
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1890

Stepwise Refinement in Executable-UML for

Embedded System Design: A Preliminary Study
Nurul Azma Zakaria, Masahiro Kimura, Noriko Matsumoto, Norihiko Yoshida, Member, IEEE

Abstract—The fast growth in complexity coupled with requests
for shorter development periods for embedded systems are bring-
ing demands towards a more effective, i.e. higher-abstract, design
process for hardaware/software integrated design. In Software En-
gineering area, Model Driven Architecture (MDA) and Executable
UML (xUML) has been accepted to bring further improvement in
software design. This paper constructs MDA and xUML stepwise
transformations from an abstract specification model to a more
concrete implementation model using the refactoring technique for
hardaware/software integrated design. This approach provides clear
and structured models which enables quick exploration and synthesis,
and early stage verification.

Keywords—Hardaware/Software Integrated Design, Model Driven
Architecture, Executable UML, Refactoring

I. INTRODUCTION

T
O accelerate hardaware/software integrated design pro-

cesses for embedded systems, several design methodolo-

gies and description languages for them, called system-level

design languages, have been proposed such as SpecC, Sys-

temC and SystemVerilog [1], [2], and are gradually being used

in practice. However, the fast growth in complexity coupled

with requests for shorter development periods are bringing

demands towards a more effective, i.e. higher-abstract, design

process.

In Software Engineering area, Model Driven Architecture

(MDA) and Executable UML (xUML) [3] has been accepted to

realize higher level of abstraction to bring further improvement

in software design. The research goal is to formalize transfor-

mation in xUML from an abstract specification model to a

more concrete implementation model in the MDA process for

hardaware/software integrated design. This paper tries to con-

struct xUML stepwise transformations using the refactoring

technique [4]. Fig. 1 shows the flow of the proposed approach

in comparison with typical system-level design and MDA flow.

Section 2 summarizes MDA and xUML, and Section 3

introduces refactoring and stepwise transformation. Section

4 explores the suitability of this technique using a channel

partitioning example [1]. Section 5 mentions some related

research works, and Section 6 contains some concluding

remarks.

II. MODELING IN EXECUTABLE UML

Models in MDA are formal representation of the function,

behavior and structure of the system. MDA comprises two

model abstractions. Platform Independent Model (PIM) is a

N. A. Zakaria, M. Kimura, N. Matsumoto and N. Yoshida are with
Department of Computer Science, Saitama University, Saitama 338-8570,
Japan e-mail: {azma|masahiro|noriko|yoshida}@ss.ics.saitama-u.ac.jp.

Manuscript received April 19, 2009; revised April 20, 2009.

model that describes all requirements of the system, while

being free from implementation specific aspects. Since PIMs

are expressed as executable models, they are also verifiable.

On the other hand, Platform Specific Model (PSM) comprises

all the functionality expressed in the PIM with the added

design concerns on a specific platform. A PSM is derived

from its corresponding PIM by applying a set of systematic

transformation. Each of the models is represented in xUML

which consists of class and state machine diagrams. The

former describes static structures of a system, and the latter

depicts dynamic behaviors of the classes. Within a state

machine diagram, action semantics is defined using Action

Specification Language (ASL) [3] to allow model execution.

An MDA tool iUML [3] is used to execute and verify models

in xUML.

III. REFACTORING-BASED TRANSFORMATION

A. Refactoring Rules

Refactoring [4] is a technique for restructuring an existing

body of code, altering its internal structure without changing

Fig. 1. Proposed design flow

Fig. 2. Channel partitioning task

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1891

its external behavior. It is a series of small behavior-preserving

transformations. A series of step-by-step refactoring rules

involved in “channel partitioning” are shown below as an

example. “Channel partitioning” is one of the fundamental and

important processes in hardware/software integrated design,

which allocates an abstract communication channel between

components to an implementation of concrete wired buses.

This does not appear in the original MDA and xUML for

software (not hardware/software integrated) design.

1) Add another level of hierarchy to the existing class

diagram to model its bus structure.

• Create a new class to represent the bus structure.

• Add relationship to Main class.

2) Bind channel classes to the bus class and group com-

munication.

• Remove relationship from Main class.

• Add relationship to the bus class.

3) Renew access towards channel classes.

• Remove relationship from channel classes.

• Add relationship to the bus class

B. Transformation

Fig. 2 shows a schematic diagram of the transformation

process in “channel partitioning”. The class organizations

are shown in Fig. 3 and Fig. 4 (at the end of the paper)

which correspond to Fig. 2 (before) and (after) respectively.

Each function or behavior is assigned to a class, without any

consideration on concrete implementation. In the initial model,

Main class represents top-level hierarchy of the design which

connects to subclasses such as PE1, PE2 and C2. A new class

named Bus1 is created and linked to Main class to model the

bus structure.

Some intermediate refactoring is applied to the initial model

which finally derives xUML definition of a more concrete

model as shown in Fig. 4. The xUML model becomes more

detailed due to change in connectivity among classes such

as Bus1, B13Rcv and B13Snd. What is important is that the

functions and behaviors of the original specification model are

strictly preserved, while its structure is modified so as to make

the model more concrete.

Fig. 5. State transition of B13Rcv class

Figure 5 depicts the state transition which relates to transfor-

mation illustrated by Fig. 3 and Fig. 4. The chart for B13Rcv

class is shown as an example. This type of state transition

definition is attached to every class presented in the class

diagram.

Initially, startSignal instantiates the second state which

executes startMain operation of CB13 class but in final trans-

formation startSignal activates startMain operation of Bus1

class instead. This is due to changes occurred in Fig. 4. Finally,

after all statements are executed returnSignal starts returnMain

operation of B13Rcv class to end the process in both cases.

IV. RELATED WORKS

There are already some related studies on application of

UML or MDA to systems design [5], [6], [7]. However,

there has been none yet on xUML transformation based

on refactoring for system-level, hardware/software integrated

design.

V. CONCLUDING REMARKS

A modeling framework has been introduced in which de-

signs can be specified using xUML notations so as to support

specification and modeling of embedded system. This paper

presented some refactoring rules which acts as guideline in

design process. This paper have verified the approach by sim-

ulating the models using iUML suite. This approach provides

clear and structured models which enables quick exploration

and synthesis, and early stage verification. Future works will

include modeling remaining tasks of stepwise refinement to

enable generation of complete system-level design using the

framework and apply them to real applications.

ACKNOWLEDGMENT

This research was supported in part by Nippon Signal Co.

Ltd.

REFERENCES

[1] D. D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer and S. Zhao, SpecC:

Specification Language and Methodology, Kluwer, 2000.
[2] P. Marwedel, Embedded System Design, Springer, 2006.
[3] C. Raistrick, P. Francis, J. Wright, C. Carter and I. Wilkie, Model Driven

Architecture with Executable UML, Cambridge University Press, 2004.
[4] M. Fowler, Refactoring: Improving the Design of Existing Code,

Addison-Wesley, 1999.
[5] E. Riccobene, P. Scandurra, A. Rosti and S. Bocchio, “A SoC Design

Methodology Involving a UML 2.0 Profile for SystemC”, Proc. Design,
Automation and Test in Europe, 2005.

[6] T. Schattkowsky and W. Muller, “Model-Based Design of Embedded
Systems”, Proc. 7th IEEE Int. Symp. on Object-Oriented Real-Time
Distributed Computing, 2004.

[7] Proc. 2006 Workshop on UML for SoC Design, in conjunction with
ACM/IEEE 43th Design Automation Conf., 2006.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1892

Fig. 3. Initial xUML model

Fig. 4. Final xUML model

