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Stepsize control of the finite difference
method for solving ordinary

differential equations
Davod Khojasteh Salkuyeh

Abstract—An important task in solving second order linear or-
dinary differential equations by the finite difference is to choose a
suitable stepsize h. In this paper, by using the stochastic arithmetic,
the CESTAC method and the CADNA library we present a procedure
to estimate the optimal stepsize hopt, the stepsize which minimizes
the global error consisting of truncation and round-off error.

Keywords—ordinary differential equations, optimal stepsize, error,
stochastic arithmetic, CESTAC, CADNA.

I. INTRODUCTION

NUMERICAL algorithms which include a stepsize are
affected by a global error, which consists of both a

truncation error and a round-off error. In these algorithms as
the stepsize decreases, the truncation error also decreases, but
the round-off error may increase. The problem is now to find
the stepsize which minimizes the global error. In general, it
is difficult to estimate the optimal stepsize in an algorithm.
In [4], Chesneaux and Jézéquel showed that by using the
CESTAC (Control et Estimation Stochastique des Arrondis
de Calcul) method [19], [20] and the CADNA library [2],
[3], [10], [15], one can estimate the optimal stepsize for the
numerical computation of integrals using the trapezoidal and
Simpson’s rules. Then, Abbasbandy and Araghi [1] developed
this method to general closed Newton-Cotes integration rules.
The development of the method to multiple integrals can be
found in [11]. In [14], Salkuyeh et al. proposed a procedure
with stepsize control for solving n one-dimensional initial
value problems.

In this paper, we present a strategy to control the stepsize
in the finite difference method for solving the following linear
two-point boundary value problem{

y′′(x) + f(x)y′(x) + g(x)y(x) = r(x), x ∈ (a, b),
y(a) = α, y(b) = β.

(1)
This paper is organized as follows. In section II, a brief

description of the finite difference method for solving (1) and
our main results are given. Section III is devoted to a review of
the stochastic round-off error analysis, the CESTAC method
and the CADNA library. In section IV, some numerical ex-
periments are given. Section V is devoted to some concluding
remarks.
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II. MAIN RESULTS

In order to solve the problem (1) by the finite difference
method, we subdivide the interval [a, b] into n equal subinter-
vals by the grid points xi = x0+ih, i = 0, 1, . . . , n where h =
(b− a)/n. At the internal grid points xi, i = 1, 2, . . . , n− 1,
we replace y′′(xi) and y′(xi) in the differential equation (1)
by the difference quotients

y′′(xi) =
y(xi+1) − 2y(xi) + y(xi−1)

h2
+ O(h2),

and

y′(xi) =
y(xi+1) − y(xi−1)

2h
+ O(h2).

Then, by neglecting O(h2) we obtain the system of linear
equations

(1 − h

2
fi)yi−1 + (−2 + gih

2)yi + (1 +
h

2
)yi+1 = h2ri,

i = 1, 2, . . . , n − 1. (2)

where fi = f(xi), gi = g(xi), ri = r(xi) and yi ≈ y(xi).
This system has to be complemented by the two boundary
conditions u0 = α and un = β. The matrix of system (2)
is tridiagonal and one can solve it by the known Thomas
algorithm [13]. By solving system (2), the approximate values
yi to the exact solution y(xi) are obtained. We recall the
following theorem concerning the convergence order of the
method.

Theorem 1. ([12]) Suppose that the problem (1) has a
unique solution y,

h|p(x)| < 2, x ∈ [a, b],

and
q(x) ≤ γ, x ∈ [a, b].

for some γ < 0. Moreover, assume that y is four times
continuously differentiable. Then

yi − y(xi) = ch2 + O(h3), (3)

where c is a constant independent of h.

Now, we recall the following definition [4], [9].

Definition 1. Let r and s be two real numbers. The
number of exact significant digits that are common to r and
s can be defined in (−∞,+∞) by
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1. for r �= s,

Cr,s = log10 | r + s

2(r − s)
| .

2. Cr,r = +∞.

Next, we state and prove the following theorem.

Theorem 2. Let all the assumptions of Theorem 1 hold.
Moreover, assume that yi(h) and yi(h/2) are the computed
solutions obtained by the finite difference method at grid
point xi with stepsizes h and h/2, respectively. Then

Cyi(h),yi(h/2) = Cyi(h),y(xi) + log10

4
3

+ O(h).

