
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3328

 

 

 
Abstract—In this paper, we propose use of convolutional codes 

for file dispersal. The proposed method is comparable in complexity 
to the information Dispersal Algorithm proposed by M.Rabin and for 
particular choices of (non-binary) convolutional codes, is almost as 
efficient as that algorithm in terms of controlling expansion in the 
total storage. Further, our proposed dispersal method allows string 
search. 

 
Keywords—Convolutional codes, File dispersal, File 

reconstruction, Information Dispersal Algorithm, String search. 

I. INTRODUCTION 
ARGE databases becoming increasingly ubiquitous, their 
storage and retrieval, and string-searching in such 

databases, has received much attention. In [9] Rabin 
formulated the following problem:  Suppose that, in order to 
guarantee retrieval in the face of server failures, you are 
willing to disperse the file across several servers. How do you 
do this efficiently? The naive solution, of course, is to place 
copies of the files at each of the servers. But this is quite 
inefficient, in leading to a great expansion in the total storage. 
In [9] Rabin also proposes an efficient solution for the 
problem, called the Information Dispersal Algorithm. 

System designers have long tried to build more reliable 
storage systems. Techniques such as disk mirroring [2] and 
RAID (Redundant Arrays of Independent Disks) [5] have 
been used to improve system reliability. The other techniques 
for file dispersal and recovery are discussed in [6, 14, 3, 13] 
and Alvarez,et.al [1] developed DATUM, a method that can 
tolerate multiple failures by spreading reconstruction accesses 
uniformly over disks based on information dispersal as a 
coding technique. 

Our interest is in the question of string search when a file is 
stored in a dispersed manner. (We naturally wish to avoid  
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reconstructing the entire file from data retrieved from the 
different servers, and searching for the string in this 
reconstructed file.) The obvious approach is to disperse the 
string itself to the various servers and to consolidate their 
answers to determine if the string is present in the file. But 
previously proposed dispersal methods do not allow string 
search via this approach: In these methods the file is broken 
up into blocks and the block of data to be sent to each server 
is determined. Suppose if the string is present in the file, it 
may be within a block or across the block boundaries. If the 
string is within a block, using the same dispersal algorithm to 
disperse the string, as for the file, we can successfully search 
the string. Instead, if the string is across block boundaries, it is 
difficult to search for the string since the string may be broken 
into blocks differently from how the file was dispersed.  

In view of this, we propose use of convolutional codes for 
file dispersal. Our proposal is based on the class of error-
correcting codes called convolutional codes, which have been 
extensively studied in coding theory (see, for example [7, 8]). 
The proposed method is comparable in complexity to the 
Information Dispersal Algorithm of [9] and, for particular 
choices of (non-binary) convolutional codes, is almost as 
efficient as that algorithm in terms of controlling expansion in 
the total storage. Further our dispersal technique is also 
compatible with string searching. 

Let n denote the total number of servers and, as in [9], let a 
threshold m (m ≤ n) be specified such that at any point in time 
at least m servers are guaranteed to respond. With our 
algorithm the file is dispersed into n chunks of data, each of 
size = (size of file)/k (here k is a number ≤ m); each of these 
chunks may be stored in one of the n servers. The file can be 
recovered if any m out of the n servers return their chunks.1A 
given string (we impose no restriction on its minimum or 
maximum size) will also be passed through the algorithm, and 
the n chunks obtained will be passed to the servers, each 
chunk to its corresponding server. If at least m out of the n 
servers finds the string chunks in the same position in the 
chunks of data with them, the string is present in the file, 
otherwise not. 

For some values on m and n (this corresponds to the class 
of MDS convolutional codes, which have been previously 
studied e.g. in [11, 10, 12]) it is possible to get k = m − 1. 
Thus in these situations the file can be recovered by retrieving 
chunks of data whose combined size is just more than the size 
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of the file itself by a factor of m/(m − 1). By comparison, if 
the Information Dispersal Algorithm of [9] is used, this 
combined size can be the same as the size of the file itself 
(this, of course, is the best possible); but remember that string 
search is not possible in this case. 

