
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1933

Abstract—Software complexity metrics are used to predict

critical information about reliability and maintainability of software
systems. Object oriented software development requires a different
approach to software complexity metrics. Object Oriented Software
Metrics can be broadly classified into static and dynamic metrics.
Static Metrics give information at the code level whereas dynamic
metrics provide information on the actual runtime. In this paper we
will discuss the various complexity metrics, and the comparison
between static and dynamic complexity.

Keywords—Static Complexity, Dynamic Complexity, Halstead
Metric, Mc Cabe’s Metric.

I. INTRODUCTION
OFTWARE Complexity is defined as “the degree to
which a system or component has a design or

implementation that is difficult to understand and verify”[8]
i.e. complexity of a code is directly dependent on the
understandability. All the factors that makes program difficult
to understand are responsible for complexity.

Software complexity is an estimate of the amount of effort
needed to develop, understand or maintain the code. It follows
that more complex the code is the higher the effort and time
needed to develop or maintain this code [9]. Results based on
real life projects show that there is a correlation between the
complexity of the system and the number of faults [10] [11].
The McCabe metric and Halstead’s are two common code
complexity measures. The McCabe metric determines code
complexity based on the number of control paths created by
the code. Halstead bases his approach on the mathematical
relationships among the number of variables, the complexity
of the code and the type of programming language statements.

II. LITERATURE REVIEW
Six design metrics are based on measurement theory. In

evaluating these metrics against a set of standard criteria, they
are found to possess both a number of desirable properties and
suggest some ways in which the Object Oriented approach
may differ in terms of desirable or necessary design features
from more traditional approaches [1].

Kamaljit Kaur is working with Department of Information technology at
Shaheed Udham Singh College of Engineering and Technology, Mohali,
India.

Kirti Minhas, Neha Mehan and Namita Kakkar are associated with
Department of Computer Science & Engineering of Rayat-Bahra Institute of
Engineering & Bio-Technology, Sahauran, Distt. Mohali, India.

An adequate complexity metrics set for large-scale OO
software systems is still a challenge. In traditional OO
software engineering methodologies, OO metrics such as CK
and MOOD have been recognized in practical software
development. In order to measure a system’s complexity at
different levels, they propose a hierarchical complexity
metrics set that integrates with these metrics and parameters of
complex networks [2].

Yacoub et. al. [3] defined two metrics for object coupling
(Import Object Coupling and Export Object Coupling) and
operational complexity based on state charts as dynamic
complexity metrics. The metrics are applied to a case study
and measurements are used to compare static and dynamic
metrics.

Munson and Khoshgoftaar [4] showed that relative
complexity gives feedback on the same complexity domains
that many other metrics do. Thus, developers can save time by
choosing one metric to do the work of many.

Munson and Hall [5] examined the static complexity of a
program together with the three dynamic measures of
functional, fractional, and operational complexity. The
eminent value of the dynamic metrics was shown in their role
as measures of test outcomes.

Mayo et. al. [6] explained the automated software quality
measures: Interface and Dynamic Metrics. Interface metrics
measure the complexity of communicating modules, whereas
Dynamic metrics measure the software quality as it is
executed.

Hays in [7] has examined the testing of object-oriented
systems. Then compare and contrast it with the testing of
conventional programming language systems, with emphasis
on fault-based testing.

III. HALSTEAD’S METRIC
Halstead has proposed metrics for length and volume of a

program based on the number of operators and operands. In a
program he defined the following measurable quantities:

• n1= the number of distinct operators
• n2 = the number of distinct operands
• N1 = the total number of operators
• N2 = the total number of operands
 From them, he defined the following entities:-
 Vocabulary (n) = n1 + n2
 Length (N) as N = N1 + N2
 Volume (V) as V = N log2 n (the program's physical size)

Static and Dynamic Complexity Analysis of
Software Metrics

Kamaljit Kaur, Kirti Minhas, Neha Mehan, and Namita Kakkar

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1934

 Potential Volume(V*) as V* = (2 + n2*) log2 (2 + n2*)
(the smallest possible implementation of an algorithm).

 Program level (L) as L = V* /V (The closer L is to 1, the
tighter the implementation.) Starting with the assumption that
code complexity increases as vocabulary and length increase,
Halstead observed the following:

1. Code complexity increases as volume increases.
2. Code complexity increases as program level decreases.

IV. PROBLEMS WITH HALSTEAD’S METRIC
Halstead's work is criticized on several fronts:
1. Fault with his methodology for deriving some

mathematical relationships and fault with some of his
assumptions. For example, Halstead used a number called the
Stroud number (ranging from five to 20), which represents
how many elementary discriminations the human brain can
perform in a "moment." Another "fact" is that Halstead
postulated the human brain can handle up to five chunks of
material simultaneously.

2. Halstead metrics are difficult to compute. How do we
easily count the distinct and total operators and operands in a
program? Counting these quantities every time we made a
significant change to a program is difficult. A metric is useless
if you can't compute it quickly and easily.