Proof. From (3), we have

yi(h) + y(xi) = 2y(xi) + ch2 + O(h3), (4)

yi(h) − yi(h/2) =
3
4
ch2 + O(h3), (5)

yi(h) + yi(h/2) = 2y(xi) +
5
4
ch2 + O(h3). (6)

Then, from Definition 1, we obtain

Cyi(h),yi(h/2) − Cyi(h),y(xi) = log10 |
yi(h) + yi(h/2)

2(yi(h) − yi(h/2))
|

− log10 |
yi(h) + y(xi)

2(yi(h) − y(xi))
|

= log10 |
yi(h) + yi(h/2)
yi(h) + y(xi)

|

+ log10 |
yi(h) − y(xi)

yi(h) − yi(h/2)
|. (7)

Now, from (4) and (6) we conclude that

log10 |
yi(h) + yi(h/2)
yi(h) + y(xi)

| = log10 |
2y(xi) + 5

4ch2 + O(h3)
2y(xi) + ch2 + O(h3)

|
= O(h2). (8)

On the other hand, we have

log10 |
yi(h) − y(xi)

yi(h) − yi(h/2)
| = log10 |

ch2 + O(h3)
3
4ch2 + O(h3)

|

= log10

4
3

+ log10 |
c + O(h)
c + 4

3O(h)
|

= log10

4
3

+ O(h). (9)

Substituting (8) and (9) in (7) the desired relation is obtained.

This theorem shows, if h is small enough, then the number
of common significant digits between yi(h) and yi(h/2) is
the same as the number of the common significant digits
between yi(h) and y(xi) up to less than one digit. It is
necessary to mention that log10

4
3 ≈ 0.1249. Theorem 2, has

been stated by taking into account only the truncation error
on two approximate solutions yi(h) and yi(h/2). But, as we
know the computed results are also affected by round-off error
propagation. Next, we describe how round-off errors can be
estimated with a probabilistic approach in order to determine
the exact significant digits of any computed result.

III. THE CESTAC METHOD

Each result provided by a numerical algorithm which is
performed on a computer always contains an error resulting
from round-off error propagation. The Discrete Stochastic
Arithmetic (DSA) [16] is a probabilistic approach for round-
off error propagation. With the DSA, which is the joint use
of the synchronous implementation of CESTAC method and
the stochastic order relations, it is possible to estimate the
accuracy of the results provided by a computer, to detect the
numerical instabilities occurring during the run of a scientific
code, and to check the branchings that exist in the code. In
this section, we briefly review the CESTAC method and DSA.

A. Brief description of the CESTAC method and its implemen-
tation

The main idea of the CESTAC method is defined in [18], [20]
and consists of:

- synchronously performing the same code N times with
a different round-off error propagation for each run.

- estimating the common part of these results and to
consider that this part is representative of the exact result.

In practice, these different round-off error propagations are
obtained in using random rounding mode.

Indeed, each result r of a floating-point operation which is
not an exact floating-point value is always bounded by two
floating-points values R− and R+, each of them being so
representative of the exact result.

The random rounding consists at the level of each floating-
point operation or assignment to choose as result randomly
with an equal probability either R− or R+. Then when the
same code is executed N times with a computer using this
random rounding, N results Rk, k = 1, . . . , N are obtained. It
has been proved in [5], [6] that, under some hypotheses, these
N results belong to a quasi-Gaussian distribution centered on
the exact result r. So, in practice, by considering the mean
value R of the Rk as the computed result, and using Student’s
test, it is possible to obtain a confidence interval of R with a
probability (1 − β) and then to estimate the number of exact
significant digits of R by the formula (10)

CR = log10(
√

N |R|/τβσ), (10)

with R = (1/N)ΣN
i=1Ri and σ2 = 1

N−1ΣN
i=1(Ri − R)2. τβ

is the value of the Student distribution for N − 1 degrees of
freedom and a probability level 1 − β. In practice N = 3,
β = 0.05 and then τβ = 4.4303.

