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Abstract—Discrete Cosine Transform (DCT) based transform cod-
ing is very popular in image, video and speech compression due to
its good energy compaction and decorrelating properties. However, at
low bit rates, the reconstructed images generally suffer from visually
annoying blocking artifacts as a result of coarse quantization. Lapped
transform was proposed as an alternative to the DCT with reduced
blocking artifacts and increased coding gain. Lapped transforms are
popular for their good performance, robustness against oversmoothing
and availability of fast implementation algorithms. However, there is
no proper study reported in the literature regarding the statistical dis-
tributions of block Lapped Orthogonal Transform (LOT) and Lapped
Biorthogonal Transform (LBT) coefficients. This study performs two
goodness-of-fit tests, the Kolmogorov-Smirnov (KS) test and the χ2-
test, to determine the distribution that best fits the LOT and LBT
coefficients. The experimental results show that the distribution of
a majority of the significant AC coefficients can be modeled by the
Generalized Gaussian distribution. The knowledge of the statistical
distribution of transform coefficients greatly helps in the design of
optimal quantizers that may lead to minimum distortion and hence
achieve optimal coding efficiency.

Keywords—Lapped orthogonal transform, Lapped biorthogonal
transform, Image compression, KS test, χ2-test

I. INTRODUCTION

The lapped transforms (LT) [9], [10], [11], [12] have been

proposed as an alternative to the discrete cosine transform

(DCT) with reduced blocking artifacts and better energy

compaction. The two important properties of LTs which lead

to significant reduction of blocking artifacts are

• The basis functions are longer than the block size

• The basis functions decay to zero smoothly at the bound-

aries

The basis function of LOT decay nearly to zero at the

boundaries which leads to considerable reduction in blocking

artifacts, though not totaly eliminated [11], [12]. Since the

LBT synthesis basis functions decay to zero at the boundaries,

the blocking artifacts are almost eliminated in LBT. The LOT

and LBT have almost the same computational complexity and

LBT has higher coding gain compared to LOT and DCT

[11], [12]. Higher coding gain provides lower reconstruction

error energies. Successful application of an transform in image

compression requires knowledge of the statistical distribution

of the transform coefficients. However, till now, no definitive

study has been reported on the distribution of lapped transform

coefficients of images.
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In contrast, there is a large body of studies in the literature

dealing with the distributions of 2D DCT coefficients of nat-

ural images [15], [14], [4], [3]. Rieninger et al. [15] study the

statistical distribution of the 2D DCT coefficients considering

Gaussian, Laplacian, Gamma and Rayleigh distributions as

probable models. Based on the Kolomogrov-Smirnov (KS)

goodness of fit test they found that the statistics of the DC

coefficients are best approximated by a Gaussian distribution

while the non DC coefficients are best approximated by the

Laplacian distribution. Through some mathematical analysis,

Lam and Goodman [13] proved that 2D DCT coefficients are

better modeled by the Laplacian distribution. Eggerton et al.

[4] concluded that no particular density function can be used

for each of the coefficients but Laplacian fits the majority of

the coefficients. They also found that when all the coefficients

are lumped into one density function, the Cauchy distribution

provides the best fit. Muller [14], found that the Generalized

Gaussian distribution best approximates the statistics of the

2D DCT coefficients. In [6], Joshi and Fischer compared the

performance of Generalized Gaussian and Laplacian models

when applied to image coding; the authors concluded that

the more complex Generalized Gaussian model does not give

significant advantage over the Laplacian model. In [3], Chang

et al. concluded that the Generalized Gamma distribution

best models the statistics of the 2D DCT coefficients. Smoot

and Reeve [18] study the statistics of the DCT coefficients

of the differential signal obtained after motion estimation.

They observe that the statistics are best approximated by the

Laplacian distribution. Bellifemine et al. [1] demonstrate that

the DCT coefficients of the differential signal obtained after

motion estimation are best approximated by the Laplacian

distribution. Recently, Malavika et al. [2] studied the statistics

of 3D DCT coefficients for video, considering Gaussian,

Laplacian, Gamma and Rayleigh distributions as probable

models and concluded that no single distribution can be used

to model the distributions of all the coefficients for different

video sequences; however Gamma distribution fits the majority

of the significant AC coefficients while the DC coefficients can

be well approximated by Gaussian distribution.

