2}\right)^{p / 2}}{x^{p} n^{p / 2}(\log n)^{p / 2}}$
$\leq \sum_{n=1}^{\infty} \frac{C K n^{p / 2-1}}{x^{p} n^{p / 2}(\log n)^{p / 2}}$
$=\sum_{n=1}^{\infty} \frac{C K}{x^{p} n(\log n)^{p / 2}}$
$<\infty$.
Therefore, inequality (18) follows from Borel-Cantelli lemma.

Acknowledgment

This work was supported by the Science Foundation of Anhui Province (KJ2010B001) and (2010sk226).

References

[1] J. R. Blum, D. L. Hanson, L. H. Koopmans, On the Strong Law of Large Numbers for a Class of Stochastic Processes, Z. Wahrscheinlichkeitstheorie. Verwandte Geb. 2(1963)1-11.
[2] W. F. Stout, Almost sure convergence, Academic Press. New York,1974.
[3] P. Hall, C. C. Heyde , Martingale Limit Theory and its Application, Academic Press, New York, 1980.
[4] Q. M. Shao, Almost sure invariance principles for mixing sequences of random variables, Stochastic Process. Appl. 48 (1993) 319-334.

