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Abstract—In this paper, the full state feedback controllers 

capable of regulating and tracking the speed trajectory are presented. 
A fourth order nonlinear mean value model of a 448 kW turbocharged 
diesel engine published earlier is used for the purpose.  

For designing controllers, the nonlinear model is linearized and 
represented in state-space form. Full state feedback controllers 
capable of meeting varying speed demands of drivers are presented. 
Main focus here is to investigate sensitivity of the controller to the 
perturbations in the parameters of the original nonlinear model. 
Suggested controller is shown to be highly insensitive to the 
parameter variations. This indicates that the controller is likely 
perform with same accuracy even after significant wear and tear of 
engine due to its use for years.  

 
Keywords—Diesel engine model, Engine speed control, State 

feedback controller, Controller robustness. 

I.  INTRODUCTION 

IESEL engines are used in most heavy duty applications. 
However, diesel engines suffer from some important 

drawbacks such as, low power density, lower engine operating 
speeds, rough running and smoke. 

In addition to this, diesel engines have very serious 
shortcoming of instability without the proper controls [1]. One 
characteristic of diesel engine is that it has no natural top 
speed and tends to runaway under low load conditions. Under 
these conditions, the more the fuel is injected, since there is 
sufficient air for combustion, the faster the engine goes. The 
faster it goes, the faster the fuel gets injected. In such 
situation, the engine speed continues to increase until the 
engine literally flies apart. Diesel engines are traditionally 
equipped with a governor that limits the maximum speed of an 
engine by reducing the rate at which the fuel is injected. One 
of the important tasks for the diesel engine controller is to 
minimize the speed fluctuations. For large diesel applications, 
the issues of governing and control are therefore of critical 
importance. 

With advances in electronics, control engineering, 
computers, sensors and actuators coupled with depleting world 
energy resources, it is highly desirable to develop new control 
strategies to improve the performance of existing engines in 
terms of robustness to load disturbance [2], [3], [4], [5], [6]. 
The main objectives of this paper are to use a detailed enough 
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nonlinear model of a turbocharged diesel engine and explore 
the state feedback controller and present that the controller is 
insensitive to parameter variations.   

II. NONLINEAR MODEL DEVELOPMENT 
For designing an engine controller, a nonlinear engine 

model suitable for a control application is essential. Mean 
value engine modeling approach that describes dynamic 
engine variables (or states) as mean values rather than 
instantaneous values on time scales longer than an engine 
event is adopted. 
A heavy-duty turbocharged 448 kW diesel engine is selected 
for the present study, which is used for marine and power 
generation applications. The schematic of the engine setup is 
shown in Fig. 1 and its specifications are given below. 

 

Fig. 1 Schematic of a TC Diesel Engine showing major 
subsystems 

  
For obtaining the complete model, the engine was divided 

into four major subsystems. Each subsystem is then modeled 
individually. A set of differential equations of the four 
subsystems, viz., prime-mover (engine-load shaft), 
turbocharger, intake manifold and exhaust manifold of the 
engine were developed and may be studied in details from [2].  
 
 

TABLE I 
ENGINE SPECIFICATIONS 

Parameter  Description 

Model KTA-150 C-600 

Make Kirloskar Cummins 

Turbocharger T  18  A 

H.P. 600 
Rated speed 2100 rpm 

State Feedback Speed Controller for 
Turbocharged Diesel Engine and Its Robustness 

Dileep Malkhede and Bhartendu Seth 

D
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No of cylinders 6 
Bore 159 (mm) 
Stroke 159 (mm) 

Firing order 1-5-3-6-2-4 

 
1. Prime-mover: The dynamics of the prime mover is 

characterized by a following first order nonlinear differential 
equation in engine shaft speed ωe based on Euler's law for 
rigid body rotation about fixed axis. Prime-mover dynamics 
assume a rigid crankshaft and constant average moment of 
inertia. 

le
e

e MM
dt

dJ −=
ω  (1)

                                                   
 

The functional dependence of Me and Ml are obtained as a 
function of input variables and other state variables of the 
system as expressed by Eq. (2) and (3) respectively.  

