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Statistical Description of Wave Interactions in 1D
Defect Turbulence
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Abstract—We have investigated statistical properties of the defect
turbulence in 1D CGLE wherein many body interaction is involved
between local depressing wave (LDW) and local standing wave
(LSW). It is shown that the counting number fluctuation of LDW
is subject to the sub-Poisson statistics (SUBP). The physical origin
of the SUBP can be ascribed to pair extinction of LDWs based on the
master equation approach. It is also shown that the probability density
function (pdf) of inter-LDW distance can be identified by the hyper
gamma distribution. Assuming a superstatistics of the exponential
distribution (Poisson configuration), a plausible explanation is given.
It is shown further that the pdf of amplitude of LDW has a fat-
tail. The underlying mechanism of its fluctuation is examined by
introducing a generalized fractional Poisson configuration.

Keywords—sub-Poisson statistics, hyper gamma distribution, frac-
tional Poisson configuration.

I. INTRODUCTION

HE complex Ginzburg-Landau equation (CGLE) is one

of the most studied equations in nonlinear physics [1].
It describes various phenomena such as Rayleigh-Bénard
convection in thermal fluid systems [3]-[5], propagation of
chemical waves in reaction-diffusion systems [6]-[8], optical
signal transmission in dissipative media [9]-[11], and so on.
The CGLE is a typical normal form equation near local
bifurcation points in non-equilibrium opening systems [12].
Actually, various phenomena occurring in non-equilibrium
systems have been studied based on the features of the CGLE
in the past decades.

Particularly, complex spatiotemporal dynamics of the CGLE
such as the defect turbulence has been attracting many physi-
cists’ attentions [2]. Defect is defined as a singular point where
phase slips. It is known that the CGLE has particularly various
different types of defects in any spatial dimensions: hole, spiral
wave and vortex line, which are observed in one, two and
three dimensional systems. Especially in 1D system, hole has
analytical form known as the “Bekki-Nozaki (BN) hole” [13].

Chaté extensively investigates spatiotemporal dynamics of
the 1D CGLE [14]. He classifies some different types of
spatiotemporal dynamics in the phase diagram of normal-
ized linear dispersion and nonlinear dissipation coefficients.
Howard and Hecke introduce a phenomenological coupled
map lattice model in focussing on neighbor interaction of
phases [15], [16] to mimic the defect turbulence. They suggest
that holes interplaying in self-disordered background can cause
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the defect turbulence. Sherratt and Smith demonstrate a tran-
sition process from stable plane wave to the defect turbulence
under zero-linear dispersion limit [17]. In their simulations,
one can see a splitting process of BN-hole like local depressing
waves (LDW) and local standing waves (LSW), and after that
this process leads to the defect turbulence. It seems that the
above waves are regarded as one of the key events in the defect
turbulence.

On statistical analysis of the CGLE, Sakaguchi studies
some statistical properties of “soliton turbulence” under zero-
nonlinear dispersion limit [18]. His analysis is performed
under the spatiotemporal dynamics with many body interaction
among solitons with radiations. That is, soliton-soliton interac-
tion with radiations plays the key role in the soliton turbulence,
since waveform of soliton is involved in the CGLE under
the nonlinear Schrodinger equation with a weak dissipation.
We have been focusing on some statistical properties of the
defect turbulence. In our previous work [19], we have reported
some probability distributions of physical quantities from a
viewpoint of mathematical statistics. The detailed physical
descriptions of their properties of the defect turbulence with
discussions on the mechanisms have not given.

Here the present paper, by focusing on LDW, reports on
the stochastic dynamical laws involved in the fluctuations of
(i) counting number of LDW, (ii) inter-LDW distance and (iii)
amplitude of LDW. In section II, the method of our numerical
simulation for the defect turbulence in the 1D CGLE is
explained briefly. Section III presents the stochastic dynamical
laws describing the mechanisms of the statistical properties of
the defect turbulence: (a) the counting number fluctuation of
LDW is analyzed with the use of a master equation; (b) the
inter-LDW distance is quantified as a superstatistics of Poisson
configuration; and (c) the pdf of amplitude of LDW is modeled
by a fractional generalization of Poisson configuration. Section
IV is devoted to conclusions.