3. The computation of the Halstead metrics for the bubble
sort suggests that the bubble sort, as implemented, is very
complex. The problem is that the computation for the potential
volume mandates the number of input and output parameters.
For the bubble sort, only the array to be sorted is needed. The
low number for the potential volume skews the program and
language levels.

V. MC CABE’S METRIC
Thomas J. McCabe developed Cyclomatic complexity, is a

software metric and is used to measure the complexity of a
program. His fundamental assumption was that conditions
and control statements add complexity to a program. Given
two programs with same size, the program with the larger
number of decision statements is likely to be more complex. It
directly measures the number of linearly independent paths
through a program's source code. Cyclomatic complexity is
computed using the control flow graph of the program as
show in figure 1. McCabe’s Cyclomatic complexity, best
known measure is based on the control structure. The metric
can be defined in two equivalent ways:

a) The number of decision statements in a program + 1
b) For a graph G with n vertices, e edges, and p connected

components,
v(G) = e - n + 2p.
A code fragment and its corresponding flow graph are

shown below:

if (x < 0)
 do {
 if (y)

 b();
 m = c() * m;
 }
 while (m < k);
else if (x == 0)
 do{
 if (y ==0)
 b();
 c();
 }
 while (x == 0)
else
 do {
 if (j)
 b();
 m = c() * 2m;
 }
 while (m <= k);

Fig. 1 Flowgraph of the Example Program

The following are the merits of the Mc Cabe’s metric:
1. The complexity measure is simple
2. There is no doubt that a large class of programming

errors occurs around conditions and loops and adds to
complexity.

VI. COMPARISON OF STATIC AND DYNAMIC COMPLEXITY
Static metrics measure what may happen when a program is

executed. A dynamic measure would provide a means of
measuring what is actually happening. Static Metrics are
derived from an analysis of non-executing code. Dynamic
metrics are derived from an analysis of code while it is
executing. They provide an indication of what calls are
actually taking place, the number of statements executed and
what paths are being executed. Dynamic metrics include both
complexity measures and measures useful in reliability
modeling. Dynamic metric values are dependent on the input
or test data with which system software is run.

VII. CONCLUSION
We have to take into the consideration both static as well as

Dynamic Complexity Metrics, so as to find out the variation.
After comparing Static and Dynamic Complexity Metrics we

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1935

can come to the conclusion that whether the Software is good
in quality or not from coding as well as execution point of
view. If complexity is higher, then we have to change the
code. Since each user have got different requirement, we can
also suggest according what changes to make it more
understandable and simple. Hence, this will lead to a good
software.

REFERENCES
[1] Shyam R. Chidamber and Chris F. Kemerer,” A Metrics Suite for Object

Oriented Design”, IEEE Transactions on Software Engineering, Vol. 20,
NO. 6, JUNE 1994.

[2] Yutao Ma, Keqing He, Dehui Du, Jing Liu, and Yulan Yan , “A
Complexity Metrics Set for Large-scale Object-oriented Software
Systems”, IEEE International Conference on Computer and Information
Technology (CIT'06).

[3] Sherif Yacoub, Tom Robinson, and Hany H. Ammar , “Dynamic Metrics
for Object Oriented Designs”, Software Metrics Symposium, 1999.
Proceedings. Sixth International Volume , Issue , 1999 Page(s):50 – 61

[4] John C. Munson, Taghi M. Khoshgoftaar, "Measuring Dynamic Program
Complexity," IEEE Software, vol. 9, no. 6, pp. 48-55, Nov./Dec. 1992,
doi:10.1109/52.168858

[5] John C. Munson, Gregory A. Hall, “Estimating test effectiveness with
dynamic complexity measurement”, Empirical Software Engineering
Journal, ISSN- 1382-3256.

[6] Kevin A Mayo, Steven A Wake, Sallie M. Henry,” Static and Dynamic
Software Quality Metric Tools”, Department of computer Science,
Virginia Tech, Blacksburg.

[7] Jane Huffman Hayes, “Testing of Object-Oriented Programming
Systems (OOPS): A Fault-Based-Approach”, Science Applications
International Corporation, 1213 Jefferson-Davis Highway, Suite 1300,
22202 Arlington, Virginia.

[8] IEEE Std. 1061-1998 IEEE Computer Society: Standard for Software
Quality Metrics Methodology, 1998.

[9] Li, W.; Henry, S.: “Object Oriented Metrics that predict
Maintainability”, Journal of Systems and Software, Vol. 23, No. 2,
1993, pp 111-122

[10] Ammar, H. H., Nikzadeh, T., Dugan, J., "A Methodology for Risk
Assessment of Functional Specification of Software Systems Using
Colored Petri Nets", Proc. Of the Fourth International Software Metrics
Symposium, Metrics'97, Albuquerque, New Mexico, Nov 5-7, 1997,
pp108-117.

[11] Munson, J., Khoshgoftaar, T., "Software Metrics for Reliability
Assessment", in Handbook of Software Reliability Engineering,
Michael Lyu (edt.), McGraw-Hill, 1996, Chapter 12, pp 493-529.

