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Abstract—This paper tries to represent a new method for 
computing the reliability of a system which is arranged in series or 
parallel model. In this method we estimate life distribution function 
of whole structure using the asymptotic Extreme Value (EV) 
distribution of Type I, or Gumbel theory. We use EV distribution in 
minimal mode, for estimate the life distribution function of series 
structure and maximal mode for parallel system. All parameters also 
are estimated by Moments method. Reliability function and failure 
(hazard) rate and p-th percentile point of each function are 
determined. Other important indexes such as Mean Time to Failure 
(MTTF), Mean Time to repair (MTTR), for non-repairable and 
renewal systems in both of series and parallel structure will be 
computed. 
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I. INTRODUCTION 
HERE are some different methods to computing the 
reliability of a composite structure. We can use two 

general ways for these computations: 
1) By using the reliability of components. 
2) By using the life distribution function of system. 
In the large systems which have a lot of different 

components with unknown reliability (complex structures), it 
will be very important to find the life distribution function of 
system. In this paper we’re going to represent a new method 
for estimate the life distribution of these systems, when their 
components become a lot and different. 

We try to use desire properties of Extreme Value (EV) 
theorem which has been offered by Gumbel in 1954 [1]. He 
demonstrated asymptotic probability distributions for minimal 
and maximal value in a random sample, under the special 
conditions. 

Many fields of modern science and engineering have to 
deal with events which are rare but have significant 
consequences. EV theory provides a firm theoretical 
foundation on which we can build statistical models 
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describing extreme events. 
In many fields of modern science, engineering and 

insurance, Extreme Value theory is well established (see e.g. 
Embrechts et al [2], Reiss and Thomas [3]). 

Recently, more and more research has been undertaken to 
analyze the extreme variations that financial markets are 
subject to, mostly because of currency crises, stock market 
crashes and large credit defaults. The tail behaviour of 
financial series has, among others, been discussed in Koedijk 
et al. [4], Dacorogna et al. [5], Loretan and Phillips [6], Neftci 
[7] and McNeil and Frey [8]. An interesting discussion about 
the potential of extreme value theory in risk management is 
given in Diebold et al [9]. 

The EV theory which is related to statistical behavior of 
maximum and minimum value in a random sample was 
suggested by Fisher and Tippett [10] initially, and extended by 
Gumbel [11] through determining the approximate 
distribution function of )1(X  and )(nX as the extreme 
values (minimum and maximum) of a statistical random 
sample, nXXX  ,, , 21 K . 

The intricate models like EV type II and type III, were 
represented and adapted by Ang and Tang as scientific and 
applied extension of this theory [12]. Kotz and Nagarajah 
listed over 50 application ranging from accelerated life testing 
through to earthquakes, foods horse racing, rainfall, queues in 
systems, sea currents, wind speeds, and track race records[13].    
Developing the EV theory in reliability applications, studied 
through kinds of  mathematical modeling by Alkallut and Lye 
et al [14, 15] and various dynamic evaluating of systems 
reliability [16, 17, 18, 19, 20, 21].  

We find these PDFs to computing the reliability of series 
and parallel based systems by estimating the life distribution 
of each system. 

According the obtained functions all important indexes of 
reliability and dependability of a system with any structure 
will be determined for renewal and nonrenewable mode. The 
Mean Time to Failure (MTTF), Mean Time to Replacement 
(MTTR), Hazard Function (h(t)), are some of these 
parameters. We acquire another useful relation for reliability 
calculations and analysis system. 

II. EXTREME VALUE’S DISTRIBUTIONS OF A SAMPLE 
In this section two types of extreme values and their PDFs 

with probability properties are introduced. 
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A. Maximal value distribution function in a random sample 
Suppose the random sample x1, x2, ..., xn and define X(1) 

and X(n) as minimum and maximum of xi in sample and call 
them the Extreme Values: 
 

( ) { }
( ) { }n

n

xxxMaxnX
xxxMinX

,...,,
,...,1

21

21

=
=

 
(1)

In the specific conditions these will have the special 
behavior independent the initial distribution. 

At the 1954, Gumbel could present the X(n), when the n 
closest infinitive, has a fix and independent probability model 
with CDF as (2), whereγ andδ are Location and Scale 
parameters. 
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This function is called Gumbel or EV distribution or EV 

Type I [22]. After him, Benjamin in 1970 and Ang in 1984 
developed his concept on EV type II and III [1]. So in this 
paper, we just discus about Type I. The PDF of Gumbel 
distribution that is denoted by )(nx

EVf can be found after 
differentiating as (3). 
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If 1 , 0 == δγ , we have the Standard Gumbel distribution 

with the formula same as (4) and a curve same as Fig. 1 

 
 

Fig. 1 A general curve of EV distribution for maximal 
 

 
Other statistical attributes of this function, are as below. where 
μ  is expected value, σ  is standard deviation, Me  is 

median, pt  is p-th percentile point, KS.  is skewness, and  K 
is kurtosis of this distribution function [23]. 