This paper studies the statistical distributions that best

approximates the statistics of 2D LOT and LBT coefficients.

We use KS and χ2 goodness of fit test considering Gaussian,

Laplacian, Gamma and Generalized Gaussian distributions as

probable models as these distributions are commonly used for

statistical modeling of DCT coefficients [15], [14], [4], [2].

The paper is organized as follows. Section II gives an brief

overview of the Lapped transform. KS and χ2 goodness of

fit test are described in Section III. Section IV discuss the
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probability distributions used in the study. Experimental results

are presented in Section V. Finally, Section VI concludes the

paper.

II. LAPPED TRANSFORMS

The lapped orthogonal transform (LOT) [9][10] has been

proposed to overcome the blocking artifacts of the DCT and

has increased coding gain. The lapped transforms has extended

basis functions which overlaps across the block boundaries.

In lapped transforms, the input signal length is two times its

output signal length.

L = 2M (1)

where M is the output signal length and L is the input signal

length. The initial LOT matrix P which may not be necessarily

optimal is given by

P =
1

2

(

De −Do De −Do

J(De −Do) −J(De −Do)

)

(2)

where De and Do are the M x M/2 matrices containing the

even and odd DCT functions respectively and J is the counter

identity matrix. The optimal LOT matrix [9] is given by

P0 = PZ (3)

for an optimal Z. The covariance matrix of LOT coefficients

is given by

R0 = Z ′P ′RxxPZ (4)

where Rxx is the given signal covariance matrix [9].

Rxx =

















1 ρ ρ2 .... ρL

ρ 1 ρ .... ρL−1

. . .

. . .
ρL−1 .... ρ 1 ρ
ρL ... ρ2 ρ 1

















(5)

We assume the signal model to be first order markov model

with ρ = 0.95. From equation no. (4), when columns of Z

are the eigen vectors of P ′RxxP that is R0 is diagonal, the

transform coding gain [9] is maximized. The LOT matrix P0

is optimal for such Z.

Although LOT can significantly reduce the blocking arti-

facts of images, some blocking artifacts are still visible as

the LOT basis functions do not decay exactly to zero at

the boundaries. In contrast the LBT [11], [12] bases decay

to zero at the boundaries resulting in LBT exhibiting fewer

blocking artifacts as compared to LOT. The LBT can be

computed from the original LOT computation flowgraph with

few modifications [11], [12]. The lapped transforms can be

viewed as critically sampled multirate filter banks.

III. GOODNESS-OF-FIT TESTS

A. Kolomogrov - Smirnov (KS) Goodness of Fit Tests

Kolomogrov-Smirnov test [16] is one of the popular good-

ness of fit test used in [15], [4], [18], [2] for determination of

distributions of DCT coefficients of an image or video. The KS

goodness of fit test statistic is a distance measure between the

empirical cumulative distribution function (CDF) for a given

data set and the given model cumulative distribution function.

For a given sample data set

X = {x1, x2, ............, xT } (6)

having the order statistics x(s), s = 1, 2..............T , the em-

pirical cumulative distribution function is given as

F̃X(x) =







0, x < x(1)
1, x ≥ x(T )
s
T
, x(s) ≤ x < x(s+1), s = 1, 2........., T − 1

(7)

The KS goodness of fit test statistic is given as

KSstat = max
j=1,2,..........,T

∣

∣

∣
FX(x(j))− F̃X(x(j))

∣

∣

∣
(8)

When testing several distributions against the sample data, the

one that gives the smallest KS statistic KSstat is considered

to be the best fit for the data.