The result provided by equation (10) is reliable if the
hypotheses underlying the method hold in practice. It has been
proved that [5], [6], [21], these hypotheses hold when:

1) The operands of any multiplication are both significant.
2) The divisor of any division is significant.
It is then absolutely necessary during the run of a code to

control the points 1) and 2). This control is done with the
concept of computational zero also named computational zero
or computed zero [22].
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Definition 2. Each result provided by CESTAC method is an
computational zero denoted by @.0 if and only if one of the
two conditions holds:

1) ∀i, i = 1, . . . , N, Ri = 0.
2) CR ≤ 0, (CR obtained with equation (10)).

When CR ≤ 0, then R is an unsignificant value (R
has no significant digit). From the concept of @.0, discrete
stochastic relations (DSR) have been defined (equality and
order relations).

Definition 3. Let X and Y be N -samples provided by
CESTAC method, discrete stochastic equality denoted by s =
is defined as:

Xs = Y if X − Y = @.0.

Definition 4. Let X and Y be N -samples provided by
CESTAC method, discrete stochastic inequalities denoted by
s > and s ≥ are defined as:

Xs > Y if X > Y and X − Y �= @.0.
Xs ≥ Y if X ≥ Y or X − Y = @.0.

The DSA is the association of the CESTAC method, the
concept of computational zero and the discrete stochastic
relations (see [7], [8], [21]). With this DSA it is possible to
control the run of a scientific code, to detect the numerical
instabilities and the violation of the hypotheses underlying the
method. But in practice how to implement this?

As we observed, the two main specificities of the CESTAC
method are:

• The random rounding, which consists in creating R− and
R+ and in choosing randomly one or the other.

• The manner to perform the N runs of a code.

With IEEE arithmetic and the possibilities of ADA, C++,
and Fortran to create new structures and to overload the
operators it is easy to implement the CESTAC method.

The random rounding uses the IEEE rounding toward +∞
and toward −∞. These roundings occur whenever an arith-
metic operation has a result that is not exact. Then no artificial
round-off error is introduced in the computation. The choice
of the rounding is at random with an equal probability for
the (N − 1) first samples and the choice of the last one is
the opposite of the choice of the (N − 1)th sample. With
this random rounding the theorems on exact rounding are
respected.

We have seen previously that it is absolutely necessary to
detect, during the run of a code, the emergence of @.0 for
controlling the validity of the CESTAC method. To achieve
this it suffices to use the synchronous implementation which
consists in performing each arithmetic operation N times with
the random rounding before performing the next. Thus for
each numerical result we have N samples, from which with
equation (10) the number of exact significant digits of the
mean value, considered as the computed result, is estimated.

With this implementation the stochastic order relations
defined above may also be easily created. Then during the
run of a code a dynamic control may be done.

B. The CADNA library

The CADNA software [2], [3] is a library which implements
automatically the DSA in any code written in Fortran. Using
the CADNA library (Control of Accuracy and Debugging for
Numerical Application), each standard FP types have their
corresponding stochastic types. Every intrinsic function and
operator are overloaded for those types. When a stochastic
variable is printed, only its significant digits are displayed to
point out its accuracy. If a number has no significant digit (i.e.,
a computed zero), the symbol @.0 is displayed.

The modifications that the user has to do in his Fortran
source are mainly to change the declaration statements of
real type by stochastic type, and the input-output statement
(see [3]). Thus, when a modified Fortran source combined
with the CADNA library is run, it is as (N = 3) identical
codes were simultaneously run on N synchronized computers
each of them using the random rounding mode. So round-off
error propagation can be analyzed step by step and then any
numerical anomaly can be dynamically detected. This leads to
the self validation of the method and a numerical debugging
scientific codes.

In the next section, we describe how the use of the CADNA
library allows us to control the stepsize in the method of the
finite difference for solving (1).

IV. NUMERICAL EXPERIMENTS

According to the previous section and Theorem 2, by using
the CESTAC method and the CADNA library, we propose a
procedure for computing an approximate optimal stepsize in
solving (1) by the finite difference method as follows. Let

hm =
b − a

2m
, m = 1, 2, 3, . . . ,

and
xi = x + ih, i = 0, 1, . . . , 2m.

Let also

Y (m) = (y1(hm), y2(hm), . . . , y2m−1(hm)),

be the approximate solution computed from (2) with n = 2m.
In this case, the following algorithm, AOSFDM (for approx-
imate optimal stepsize in the finite difference method), is
proposed.