II. NUMERICAL SIMULATION
The 1D CGLE is described in the form [1]:

0A ., 0%4
E :A+(1+201)w

where A is a complex variable, ¢; and co are real parameters
called as linear and nonlinear dispersion coefficients, respec-
tively. Numerical simulation of Eq. (1) is performed under
the periodic boundary condition. Figure 1 shows a stationary
state, when a weak random perturbation is adopted as an
initial condition. In Fig. 1 (a), waveforms of some LDWs and
LSWs are recognized. Phase is depicted in an extended phase

— (L+ic)APA, (1)
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space in Fig. 1 to exhibit discontinuity of phase. To solve
Eq. (1), the fourth order Runge-Kutta scheme for time and the
second order central differential scheme for space are utilized.
System size L is fixed with L = 500, the corresponding
space resolution and time step are Az = 0.5 and At = 0.01,
respectively. The linear and the nonlinear dispersion coefficient
are fixed with ¢; = 1.5 and ¢y = —1.2, which correspond to
the defect turbulence regime [14].

The numerical simulation under boundary and the initial
condition gives a spatiotemporal profile of A in Figs. 2: (a)
black region indicates amplitude near zero and pale brown
region indicates LSW; (b) one can find some discontinuities
of phase, which correspond to LDWs near zero amplitude.
In Fig. 3 (a snapshot of Fig. 2), a disordered configuration
of LDWs and LSWs is clearly observed. From careful ob-
servation of the dynamical behavior of LDW and LSW, they
can be regarded as local elementary excitations in the defect
turbulence.

On account of numerous observations in our simulations,
statistical properties of the defect turbulence associated with
many body interaction between LDW and LSW will be
displayed in the next sections.

III. STATISTICAL ANALYSIS

In our statistical analysis, LDW is naively defined as a
local depression from the background (|A| = 0.8), and LSW
is identified by a local maximum of amplitude. Then the
statistical properties of LDW like counting number, inter-
distance and amplitude are analyzed. Specifically, these fluc-
tuations are evaluated in each time step of the simulation in
the whole space. The procedure of the statistical analysis will
be explained in the next subsections.

A. The counting number fluctuation of LDW

Figure 4 shows the probability distribution of the the count-
ing number of LDW, which is identified well by the binomial
distribution:

B(p,k) = ,Cyp®(1 — p)"F, )

where n is the maximum counting number in the whole space,
p is probability that LDW is generated and & is the counting
number of LDW, respectively. The parameters in Eq. (2) are
estimated by the mean (k) and the variance o2 as n = 41 and p
= 0.2. To classify statistics, the Fano factor (F'F') is available:
_ i
FF 0y’ 3)
The FF takes a value less than 1 (F'F' = 0.8). This means that
the counting number fluctuation of LDW is subject to the sub-
Poisson (SUBP) statistics. In the case of the squeezed state of
light [20], the SUBP nature is due to the photon antibunting.
From analogy with light, a kind of “LDW bunching state” may
be expected. In this subsection, we will try to find the origin
of the sub-Poisson nature of the fluctuation in the case of the
defect turbulence.
To elucidate the underlying mechanism of the appearance of
the SUBP statistics, let us write down elementary interaction

schemes of the local waves in the defect turbulence after
careful observation of Fig. 2: (i) two LDWs collide and turn
into one LSW, (ii) two LSWs merge after collision, (iii) one
LDW and one LSW connect and turn into one LDW reversibly,
(iv) one LDW turns into one LSW, (v) one LDW and one
LSW emerge from background. These interaction schemes are
described below:

ox By, (4a)
2y B2y, (4b)
k/
X+1Y 2 X, (4¢)
K
kL
x5y, (4d)
0% x, (4e)
0%y, ()

where X and Y are counting number of LDW or of LSW, and
ki (1<i<T) are the rates of reactions.