In the next section, we briefly describe a version of the 
algorithm of [9], and interpret it in the language of error-
correcting codes. This allows us to then lead up in Section 3, 
to our dispersal algorithm in a transparent manner. After 
providing a brief introduction to convolutional codes 
sufficient for our purpose, we describe our algorithm in some 
detail, illustrating it with a couple of examples. And then we 
analyze the complexity of our algorithm, and relate this to the 
implementation of the algorithm of [9]. 

II. INFORMATION DISPERSAL ALGORITHM: BASIC VERSION  
Throughout, the file shall be denoted as F1F2F3. . . FN, and a 

string as q1q2q 3. . . qq. While, for a given choice of m and n, 
different versions of the Information Dispersal Algorithm are 
obtained by varying the choice of an associated matrix, we 
shall present here a choice corresponding to a particularly 
easy-to-understand version. Here the file is blocked (i.e., its 
contents are relabeled) as  

 
F1,1F1,2F1,3 . . . F1,mF2,1F2,2F2,3 . . . F2,m . . . 
F(N/m)−1,1F(N/m)−1,2… F(N/m)-1,m 

 
For each i =1, . . . , (N/m)−1, the block Fi1Fi2Fi3 . . . Fim is 
treated as representing the polynomial 

 
Fi(x) = Fi1 + Fi2x + Fi3x2+ . . . + Fimxm-1 

 
and the n evaluations of this polynomial Fi(j) for j = 1, . 
. . , n are sent, one to each of the servers. 
 

For reconstruction of the files, if m of the servers respond, 
for each i, i = 1, . . . (N/m) − 1, m evaluations of the 
(unknown) polynomial Fi(x) (which, however, is known to be 
of degree = m − 1 )are available, and these can be employed in 
Lagrange interpolation to reconstruct the polynomial. 

Notice that the data stored at server j, j=1, . . . , n, is  
therefore F1(j) F2(j) . . . F(N/m-1)  (j) 
Suppose that the given string is present in the file, in fact as 
 
q1q2q3 . . . qq = Fi1,1Fi,1,2 . . . Fi1,mFi,2,1 Fi2,2 … Fi,2,m   

 
Then the string can be declared as present in the file by  

searching server j, j = 1, . . . , n, with the string F1(j)… F2(j)  
and checking that at least m out of the n servers respond 
saying that they found the strings sent to them between the 
positions i1and i2, in the chunks. But suppose that the string 
does not thus happen to fit correctly at the block boundaries 
but falls within or between these boundaries. The reader may 
appreciate that then it is not clear how the string should be 
transformed in order to convert the problem of search for this 
string in the file to search for some related strings in the 
chunks of data with the servers. The same problem with 

searching for strings persists when other proposed methods of 
dispersal are used. For these too are in the same manner based 
on breaking the file into blocks.  

Further, all these previously proposed dispersal methods 
may be considered as applications of block error-correcting 
codes. In the above algorithm the transformation  Fi1,1Fi,1,2 . 
. . Fi1,m → Fi(1)Fi(2) . . . Fi(n) is simply the Reed-Solomon 
encoding of the information word Fi1,1Fi,1,2 . . . Fi1,m imas 
the codeword Fi(1)Fi(2) . . . Fi(n). Any other error-correcting 
code could also be used instead. 

Previously-proposed dispersal methods can be subsumed as 
the following approach: For a given m, n choose a block 
code with codeword size = n, and with every two code words 
differing in at least n − m + 1 positions (i.e., with minimum 
Hamming distance = n − m + 1). Suppose that, for this code 
the size of an information word is k.(The singleton bound 
implies that for any block code k < m. Codes for which 
equality holds form the special class of MDS codes. Reed-
Solomon codes are an example of such codes. For more 
details see [4].) Then break the file into blocks of size k. 
Treating each such block as an information word encode the 
block as its corresponding codeword (of size n), and send one 
element to each of the n servers. At reconstruction, receiving 
responses from  m of  the servers gives values at m positions 
in each codeword (which, recall, is of size n). Since every two 
code words are known to differ in at least n − m + 1 positions, 
there can be only one codeword with these values at these m 
positions, and the information word encoding this codeword is 
the corresponding block in the file. 

