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Abstract—Dental porcelain composites reinforced and toughened 

by 20 wt.% tetragonal zirconia (3Y-TZP) were processed by hot 
pressing at 1000°C. Two types of particles were tested: yttria-
stabilized zirconia (ZrO2–3%Y2O3) agglomerates and pre-sintered 
yttria-stabilized zirconia (ZrO2–3%Y2O3) particles. The composites 
as well as the reinforcing particles were analyzed by the means of 
optical and Scanning Electron Microscopy (SEM), Energy Dispersion 
Spectroscopy (EDS) and X-Ray Diffraction (XRD). The mechanical 
properties were obtained by the transverse rupture strength test. Wear 
tests were also performed on the composites and monolithic 
porcelain. The best mechanical results were displayed by the 
porcelain reinforced with the pre-sintered ZrO2–3%Y2O3 
agglomerates. 
 

Keywords—Composite, dental restoration, porcelain, 
strengthening, toughening, wear, zirconia. 

I. INTRODUCTION 

HE use of ceramics in dentistry is nowadays the 
mainstream in aesthetical restorative dentistry. Zirconia is 

in the forefront of this trend due to its biocompatibility, 
aesthetics [1], corrosion resistance [2] and good mechanical 
properties relative to alternative materials. Zirconia-based 
restorations comprise a strong and thought zirconia 
substructure that is veneered with a weaker compatible 
porcelain that is used to mimic the color of real teeth and 
eventually to reduce the wear of the dental restoration with the 
opposite teeth.  

Zirconia is a polymorphic ceramic with different crystal 
structure at different temperatures, but keeping the same 
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chemistry. Zirconia can be found in three crystalline forms: 
monolithic; tetragonal and cubic. Pure zirconia is stable in 
monoclinic phase at room temperature. At 1173°C it 
undergoes a phase transformation from monoclinic to 
tetragonal and then to cubic at 2370°C. Above 2690°C 
zirconia melts. These transformations are reversible upon 
cooling with the tetragonal to monoclinic (t-m) transformation 
imparting compressive stresses to the material due to the 
volume expansion of 4-5% that occurs with the 
transformation. It is possible to fully or partially stabilize 
zirconia in its tetragonal or cubic form at room temperature by 
alloying it with other cubic oxides termed as “stabilizers”. 
Calcia, magnesia, ceria, alumina or yttria are used for that end. 
Zirconia is said to be partially stabilized (Partially Stabilized 
Zirconia – PSZ) when a multiphase form coexists in the 
material: cubic as the major phase and monoclinic and 
tetragonal zirconia precipitates, as the minor phase. To date, 
the best properties are exhibited by zirconia stabilized with 
Y2O3 (yttria), where the whole materials is constituted by 
transformable t-zirconia grains and called Tetragonal Zirconia 
Polycrystals (TZP). The addition of 2-3 mol% yttrium oxide 
(Y2O3) as stabilizing agent results in a fully tetragonal fine-
grained zirconia ceramic material with 100% small metastable 
tetragonal grains (Y-TZP). This is the type of zirconia that has 
been extensively used in the production of dental frameworks 
for all-ceramic restorations. Partially stabilized zirconia 
displays a toughening mechanism that uses the t-m 
transformation to arrest the crack propagation, and is therefore 
termed transformation toughening. When a crack arises in 
zirconia, the stress field generated at the crack tip cause a local 
phase transformation from the metastable tetragonal phase to 
monoclinic phase. This transformation is accompanied to a 
volume increase of the crystals, constrained by surrounding 
ones, and a compressive stress field is generated at the crack 
surfaces near the crack tip that tend to pinch the crack shut, 
thereby hindering its propagation. 

Dental porcelains, as well as other several glass-ceramics 
used in biomedical applications lack in mechanical properties 
that allow them to be employed in load-bearing applications. 
Therefore, some authors addressed their efforts to toughen 
these materials by adding a second high-strength 
biocompatible phase [3]-[8].  

In this work, two types of zirconia particles were used as 
reinforcing phase in the pressure assisted (hot pressed) 
sintered composites: yttria-stabilized zirconia (ZrO2–3%Y2O3) 
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zirconia micro/nano particles during the blending process of 
the porcelain powders-zirconia agglomerates showed to impart 
problems to the sintering and densification of PORC/ZA 
composites, reducing dramatically the strength of the 
composite and the wear properties. Monolithic porcelain 
(PORC) showed the best wear properties among the tested 
specimens. 
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