Although it is desirable to analyze the full reaction which
involves the detailed interactions between X and Y, one can
catch the main feature only from the knowledge of X, by
using adiabatic approximation about Y, which is described by

2X M o, (5a)
k-

0= X, (5b)
k3

where k;(1<i<3) are the rates of reactions which correspond
to the simplified elementary processes: (i) pair extinction
process (Eq. (5a)) and (ii) creation process (left-pointing arrow
in Eq. (5b)), which are the key mechanisms to give rise to the
SUBP statistics in a “soliton turbulence” [21]. Thus we can
say that an appropriate balance of these processes is the origin
of a kind of “bunching state” in the many body interaction of
the local waves.

The above processes lead to the transition probability (TP)
for X in the system as

W(X,AX,t) = k1 X (X — 1)dax.
+kabax + ks Xdax, -1, (6)

where AX is transition rate of X and J; ; is the Kronecker’s
delta. From the above TP, the corresponding master equation
is immediately derived as:

d

EP(X, 1) =k (X +2)(X +1)P(X +2,1)

+koP(X —1,t) + k3(X +1)P(X +1,t) )
—[k1 X (X — 1) + ko + k3 X]P(X, 1),

where P(Xt) is the time-dependent probability distribution
for X.

Although the governing equation of P(Xt) is obtained, in
general, it is hard to solve analytically the master equation.
Therefore, in many cases, the master equation is solved
numerically [22]. On the other hand, in order to evaluate
the moments from P(X,t), the Poisson representation can be
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Fig. 1. A stationary configuration of LDWs and LSWs is obtained from a simulation with a certain parameter set described in Ref. [14]. In amplitude profile,
LDWs and LSWs are recognized. Discontinuity and local maximum of phase correspond to LDW and LSW, respectively. Amplitude of the NB-hole reaches
zero. On the other hand, amplitude of LDW does can not. Note that the phase is depicted in an extended phase space to exhibit phase discontinuities clearly.
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Fig. 2. Spatiotemporal dynamics of Eq. (1): (a) amplitude |A| and (b) phase argA. In both (a) and (b), horizontal and vertical directions correspond to space
and time, respectively. In our simulation, the parameters in Eq. (1) are fixed with ¢y = 1.5 and cp = —1.2. In the amplitude image (a), black region and

pale brown region indicate LDW and LSW, respectively.
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Fig. 3. Snapshot of the defect turbulence: (a) amplitude |A| and (b) phase argA. In the amplitude image (a), one can observe chaotic interplay between
LDW and LSW. Also, disordered structure can be seen in the extended phase space (b).

utilized [23]. The definition of the complex Poisson represen-
tation is described by

e—teX
X!
where £ is a complex variable and C is a integral contour

in complex plane. From Eq. (7) and Eq. (8), the governing
equation of f(&,t) is obtained in the form:

) i 2
&f@’t) - 78762[(1615 V(€ 0)]

P(X,t) = [, 1)dg, ®)

78% (—2k18% + K + ks€) £(§,1)]- (€))
Note that the negative diffusion in right-hand side of Eq. (9)
leads to unstable probability distribution. In spite of the above
notification, the stationary distribution of Eq. (9) can be
formally obtained. As steady state, namely the condition that
O f(&,t) = 0, the stationary distribution f,(€) is immediately
obtained as:

2
£5(€) = & Freddexp (25 - “1; ) : (10)

where a; = ko /k1L?, ay = ks3/k1 and L is the system size. By
the representation of fs(§) in Eq. (10) with rescaled variable
& = nL, the r-th moment (¢") is described by