B. χ2 Goodness of Fit Tests

χ2 test [16] is also one of the widely used goodness of

fit test [1], [14], [3], [2] for determination of distributions of

DCT coefficients of an image or video. The χ2 goodness of

fit test compares the model probability density functions with

the empirical data and finds out the distortion by the following

equation

χ2 =

kd
∑

i=1

(Oi − Ei)
2

Ei

(9)

where the range of data is partitioned into kd disjoint and

exhaustive bins Bi, i=1,2,3,......kd. Ei = ncpi is the expected

frequency in bin Bi where pi = P (x∈Bi) and Oi is the

observed frequency in bin Bi. nc is the total number of data

samples. The model probability density function which gives

the minimum χ2 value can be considered as the best fit.

IV. PROBABILITY DISTRIBUTIONS

In the KS and the χ2 goodness of fit tests, Gaussian,

Laplacian, Gamma and Generalized Gaussian distributions

were considered. The parameters of all the distributions were

found using the maximum likelihood (ML) method [7].

A. Gaussian probability density function

The Gaussian probability density function is given by

fX(x) =
1

√
2πσ

exp

(

−
(x− µ)2

2σ2

)

(10)

where µ is the mean and σ2 is the variance. The ML estimates

of µ and σ2 are given by

µ̂ =
1

n

n
∑

i=1

xi (11)

σ̂2 =
1

n

n
∑

i=1

(xi − µ̂)
2

(12)
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B. Laplacian probability density function

The Laplacian probability density function is given by

fX(x) =
1

2b
exp

(

− |x− µ|

b

)

(13)

where µ is the mean and b is the scale parameter. The variance

is given by 2b2. The ML estimate of the parameter b is given

by

̂b =
1

N

N
∑

i=1

|xi − µ̂| (14)

where µ is estimated using (11).

C. Gamma probability density function

The Gamma probability density function [5] is given by

fX(x) =
4
√
3

√

8πσ |x− µ|
exp

(

−
√
3 |x− µ|

2σ

)

(15)

The parameters µ and σ are estimated using (11) and (12)

respectively.

D. Generalized Gaussian probability density function

The Generalized Gaussian probability density function [8]

is given by

fX(x) =
β

2αΓ
(

1
β

) exp−

(

|x− µ|

α

)β

(16)

where Γ (.) is the Gamma function given by

Γ (z) =

∞
∫

0

e−ttz−1dt, z > 0 (17)

and α, β respectively are known as the scale parameter and

the shape parameter. For the special cases β = 2 or β = 1, the

generalized Gaussian pdf becomes a Gaussian or a Laplacian

pdf respectively. The ML estimation of the parameters α and

β can be obtained as follows: The shape parameter ̂β is the

solution of the equation

1+
ψ
(

1
β

)

β
−

N
∑

i=1

|xi|
β
log |xi|

∑

|xi|
β

+

log

(

β
N

N
∑

i=1

|xi|
β

)

β
= 0 (18)

where ψ (.) is the digamma function given by

ψ (z) =
Γ′ (z)

Γ (z)
(19)

The ML estimate of α (for known ML estimate ̂β) is given

by

α̂ =

(

̂β

N

N
∑

i=1

|xi|
̂β

)

1

β̂

(20)

where N is number of observations. The ̂β is determined using

the Newton Raphson iterative procedure [7] with the initial

guess from the moment based method [17]. Experimental

results indicates that only 3-4 iteration steps are required to

compute the solutions within an accuracy of 10−6.

In Table I, the estimated shape parameter ̂β of M=8 LOT

coefficients for different test images are shown. Table II,

shows ̂β values of M=8 LBT coefficients for the same images.

In Table I and II, we can see that ML estimates of β are

considerably different from 1 in most of the cases. For the

Mandrill and the Bridge images, the statistics for a few

coefficients is likely to be Laplacian (β=1). Further it may

be observed that within a given image the estimated shape

parameter values of different coefficients do not vary much.