Algorithm 1. AOSFDM
1. m := 1
2. Compute Y (m) and Y (m+1)

3. Set Ỹ (m) = (Y (m+1)
2 , Y

(m+1)
4 , . . . , Y

(m+1)
2m+1−2)

4. If ‖Y (m) − Ỹ (m)‖∞ = @.0, then stop (hm+1 is an
approximate optimal stepsize)

5. Else m := m + 1 and goto 2

Step 4 of this algorithm means that if

|Y (m)
i − Ỹ m

i | = @.0, i = 1, 2, . . . , 2m − 1,

then the process is stopped. In this case, the number of
common significant digits between Ỹ

(m)
i and Y

(m)
i is the same
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TABLE I
APPROXIMATE OPTIMAL STEPSIZE FOR EXAMPLE 1.

m ‖Y (m) − Ỹ (m)‖∞ ‖Y (m) − Ỹ
(m)
e ‖∞

1 0.22954837203874E+000 0.21590909090909E+000
2 0.102565425811E-001 0.120065789473E-001
3 0.25639283714E-002 0.29679944189E-002
4 0.6461063732E-003 0.7400229137E-003
5 0.16142369E-003 0.195129551E-003
6 0.4036255E-004 0.41229463E-004
7 0.100910E-004 0.1279658E-004
8 0.25227E-005 0.304826E-005
9 0.6307E-006 0.7431E-006

10 0.157E-006 0.185E-006
11 0.3E-007 0.42E-007
12 @.0 @.0

as the number of the common significant digits between Y
(m)
i

and y(xi), up to less than one digit. It is necessary to mention
that if

|Y (m)
i − Ỹ m

i | = @.0, i = 1, 2, . . . , 2m − 1,

then the transformation from Y
(m)
i into Y

(m+1)
i is only due to

the round-off errors and further reduction in the stepsize would
be useless and hm+1 can be considered as an approximate
optimal stepsize.

Now we present the examples and the results which we
obtained by the Fortran code of the finite difference method for
solving (1) combined with the CADNA library, version BETA
[15]. All the numerical experiments were computed in double
precision. We consider three examples and for each example,
the numerical results are given in two separate tables. In the
first table of each example the values of ‖Y (m)−Ỹ (m)‖∞ and
‖Y (m) − Ỹ

(m)
e ‖∞ for different values of m are given, where

Y (m)
e = (y(x1), y(x2), . . . , y(x2m−1)),

and in the second table, the approximate solution obtained
with the approximate optimal stepsize and the exact solution
in some grid points are compared.

Example 1. In the first example, we consider{
y′′ + (x + 1)y′ − 3y = 3x2 + 4x + 1,
y(1) = 2, y(2) = 10.

The exact solution of this problem is y(x) = x3+x. Numerical
results are given in TABLE I and TABLE II. TABLE I shows
that the approximate optimal stepsize is

h13 =
2 − 1
213

= 1.2207e − 4.

The approximate solution computed with h13 together with
the exact solution in some grid points are given in TABLE II.
As we observe, all of the digits of y

(13)
i , up to one, coincide

with that of the y(xi). Moreover, we see that by the CADNA
library one can represent the computed solution with their
exact decimal figures.

Example 2. This example is devoted to{
y′′ + xy′ − (1 + x2)y = x cos x − (2 + x2) sin x,
y(0) = 0, y(π

2 ) = 1.

TABLE II
APPROXIMATE AND EXACT SOLUTIONS AT SOME GRID POINTS FOR

EXAMPLE 1.

i y(xi) y
(13)
i

1 0.200097674132848E+001 0.20009767413E+001
500 0.253480372298508E+001 0.253480372E+001

1000 0.316992834955453E+001 0.316992835E+001
1500 0.391628781612962E+001 0.391628781E+001
2000 0.478479605913162E+001 0.478479606E+001
2500 0.578636701498180E+001 0.578636701E+001
3000 0.693191462010145E+001 0.693191462E+001
3500 0.823235281091183E+001 0.823235281E+001
4000 0.969859552383422E+001 0.9698595524E+001
4095 0.999682652948831E+001 0.999682652949E+001

TABLE III
APPROXIMATE OPTIMAL STEPSIZE FOR EXAMPLE 2.