 

),,( inee phfM ω=  (2) 
),( φωel fM = (3) 

 

2. Turbocharger: Turbine-compressor shaft dynamics is also 
modeled similar to that of the prime-mover equation. Mt and 
Mc are obtained as a function of other state variables and input 
variable as expressed by Eq. (4) and (5) respectively. 

ct
tc

tc MM
dt

dJ −=
ω  (4) 

),,,,( hppfM niexetct ωω= (5)
),( tcnic pfM ω= (6)

 

where, Mt and Mc are turbine and compressor torques (N.m) 
and the moment of inertia of turbocharger rotor is denoted by 
Jtc in (kg.m2). 

 
3. Intake Manifold: Intake manifold dynamics is modeled 

using the filling and emptying approach disregarding engine 
events and spatial variations of parameters within the 
manifold. 

Mass flow rate cm  is separately modeled using 

manufacturer supplied compressor characteristics and iem is 
modeled using the engine pumping rate equation. The 
functional dependences are represented as, 

 

( )iec
in

inin mm
v
TR

dt
dp

−=
                           (7) 

),( tcinc pfm ω=                                  (8)
 ),( einie pfm ω=                                  (9) 

4. Exhaust Manifold: The rate of change of mass in exhaust 
manifold is modeled using the difference between the mass 
that enters the exhaust manifold from engine eem  and the 

mass tm  that leaves the exhaust manifold and enters the 
turbine. 

tee
ex mm

dt
dm

−=                                  (10) 
The compression or expansion of the gas in the exhaust 

manifold is assumed to be a polytropic process.
 
Mass flow rate 

through the engine to the exhaust manifold eem  is considered 
as sum of air and fuel flow rates and  t is modeled using turbine 
characteristic map. 

),,( hpfm einee ω=                                (11) 
),,,,( inetcext phpfm ωω=                              (12) 

The overall nonlinear model of their TC Diesel Engine is 
represented by a system of four coupled nonlinear differential 
equations viz., Eq. (1, 4, 7 and 10).  

III. LINEARIZATION OF THE NONLINEAR MODEL 
Linearization is carried out at an operating point where the 

engine torque and speed are 1770 N.m and 220 rad/s (or 2100 
rpm), respectively. At this operating point, the engine is at 
about 85 % of its rated load. Diesel engines normally run close 
to this loading condition and thus ideally suited for controller 
design. 

 
1. Prime-mover: 

φωωτ ˆˆˆˆˆ
eineeee bpahk

dt
d

−+=+
               (13)

 

Where, coefficients of the equation are given by, 
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Similarly, other three nonlinear equations are linearized, the 
Equations are given below. 
2. Turbocharger: 

hcpbapk
dt

d
tcintcetcextctc

tc
tc

ˆˆˆˆˆˆ
+++=+ ωω

ω
τ

          (14) 

 
3. Inlet Manifold: 

eintcinin
in

in apk
dt
pd

ωωτ ˆˆˆˆ
−=+

                    (15)
 

4. Exhaust Manifold: 
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tcexexinexeexex
ex

ex chbpapk
dt
pd ωωτ ˆˆˆˆˆ

−++=+          (16)                                                                                 

 
Above four differential equations are linearized equations of 

the model. Normalized variables of the linearized equations 
are given below. These equations relate normalized variables 
with physical engine variables. 
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The overall model obtained after coupling all the above 
equations has two inputs, viz., 

(i) A normalized fuel rack position ĥ which acts as the 
controlling input and, 

(ii) A propeller pitch , which is related to external load 
and acts as a disturbance. 

Overall model gives four normalized state-variables viz., , 
,  ̂  and ̂ . As the study is focussed on speed control of 

the engine , is of prime importance. 
Set of linearized equations are presented in state-space form 

as given below. 

uBxAx ˆˆˆ +=                                   (17 a) 
uDxCy ˆˆˆ +=                                     (17 b) 

 
Open loop responses of the linearized model are compared 

with that of the nonlinear model to verify the suitability of the 
linearized models for control systems designs. One such 
comparison is presented in Fig. 2. while h is perturbed by 
+10% and φ  maintained at oφ . It can be seen that, the 
dynamics is captured by linearized model and its response 
match well with that of the nonlinear system. 