TABLE I
ESTIMATED SHAPE PARAMETER ̂β OF LOT (M=8) COEFFICIENTS FOR

DIFFERENT TEST IMAGES

Lena Barbara Mandrill Boat Bridge Couple

C10 0.4583 0.5160 0.8329 0.5192 0.8495 0.4170

C11 0.4148 0.4972 1.0039 0.5129 0.9812 0.4711

C01 0.4574 0.5032 1.0553 0.4585 0.8654 0.5157

C20 0.5678 0.5758 0.6934 0.5377 0.8856 0.5912

C02 0.4927 0.5725 0.9316 0.4632 0.9025 0.4911

C12 0.4363 0.4905 0.9139 0.5081 0.9345 0.4889

C21 0.4680 0.5637 0.7568 0.5895 1.0562 0.5235

C03 0.5746 0.5888 0.8918 0.4835 0.8572 0.4763

C30 0.6747 0.7108 0.6918 0.6030 0.9673 0.5378

TABLE II
ESTIMATED SHAPE PARAMETER ̂β OF LBT (M=8) COEFFICIENTS FOR

DIFFERENT IMAGES

Lena Barbara Mandrill Boat Bridge Couple

C10 0.4682 0.5466 0.8695 0.5165 0.8172 0.3889

C11 0.4232 0.5341 1.0496 0.5014 1.0032 0.4596

C01 0.4732 0.5450 1.0381 0.4734 0.8739 0.5374

C20 0.6329 0.6040 0.6603 0.5585 0.8559 0.5892

C02 0.5189 0.6038 0.9353 0.4750 0.9091 0.5043

C12 0.4296 0.4983 0.9286 0.5007 0.9455 0.4918

C21 0.4794 0.5922 0.7590 0.5791 1.0770 0.5229

C03 0.5882 0.6962 0.9673 0.5130 0.8847 0.5163

C30 0.5784 0.6874 0.7127 0.6213 0.9974 0.5287

V. EXPERIMENTAL RESULTS

We use Lena, Barbara, Mandrill, Bridge, Aerial and Couple

test images for experiments because these images contains

variety of image details and textural informations. The KS

and Chi-square goodness of fit performance was evaluated

using 2D block LOT and 2D block LBT coefficients with M=8

against the model distributions. The model distribution which

provides the minimum KS statistic or Chi-square statistic is

considered to be the best fit under the KS or χ2 criterion. The

nine AC coefficients C10, C11, C01, C20, C02, C12, C21, C03

and C30 used in the experiments were chosen because they

usually have the most effect on the image quality.

If N1xN2 is the size of the image after computation of

2D LOT or LBT, then each frequency coefficient will have

(N1/M )x(N2/M ) values for the image to be used in KS and

χ2 test. The KS statistic results for modeling of block LOT

and LBT coefficients are shown in Fig.1 and Fig.2 in form

of graphs where the X-axis is composed of six discrete points

representing the six test images with bargraphs showing the KS

statistic for the Gaussian, Laplacian, Gamma and Generalized
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(a) For coefficient C10 (b) For coefficient C11

(c) For coefficient C01 (d) For coefficient C20

(e) For coefficient C02 (f) For coefficient C12

(g) For coefficient C21 (h) For coefficient C03

(i) For coefficient C30

Fig. 1. KS test statistic for LOT (M=8) coefficients C10, C11, C01, C20,
C02, C12, C21, C03 and C30 (1=Lena, 2=Barbara, 3=Mandrill, 4=Bridge,
5=Aerial, 6=Couple)

(a) For coefficient C10 (b) For coefficient C11

(c) For coefficient C01 (d) For coefficient C20

(e) For coefficient C02 (f) For coefficient C12

(g) For coefficient C21 (h) For coefficient C03

(i) For coefficient C30

Fig. 2. KS test statistic for LBT (M=8) coefficients C10, C11, C01, C20,
C02, C12, C21, C03 and C30 (1=Lena, 2=Barbara, 3=Mandrill, 4=Bridge,
5=Aerial, 6=Couple)
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TABLE III
χ2 STATISTICS FOR A FEW LOT (M=8) COEFFICIENTS OF LENA IMAGE.

Gaussian Laplacian Gamma Gen. Gaussian

C10 1.77x107 5876 54 15

C11 446713 2307 66 15

C01 1856825 1578 25 22

C20 3.53x1013 107612 117 44

C02 4.60x107 4518 49 53

C12 4.42x107 8664 11 12

C21 1.88x107 15356 66 62

C03 2.63x106 1008 29 8

C30 1.59x1012 5617 36 44

TABLE IV
χ2 STATISTICS FOR A FEW LOT (M=8) COEFFICIENTS OF BARBARA

IMAGE.