m ‖Y (m) − Ỹ (m)‖∞ ‖Y (m) − Ỹ
(m)
e ‖∞

1 0.3359138134985E-002 0.4064786972591E-002
2 0.550046388153E-003 0.657722259832E-003
3 0.13220955705E-003 0.15014480973E-003
4 0.319287614E-004 0.4090172343E-004
5 0.79115843E-005 0.910039019E-005
6 0.1973477E-005 0.21808204E-005
7 0.493093E-006 0.5327861E-006
8 0.12326E-006 0.164281E-006
9 0.3081E-007 0.37721E-007

10 0.770E-008 0.8628E-008
11 0.19E-008 0.20E-008
12 0.4E-009 0.4E-009
13 @.0 @.0

The exact solution of this problem is y(x) = sinx. Numerical
results are given in TABLE III and TABLE IV. From TABLE
III, the optimal stepsize is estimated as

h14 =
π
2 − 1
214

= 9.5874e − 5.

The approximate solution computed with h14 together with the
exact solution in some grid points are given in TABLE IV. As
we observe, all of the digits of y

(14)
i , up to one, coincide with

that of the y(xi).

Example 3. In this example, we consider{
y′′ + e−xy′ − y = x + 2ex,
y(0) = −1, y(1) = 0.

The exact solution of this problem is y = (x−1)ex. Numerical
results are given in TABLE V and TABLE VI. TABLE V gives

TABLE IV
APPROXIMATE AND EXACT SOLUTIONS AT SOME GRID POINTS FOR

EXAMPLE 2.

i y(xi) y
(13)
i

1 0.191747597310703E-003 0.191747597E-003
1000 0.190574754820252E+000 0.190574754E+000
2000 0.374164062971457E+000 0.374164063E+000
3000 0.544038526730883E+000 0.544038526E+000
4000 0.693971460889653E+000 0.693971460E+000
5000 0.818467129580297E+000 0.818467129E+000
6000 0.912962190428397E+000 0.912962190E+000
7000 0.973992962167955E+000 0.973992962E+000
8000 0.999322384588349E+000 0.9993223846E+000
8191 0.999999981616429E+000 0.9999999816165E+000
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TABLE V
APPROXIMATE OPTIMAL STEPSIZE FOR EXAMPLE 3.

m ‖Y (m) − Ỹ (m)‖∞ ‖Y (m) − Ỹ
(m)
e ‖∞

1 0.395863602759020E+000 0.402422575194480E+000
2 0.4905161723882E-002 0.6558972435459E-002
3 0.12394701015E-002 0.1653810711577E-002
4 0.3106998250E-003 0.3521826598E-003
5 0.777271095E-004 0.102923215E-003
6 0.1944888E-004 0.24811272E-004
7 0.4862425E-005 0.6161044E-005
8 0.12156E-005 0.151709E-005
9 0.3039E-006 0.3393E-006

10 0.759E-007 0.83112E-007
11 0.19E-007 0.18E-007
12 0.4E-008 0.5E-008
13 @.0 @.0

TABLE VI
APPROXIMATE AND EXACT SOLUTIONS AT SOME GRID POINTS FOR

EXAMPLE 3.

i y(xi) y
(13)
i

1 -0.999999992548812E+000 -0.99999999254E+000
1000 -0.991914407057705E+000 -0.99191440E+000
2000 -0.964872503584451E+000 -0.96487250E+000
3000 -0.914088256566006E+000 -0.91408825E+000
4000 -0.833852399520346E+000 -0.83385239E+000
5000 -0.717373376111629E+000 -0.71737337E+000
6000 -0.556592544770840E+000 -0.55659254E+000
7000 -0.341969641927280E+000 -0.34196964E+000
8000 -0.62233896040408E-001 -0.62233896E-001
8191 -0.331781009179E-003 -0.33178100E-003

the approximate optimal stepsize as

h14 =
2 − 1
214

= 6.1035e − 5.

The approximate solution computed with h14 together with
the exact solution in some grid points are given in TABLE V.
As we observe, all of the digits of y

(14)
i , up to one, coincide

with that of the y(xi). We also see that the CADNA library
has furnished the computed solutions with their exact digits.

V. CONCLUSION

In this paper, a theorem has been stated to provide a
stopping criterion to control the stepsize in the finite differ-
ence method for solving the linear two-point boundary value
problems. We observed that the use of the CESTAC method
and the CADNA library allows us to estimate the optimal
stepsize. Numerical examples show that the proposed method
is effective.
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