III. OUR CONVOLUTIONAL CODE BASED DISPERSAL 
ALGORITHM  

We use essentially the same approach as in the previous 
section; but we dispense with block codes and use 
convolutional codes instead.  The encoder of a convolutional code 
is basically a Finite state machine, and can thus be implemented 
using shift registers, adders and multipliers (we will only need 
linear convolutional codes, which are linear finite state 
machines). The output of the state machine is a function of the 
input, and the contents of the shift registers. The state is given 
by the shift register contents; at each instant the input is 
sequentially shifted into the shift registers, and thus 
determines the next state. 

In a (k, n) convolutional code the size of the encoded stream is 
n/k times the size of the input stream. To fix ideas we will 
consider the example of a particularly simple convolutional 
code, a (1, 4) code whose linear shift register representation is 
given in Fig. 1. Here D represents delay element. 

The encoding process may be represented in a trellis diagram, 
which itself is derived from the shift register representation of 
Fig. 1. The trellis diagram graphically displays the transitions 
to new states and outputs obtained for different input streams. 
Thus the start and termination of a branch indicate the initial 
and final state respectively, the input (and output) producing 
this transition being labeled above the branch itself. A path 
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through the trellis diagram identifies an output sequence, the 
input sequence (and initial state) which produced it, and the 
corresponding state sequence. See Fig. 2. Our idea is to feed the 
file as input to the convolutional encoder. With a (k, n) encoder 
each of the n values obtained at the output is sent to one of the 
n servers. (Notice, therefore, that the size of data received at 
each server is 1/k times the size of the file). Thus if the 
encoder of Fig. 1 is used in a situation where there are n = 4 
servers, the stream ci is sent to server i (i = 1, . . . , 4). (At the 
outset the shift registers may arbitrarily be initialized to 
zeros). 

Consider first the question of reconstruction of the entire 
file.  Suppose that only three out of the four  servers respond 
with the streams with them (thus we have the situation m = 3). 
The received information should nevertheless unambiguously 
determine a single path in the trellis diagram: in this case the 
input sequence corresponding to this path may be declared as 
the reconstructed file. 

Now notice this property of the trellis diagram (in Fig. 2) 
for the convolutional encoder we have chosen in Fig. 1: the 
output labels of every two branches differ in at least two 
positions. The case when some three servers respond 
corresponds to knowing three of the four positions on every 
branch of the path encoding the file. Therefore from the above 
property the responses of three servers is sufficient to 
determine a path in the trellis diagram, and the file can be 
declared to be the corresponding input sequence. (The reader 
can convince himself by checking, say that the responses of 
the servers 1, 2 and 4 are sufficient to reconstruct the file 
chosen as an illustration in Fig. 2.) 

Let us now move on to the question of string search, of the 
string q1q2q 3. . . qq  in the file F1F2F3. . . FN. The string should 
be encoded using the same convolutional encoder and each of 
the n resulting streams should be sent to its corresponding 
server. But how is the initial state to begin this encoding to be 
determined? (For remember that the location of the string in 
the file is also unknown, and it may therefore be a mistake to 
assume the initial shift register contents to say, all be zeroes.) 
We circumvent this problem by noticing that, if we give up 
the encoding of the part of the string made up of the first few 
values of the string, for the encoding of the subsequent part 
the preceding part itself determines the contents of the shift 
registers (and no further information is required to determine 
these contents. Thus in the convolutional encoder we have 
considered as an example, q1q2is the initial state for encoding 
the sequence q1q2q 3. . . qq). Only the streams corresponding to 
the encoding of this subsequent part is sent to the servers. 