$ € f:(6)de

$ fs(§)dg
where the integration with respect to £ can be carried out along
a closed contour encircling the origin of complex plane. From
Eq. (11), arbitrary order moment can be calculated exactly. As
a result, the analytical form of the (£") is obtained as

o a TI?"*(aerl)(QL\/M)
€ = (L\/;> Loy 1(2VV2ay) (12

where I4(-) is the d-th order modified Bessel function [24].
From below relations: (X) = () and o2 = (€2) — (€) + (€)
[23], F'F is asymptotically evaluated as follows:

3 /
FF = MN§ (13)
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Fig. 4. The probability distribution of the counting number of LDW (black
circles) is identified by the binomial distribution (solid line) better than the
Poisson distribution (dashed line). The F'F' of counting number of LDW and
the corresponding binomial distribution are ‘0.8’, though that of the Poisson
distribution is ‘1’. This is that the counting number fluctuation of LDW is
subject to the SUBP statistics.

The F'F value gives a good approximation for our result
of simulation (see Fig. 4). This means that our simplified
elementary processes are essential to catch the underlying
mechanism of counting number fluctuation of LDW.

B. The fluctuation of inter-LDW distance

Here, we try to analyze the fluctuation of inter-LDW dis-
tance by reasonable extension of the Poisson configuration.
Figure 5 shows that the pdf of the fluctuation of inter-LDW
distance has two dominant peaks. One is the delta function
type, which is located around ‘5.5’. The other is the hill-
type function like the gamma distribution, where the peak
is located near ‘25’. The former peak is originated from the
LDW bunching state as is mentioned before. After eliminating
the contribution of the delta function type peak, we can
identify the latter contribution (see Fig. 6) by the hyper gamma
distribution fga(y; o, 8,7) as

[(v/e)

where, y is a random variable with respect to inter-LDW
distance, «,  and ~ are real parameters, I'(-) is the gamma

y lexp(—By®), (14

frac(y;a, B,7) =

1336



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:8, 2013

x10
20F

pdf
o

T

1

05F .

0 [ ) ™ P
0 50 100 150 200
Inter-LDW distance

Fig. 5. The pdf of inter-LDW distance has two dominant peaks. One is the
delta function-type, which is located around *“5.5”. The other is the hill-type
function like the gamma distribution, where the peak is located near ‘25’.

function [25]. The estimated parameters are o = 1.18,
B = 24.2 and v = 1.79. Note that the horizontal axis in
Fig. 6 is normalized for the sake of brevity.

Among the many possible physical explanations which give
rise to the hyper gamma distribution, we adopt a supersta-
tistical approach [26] with the Poisson configuration. After
eliminating the effect of the LDW bunching state which causes
the SUBP statistics, the emerging event of LDW may be
governed by the Poisson statistics with a slowly fluctuating
parameter. Since inter-LDW distance is subject to the expo-
nential distribution, the resulting pdf of inter-LDW distance
p(y) under its fluctuated parameter is described by

py) = / " PN, (15)

where p(y|A) = Xe ™™ and g(\) is the pdf of positive
parameter \. To satisfy the condition that p(y) equals the hyper
gamma distribution, the specific form of g(\) is determined
by
1 2—v
Dy |DS — —DxA\+ ——|g(N) =0 16
A[Aaﬁ)\—i_aﬁ}g() ) (16)
where «, § and ~ are the same parameters in Eq. (14), D) is
a linear operator defined by

d 1
Dy= 247 amn

Although the specific form of g(\) can be obtained from
Eq. (16), the a-th order operator D, since « is a non-
integer value in our case, makes Eq. (16) difficult to solve
analytically. However, in special case that o = 1, Eq. (16)
leads to the hypergeometric differential equation, and thus
g(A) is analytically obtained in terms of the hypergeometric
function [24]. In this case, the corresponding pdf leads to the
gamma distribution.