Gaussian Laplacian Gamma Gen. Gaussian

C10 2.62x105 1366 25 7

C11 25526 1164 26 4

C01 1645 365 10 9

C20 2.98x107 5208 34 43

C02 7798 343 10498 20

C12 2.72x105 2740 65 14

C21 4.78x106 1226 23 4

C03 6.89x109 2742 20 7

C30 1194 107 109 5

Gaussian distributions. The results for χ2 test are provided

in Tables III-XIV. We consider the Gaussian and Gamma

distributions with mean and variance equal to sample mean

and sample variance. The Laplacian and Generalized Gaussian

model parameters were calculated using maximum likelihood

method.

A. KS test results

• For LOT (M=8): In Fig.1, coefficients C10, C01, C02,

C12 and C21 show the smallest KS statistic for the Gener-

alized Gaussian distribution in all the tested images. Coef-

ficient C11 also shows the smallest Generalized Gaussian

KS statistic for most of the test images except for

Mandrill and Bridge where Laplacian KS statistic is the

smallest. For coefficient C20, Laplacian KS statistic is the

smallest only for Aerial and Couple images and for the

rest Generalized Gaussian KS statistic is the smallest. For

C03, except for Aerial image where Laplacian KS statistic

is the smallest, for all others Generalized Gaussian KS

TABLE V
χ2 STATISTICS FOR A FEW LOT (M=8) COEFFICIENTS OF MANDRILL

IMAGE.

Gaussian Laplacian Gamma Gen. Gaussian

C10 15429 186 359 79

C11 1470 6 529 6

C01 2907 9 395 16

C20 9.93x105 1205 106 121

C02 53312 20 306 10

C12 13243 21 231 6

C21 2.90x105 55 152 8

C03 1.85x107 64 100 20

C30 87999 527 38 90

TABLE VI
χ2 STATISTICS FOR A FEW LOT (M=8) COEFFICIENTS OF BRIDGE IMAGE.

Gaussian Laplacian Gamma Gen. Gaussian

C10 23879 140 237 57

C11 10896 6 393 5

C01 2.19x105 54 167 12

C20 51332 88 241 36

C02 1698 25 351 20

C12 28458 17 325 12

C21 2359 4 433 3

C03 69320 29 201 6

C30 1124 8 131 7

TABLE VII
χ2 STATISTICS FOR A FEW LOT (M=8) COEFFICIENTS OF AERIAL IMAGE.

Gaussian Laplacian Gamma Gen. Gaussian

C10 86 14 217 8

C11 24 37 264 9

C01 91 13 183 11

C20 3.73x105 42 142 34

C02 274 11 165 12

C12 68 13 186 5

C21 41 18 269 3

C03 5838 20 124 18

C30 2.21x106 194 201 130

statistic is the smallest. However for the coefficient C30,

except for Aerial and Couple, Generalized Gaussian KS

statistic is the smallest.

• For LBT (M=8): Fig.2 shows that Coefficients C10,

C01, C12 and C21 have the smallest KS statistic for

Generalized Gaussian distribution for all the test images.

Coefficient C11 for the Mandrill image shows smallest

KS statistic in the case of the Laplacian distribution and

coefficient C20 for the Aerial and Couple images shows

the minimum KS statistic for the Laplacian distribution

and for the rest of the images the KS statistic is smallest

for the Generalized Gaussian distribution. Coefficients

C02 and C03 exhibit the smallest KS statistic for Lapla-

cian distribution in case of Mandrill image and for the

rest, KS statistic for Generalized Gaussian is the smallest.

Coefficient C30 shows the smallest KS statistic in case

of Laplacian for Bridge and Couple images and for all

other images KS statistic for Generalized Gaussian is the

minimum.

TABLE VIII
χ2 STATISTICS FOR A FEW LOT (M=8) COEFFICIENTS OF COUPLE IMAGE.