δγμ  5772.0+=  (5)

δδσ π  283.1
6

==
 (6)

( )( ) δγδγ  3665.02lnln −=−=Me  (7)

( )( )ppt 1lnlnδγ −=  (8)

4.5. =KS  (9)

14.1=K  (10)

 
 

B. Minimal value distribution function in a random sample 
Second form of EV distribution relates to minimal value in 

a random sample. In the other hand, can demonstrate when the 
sample size, n, increase enough, the X(1), has an independent 
probability model with the following asymptotic CDF as (11). 
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By differentiating of formula (11), the PDF of X(1) which is 

denoted by )1(x
EVf  define as (12). 
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Fig. 2 A general curve of EV distribution for minimal 
 
 
If 1  ,  0 == δγ , we have the Standard form of EV 

distribution (Min), with the formula same as (13) and the 
curve same as Fig. 2. 
 

( ) xexeexf −=  (13)
 
Other statistical attributes of this function, are: 

( ) xexeexf
−−−=  (4)
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δγμ  5772.0−=  (14)

δδσ π  283.1
6

==  (15)

( )( ) δγδγ  3665.02lnln +=+=Me  (16)

( )( )ppt −+= 1
1lnlnδγ  (17)

4.5. −=KS  (18)

14.1=K  (19)

 
According the relations of the above, Gumbl distribution 

(EV distribution) curves is skewed to right in maximal mode, 
and skewed to left in minimal mode. Both of these forms are 
more kurtosis than Normal distribution. 

 

III. RELIABILITY OF COMPOSITE STRUCTURES  
Two single combinations of systems are series and parallel. 

Fig. 3 and Fig. 4 show them. Suppose iC  is the symbol of i-th 
Component. As we know the reliability of a series structure is: 
 

( ) ∏
=

=
n

i
isys RR

1

1  (20)

 
where iR  is reliability of i-th component. This relation for a 
parallel system is same to (21). 
 

 
 

Fig. 3 A simple view of series structure 
 

 

 
When we don’t have any information on the reliability of 

subsystems, or components, iR , we can not use formulas (20) 
and (21). So we must determine the life distribution function 
of whole system [24]. 

Suppose C(i) is the i-th part of system that fails. Thus in 
series system, duration life of whole system equals to the first 
part which fails, as C(1). So life duration of a parallel system 
equals to last failed part, C(n). Thus by given PDF of C(1) and 
C(n) we can determine the life distribution of series and 
parallel system. We want to apply the results of section II.A 
and II.B for estimation the PDF of C(1) and C(n). 

Consider the series structure in Fig. 3. Suppose the quantity 
of subsystems or components, n, is large. The life duration of 

this system is equal to life duration of C(1) and  meet the PDF 
same EV dis. in minimum mode, )1(x

EVf . At the same way, the 
structure in Fig. 4, has life duration same the C(n) and meet 
the PDF of EV dis. in maximum mode, )(nx

EVf . 
According these concepts we’re going to determine the 

reliability indexes of both of the series and parallel systems. 
 

IV. COMPUTING THE RELIABILITY OF COMPLEX STRUCTURE 
USING THE EV DISTRIBUTION 

A. Series structure 
Consider the given system in Fig. 4, again. According to 

results of previous section, the reliability of this system can be 
computed by using (11), )1(x

EVf . 
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Fig. 4 A simple view of parallel structure 
 
 

For determining the failure rate or hazard rate, we should 
try for h(t): 
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In the Preventive Maintenance (PM) for non-repairable 
parts which should be replaced with any failure, we need to 
predict the time of the first failure. So determining the Mean 
Time to Failure (MTTF) will be necessary. By using this 
Index determine the scheduled inspections for on time 
replacements that can always keep the system in an available 
condition. 

However this index is very useful for non-repairable 
systems and we try to compute for described systems in the 
condition of this paper given in Fig. 4. Equation (25) presents 
the result of the computations. 
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For renewal systems we need to predict during times 

between failures for periodic service before breaking down. 
So it was necessary to determine the Mean Time Between 
Failure (MTBF) which can be computed by statistics data of 
performance during time in the normal or intensive condition 
[10], [24]. 

 

B. Parallel systems 
Consider given structure in Fig. 4 and suppose the same 

condition in section  IV.A. According the results we discussed 
in section II.A and III, life distribution of this system is equal 
to C(n) PDF. So we can determine reliability as bellow: 
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Other indexes of reliability can be computed same the series 

system [11]. For example the Failure rate or hazard function 
is: 
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V. ESTIMATING PARAMETERS 
In this step we must present the statistical estimators for 

each parameter in determined formulas. The main parameters 
of Gumbel distribution are δ (scale parameter), and γ  
(location parameter). 

Using the Moments method for estimate the scale parameter 
of the above we obtain: 
 

S
π

δ 6
=

)
 (28)

 
where S is the standard deviation of sample. 

The below formulas will be obtained for location 
parameters: 

δγ
))  5772.0  )1( += xC  (29)

δγ
))  5772.0  )( −= xnC  (30)

 
where x  is mean of the random sample and )(iCγ)  is 
momentum estimator of location parameter for minimum 
(C(1)) or maximum (C(n)) mode of EV distribution. Formula 
(29) is for minimal mode and (30) for maximal mode. 
 

VI. CONCLUSION  
During this paper we tried to present a new method for 

determining the reliability of composite systems with 
components with unknown reliabilities. In this letter some 
useful relations and formulas were exhibited for reliability 
indexes computations. This new method is recommended 
strongly for large structures with various components. 

Although in this paper we discussed about single series or 
parallel systems, but it can be developed for complex systems. 
However we offer to apply this presented theorem for large 
complex and applicable systems. 
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