Given n the total number of servers, and m, the number of 
servers guaranteed to respond, how is the convolutional 
encoder to be chosen?  Suppose that the string is encoded (in 
the manner described above), and some m of the n servers 
respond. (Recall that the response of a server consists of 
whether the stream sent to it is present in the stream with it 
and, if yes, the position of the match.) Consider the case when 
all these m servers find the streams they receive, and at the 
same location. We want to then be able to conclude that the 

string itself is present in the file. 
The encoded string sequence had determined a sub-path in 

the trellis diagram. The string being present in the file 
corresponds to this sub-path being a part of the path encoding 
the file. Since the m servers have found the streams sent to 
them, and all in the same location, one possibility is that the 
sub-path encoding the string is a part of the path encoding the 
file, therefore that the string is present in the file (at the 
location specified by the servers). We need to be sure that the 
information returned by the m servers does not also permit a 
different sub-path to be concluded as being part of the path 
encoding the file. 

Since the servers have found matches at a particular 
location, for the sequence sent to them, on each branch of 
every candidate sub-path (of certain length) starting at this 
location the values at m positions (out of the total of n) are 
known. We need to be sure that this information permits only 
the subpath encoding the string. This will indeed be the case if 
every two branches in the trellis diagram differ in at least n − 
m + 1 positions (out of the total of n). 

Let us summarize: For a given m, n, if a (k, n) 
convolutional encoder is chosen in whose trellis diagram 
every two branches differ in at least n − m + 1 positions, and 
is used to encode and disperse the file (as outlined above), 
then the string is present in the file if m out of the n servers 
find matches (at the same location in the streams with them) 
for the sequences sent to them, and is not present in the file 
otherwise. 

IV. SOME IMPLEMENTATION ISSUES  
If a particular (k, n) convolutional encoder, satisfy a given 

requirement of n (the total number of servers) and m (the 
minimum number among these which can be relied upon to 
respond), is chosen, then queries (of any bigger length and) as 
small as a string of k elements can be searched for in our 
approach. That is to say, the question ” is q1q2q 3. . . qq in 
 F1F2F3. . . FN?” can be answered for strings with  Q ≥ k. Q 
≤ k are not permitted since the encoding linear shift register 
takes an input of k elements.  

Fix m and n. Then every possible (k, n) convolutional 
encoder satisfies k ≤ m (due to a form of the singleton bound 
which holds for convolutional codes; see [7]). We would like 
to choose the encoder with the largest possible k, since this 
would ensure the smallest possible size for the data sent to 
each server (which, we call, is (file size)/k), and the smallest 
possible size of data required to reconstruct the file (which, 
when m servers respond, is m/k*file size). The best encoder 
will turn out quite often not to be defined over the binary 
alphabet but over some extension field GF(2q) (i.e., the inputs, 
outputs and register contents of the linear shift registers 
implementing this encoder are elements of GF(2q)) for some q 
> 1. For instance when n = 5 and m = 3 the largest possible k 
is 2, as shown in [11] and this (k, n) = (2, 5) encoder is 
defined over GF(24). 

In Table I, we summarize the maximum number of 
operations needed to disperse a file,  F1F2F3. . . FN using the 
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best possible convolutional encoder for a given m and n. We 
also compare this number with the number of operations 
required if the Information Dispersal Algorithm of [9] were 
used.  
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Fig. 1 The Shift Register representation of the Encoder of a (1,4) 

binary convolutional code. Here D represents a delay element. X(i) is 
the current input bit. C1(i), C2(i), C3(i), and C4(i) are the 

corresponding output bits 
 

 

Fig. 2 Trellis diagram of the encoder of the (1, 4) binary 
convolutional code of Fig. 1. S0=00, S1=01, S2=10, S3=11 are the 
states of finite state machine of Fig. 1. Lines represent transitions 
from one state to the next state in the next interval. Labels on each 
line in interval i=1 represent the output bits c1(i), c2(i), c3(i), c4(i) 

respectively. Output bits at each subsequent levels remain the same. 
Bold lines represent the path for the input file 10100. The 

corresponding output sequence is 1111 0011 1010 0011 0101. 
Suppose at reconstruction, three servers, say 1, 2, and 4 respond with 

the sequence 11_1 00_110_0 00_1 01_1. It is then possible to 
reconstruct the correct sequence. 
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