Gaussian Laplacian Gamma Gen. Gaussian

C10 2.08x107 4.54x105 579 375

C11 3.42x1013 4.16x105 167 30

C01 1.29x107 603 6 6

C20 2.09x1011 9.57x105 680 1065

C02 7.46x106 409 2 24

C12 9.31x1014 3.22x105 131 20

C21 4750 1393 2 16

C03 1.40x109 543 10 15

C30 7.07x107 6667 203 221
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TABLE IX
χ2 STATISTICS FOR A FEW LBT (M=8) COEFFICIENTS OF LENA IMAGE.

Gaussian Laplacian Gamma Gen. Gaussian

C10 1.65x109 9903 117 47

C11 1.07x107 3252 78 57

C01 5.34x107 1154 82 70

C20 1.03x1013 4.33x104 87 61

C02 9.97x109 1.02x104 254 158

C12 3.43x109 1.12x104 92 42

C21 5.27x109 2.39x104 233 100

C03 1.08x1011 368 28 43

C30 1.67x106 845 48 58

TABLE X
χ2 STATISTICS FOR A FEW LBT (M=8) COEFFICIENTS OF BARBARA

IMAGE.

Gaussian Laplacian Gamma Gen. Gaussian

C10 8.29x109 2133 56 66

C11 1.30x106 726 26 24

C01 1.21x104 464 19 37

C20 5.76x1013 1.87x105 112 129

C02 1.19x109 861 276 121

C12 2.31x1010 7571 101 26

C21 2.06x1012 3938 131 31

C03 2.41x1010 382 86 16

C30 1.15x104 174 55 25

B. χ2 test results

• For LOT(M=8): Coefficients C10, C11, C01, C20, C21

and C03 for Lena image shows smallest χ2 statistic for the

Generalized Gaussian distribution among all the model

distributions and coefficients C02, C12 and C30 shows

smallest χ2 statistic for the Gamma distribution. For the

Barbara image 8 of 9 distributions shows smallest χ2

statistic for the Generalized Gaussian distribution and

only coefficient C20 shows smallest χ2 statistic for the

Gamma distribution. For Mandrill image also 7 out of 9

coefficients show smallest χ2 statistic for the Generalized

Gaussian distribution and only coefficients C20 and C30

shows smallest χ2 statistic for Gamma case. For Bridge

image all the 9 tested coefficients show smallest χ2

statistic for the Generalized Gaussian distribution. Aerial

image shows smallest χ2 statistic in case of the General-

ized Gaussian distribution for 8 of 9 tested coefficients.

Only coefficient C02 shows smallest χ2 statistic for the

Laplacian distribution among all the model distributions.

TABLE XI
χ2 STATISTICS FOR A FEW LBT (M=8) COEFFICIENTS OF MANDRILL

IMAGE.

Gaussian Laplacian Gamma Gen. Gaussian

C10 1.24x104 189 266 104

C11 623 9 550 7

C01 7919 13 404 17

C20 1.27x107 3014 228 163

C02 40131 29 275 14

C12 7012 17 239 5

C21 9.27x104 57 176 10

C03 6.91x106 37 203 27

C30 5.27x104 456 52 78

TABLE XII
χ2 STATISTICS FOR A FEW LBT (M=8) COEFFICIENTS OF BRIDGE IMAGE.

Gaussian Laplacian Gamma Gen. Gaussian

C10 1.93x104 184 244 53

C11 2.10x104 9 353 9

C01 3.15x105 63 177 14

C20 1.60x105 164 218 63

C02 2287 25 372 20

C12 9310 24 294 19

C21 3392 6 474 4

C03 6099 16 270 3

C30 6312 24 507 24

TABLE XIII
χ2 STATISTICS FOR A FEW LBT (M=8) COEFFICIENTS OF AERIAL IMAGE.