C. The amplitude fluctuation of LDW

Now, consider the amplitude fluctuation of LDW. Before
carrying out stochastic analysis, in order to deal with the
amplitude fluctuation of LDW as a stochastic process with
respect to one parameter, let us make notice of the constraint

0 0.05 0.10 0.15 0.20 0.25
Normalized inter-LDW distance

Fig. 6. The pdf of inter-LDW distance without contribution of the delta-
function like peak is well identified by the hyper gamma distribution. To
simplify calculation, horizontal axis is normalized by the system size L.
Black circles represent the simulation result and solid line is the hyper gamma
distribution with the parameter set: = 1.18, 8 = 24.2 and v = 1.79.

on the periodic boundary condition A(0,t) = A(L,t), namely
a circular configuration.

Figure 7 shows the pdf of the amplitude fluctuation of LDW
with normalized axes. The pdf has (i) a fat-tail and (ii) a cut-
off amplitude. Neglecting the truncated structure, we try to
construct a mathematical model of the amplitude distribution
of LDW. The LDW bunching state suggests the existence of
strong spatial correlation. To describe the spatial correlation,
a fractional derivative is introduced. Then amplitude of LDW
in the circular configuration is modeled as a generalized
fractional Poisson configuration (FPC) [27] with fractional
space derivative and fractional power backward shift operator:

v

@p(l,f&) = 76”(1 - B)Hp(lvz)v
p(lao) = 51,07 (18)

where [ and z are random variables with respect to amplitude
and space configuration, respectively, p(l, z) is a pdf of [ and z,
u, v€(0, 1], € is a real parameter, B is the so-called backward
shift operator defined by Bp(l,z) = p(l — 1, z) and ¢, ; is the
Kronecker’s delta. Note that when = 1 and v = 1, Eq. (18)
leads to the ordinary Poisson configuration. The solution of
Eq. (18) is immediately obtained by the generating function
method as

()P (—0#20)T D(ur +1)
p(l,2) = T Zo Pwr + 1) D(pr +1 1)’

19)

where I'(-) is the gamma function.

Figure 7 shows that p(l, z) in Eq. (19) with a certain param-
eter set (1 = 0.605, v = 0.72 and A = 0.05) is comparable
to our result of simulation: the theoretical FPC agrees quite
well with the amplitude-pdf. This result indicates that bursting
event which has high value of amplitude can be caused by
the spatial correlation. Without spatial correlation (v = 1), the
relaxation of the pdf becomes the exponential decay, and thus,
relative frequency of bursting event is very rare. However, the
actual pdf involves the fat-tail, that is, appearance of LDW
burst is not rare. Therefore, our formulation may be useful for
analyzing physical nature of bursting events.
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Fig. 7. Amplitude of LDW is normalized by system size, L. The pdf has
(i) a fat-tail and (ii) a cut-off amplitude. The theoretical FPC (solid line) with
p = 0.605, v = 0.72 and A = 0.05 agrees quite well with the pdf of
our simulation (black circles) except the truncation over higher values of the
amplitude of LDW.

IV. CONCLUSION

The statistical properties of the defect turbulence in the 1D
CGLE is studied in this paper. The fluctuating quantities (the
counting number of LDW, inter-LDW distance and amplitude
of LDW) are quantified from the viewpoint of statistical math-
ematics. Then the physical mechanisms associated with these
quantities are studied theoretically: (i) The counting number
fluctuation of LDW is modeled by the master equation based
on LDW and LSW interaction schemes. It is shown that this
fluctuation is subject to the sub-Poisson statistics, and thus, the
role of a kind of “LDW bunching state” is elucidated. (ii) The
pdf of inter-LDW distance has two different components: (a)
the nearest neighbor delta function and (b) the hyper gamma
distribution. The former is the contribution from the LDW
bunching state. The latter is identified by a superstatistics of
which the parameter of the exponential distribution is non-
uniformly distributed. (iii) To model the amplitude fluctuation
of LDW, FPC [27] with fractional order space derivative
and fractional power backward shift operator is examined.
Consequently, the FPC accords quite well with the result of
our simulation except the point of the truncated tail. This
accordance implies a new possibility for analyzing physical
nature of burst emergence by a FPC type formulation.
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