Gaussian Laplacian Gamma Gen. Gaussian

C10 69 22 249 15

C11 20 48 306 12

C01 57 18 259 8

C20 1.84x106 88 131 52

C02 586 19 180 20

C12 100 10 201 2

C21 42 20 228 8

C03 3228 12 91 13

C30 8.33x104 62 248 77

However for the Couple image, 5 of 9 coefficients show

smallest χ2 statistic for the Gamma distribution and

coefficient C01 shows smallest and same χ2 statistic for

the Generalized Gaussian and the Gamma distributions.

Coefficients C10, C11 and C12 show smallest χ2 statistic

for the Generalized Gaussian distribution in case of

Couple image.

• For LBT (M=8): For Lena image, 7 of 9 coefficients

show smallest χ2 statistic for the Generalized Gaussian

distribution among all the model distributions. Only

coefficients C03 and C30 show smallest χ2 statistic in

case of the Gamma distribution among all the model

distributions. For Barbara image, 6 of 9 tested coefficients

show smallest χ2 statistic for the Generalized Gaussian

distribution among all the model distributions. Only co-

efficients C10, C01 and C20 show smallest χ2 statistic

for the Gamma distributions among all the model distri-

butions. Coefficients C10, C11, C20, C02, C12, C21 and

C03 for Mandrill image show smallest χ2 statistic for the

Generalized Gaussian distribution. Only coefficient C01

shows the smallest χ2 statistic for the Laplacian case and

the coefficient C30 shows the smallest χ2 statistic for the

Gamma distribution among all the model distributions.

For Bridge image, 7 of 9 coefficients show smallest χ2

statistic for the Generalized Gaussian case among all the

model distributions. However coefficients C11 and C30

shows same χ2 statistic for the Laplacian and Generalized

Gaussian distributions which is minimum among all the

model distributions. For Aerial image, 6 of 9 coefficients

shows smallest χ2 statistic for the Generalized Gaussian

distribution among all the model distributions. Only co-

efficients C02, C03 and C30 show smallest χ2 statistic for

the Laplacian case. For Couple image, 4 of 9 coefficients

show smallest χ2 statistic for the Generalized Gaussian

case among all the model distributions and coefficient
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TABLE XIV
χ2 STATISTICS FOR A FEW LBT (M=8) COEFFICIENTS OF COUPLE IMAGE.

Gaussian Laplacian Gamma Gen. Gaussian

C10 1.85x106 1.36x105 484 205

C11 3.72x1013 3.69x105 152 20

C01 1.34x106 497 4 5

C20 3.90x109 1.26x105 782 1261

C02 2.52x105 306 7 36

C12 3.64x1012 5.39x104 103 15

C21 1.19x1013 5.48x105 56 88

C03 1.10x104 376 19 19

C30 3.66x108 1.75x104 1159 1025

C03 shows the same χ2 statistic for the Gamma and

Generalized Gaussian case which is the smallest among

all the model distributions. However coefficients C01,

C20, C02 and C21 shows smallest χ2 statistic for the

Gamma distribution for Couple image.

The experimental results show that no single distribution

provides the smallest KS and χ2 statistic for all the tested AC

coefficients of block LOT and LBT of different test images.

The Generalized Gaussian distribution however provides the

smallest KS and χ2 statistic for the majority of the significant

AC coefficients of the tested images. Fig.3 and Fig.4 shows

the empirical pdf of the block LOT and LBT coefficients along

with the fitted Gaussian, Laplacian, Gamma and Generalized

Gaussian pdfs. From Fig.3 and Fig.4 as well as from the

values of the KS and Chi-square statistics, it is clear that the

Generalized Gaussian distribution provides a better fit to the

empirical distribution as compared to the Gaussian, Laplacian

and Gamma distribution.

VI. CONCLUSION

In this paper, we perform the KS and χ2 goodness of

fit tests to determine a suitable statistical distribution that

best approximates the block LOT and LBT coefficients of

natural images. The experimental results indicate that no single

distribution can be used to model the distributions of all AC

coefficients for all natural images. However the distribution of

a majority of the significant AC coefficients can be modeled

by the Generalized Gaussian distribution. The knowledge of

the statistical distribution of transform coefficients is very

important in the design of optimal quantizers that may lead

to minimum distortion and hence achieve optimal coding

efficiency.
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