 

 
Fig. 2 Comparison of responses of linearized and nonlinear model 

IV. STATE FEEDBACK DESIGN FOR SPEED TRACKING 
A system is represented in state-space by the following 

equations. 

uBxAx ˆˆˆ +=                                      (18 a) 

uDxCy ˆˆˆ +=                                     (18 b) 
Where, 

 is normalized state vector. 
 is normalized output. 
 is normalized input. 

 
Controllability of the system: If the system is completely 

state controllable, then closed loop poles may be placed at any 
desired locations by means of state feedback through an 
appropriate state-feedback gain matrix K. 

 
System matrices are, 
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⎣

⎡

−
−−

−
−

=

0195.121573.33730.20408.6
0.09054.94769.101564.2

2875.00437.03285.00058.0
0.00438.00.04555.0

A  

 

B = 
0.1109
0.0131

0.0
0.7157

       and    C = 1 0 0 0  

 
The controllability matrix M is given by 
 
M =  
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The matrix M is of full rank, hence the system is completely 

state controllable and arbitrary pole placement is possible. 
This section presents the state feedback design with an 

integrator that is capable of tracking the desired speed. Now 
that the integrator is added, the order of the model is increased 
to 5. The plant has no zero at the origin and thus the 
possibility of cancellation of added integrator is avoided. The 
complete block diagram is shown in Fig. 3. 

 
Following are the system state-space equations. 

uBxAx ˆˆˆ +=     (19 a) 

xCy ˆˆ =     (19 b) 

            ξ̂ˆˆ IKxKu +−=     (20) 

yr ˆˆˆ −=ξ     (21 a) 
 xCr ˆˆ −=     (21 b) 

 

 
Fig. 3 Block diagram of state feedback with an integrator 

 
x̂ is a normalized state vector of the fourth order plant. 
û is a normalized controlling input. 

ey ω̂ˆ = is a normalized engine speed (output signal) 

ξ̂  is the output of an integrator, added state of the system. 
r̂  is reference input signal, a state function. 
 
Reference step input is applied at t = 0. Then the system 

dynamics is described by an equation that is a combination of 
dynamical Eqs. (19 a) and (21 a). 

 

 =    0
0   +  0   +  0

1 ̂               

(22) 
 
The system is designed such that ∞ , ∞ and )(ˆ ∞u

approaches constant values. Then, at steady-state, ξ̂ (∞) = 0 
and we get .̂)(ˆ ry =∞  

 
At steady-state, we have, 
 

∞
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Since, r(t) is a reference step input we have, (∞)= ̂(t), for t 
> 0. By subtracting (23) from Eq. (22), 

 

∞
∞
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+  0 ∞                                         (24) 
 
Defining, 

)(ˆ)(ˆ)(ˆ txxtx e=∞−                  (25) 
)(ˆ)(ˆ)(ˆ tt eξξξ =∞−                  (26) 
)(ˆ)(ˆ)(ˆ tuutu e=∞−                  (27) 

 
Then, Eq. (24) can be written as, 
 

 =    0
0   +  0                             

(28) 
 
Where, 

)(ˆ)(ˆ)(ˆ tKtxKtu eIee ξ+−=                       (29) 

Defining a new fifth order error vector e(t) by 

̂  =                         (30) 

Equation (28) becomes, 

euBeAe ˆˆˆˆˆ +=           (31) 

Where, 

 = 0
0      and        = 0  

Equation (29) becomes, 

eKue ˆˆˆ −=           (32) 

Where, 
 =                             (33) 

The state error equation can be obtained by substituting 
Eq. (43) into Eq. (42). 

eKBAe ˆ)ˆˆˆ(ˆ −=                                        (34) 

If the desired eigenvalues of matrix KBA ˆˆˆ −  are specified as 
µ1, µ2…µn+1, then the state feedback gain matrix K and the 
integral gain constant KI can be determined by pole placement 
technique for completely state controllable system. 

If the matrix P = 0  has a rank equal to the order of 
new system i.e. if the rank of matrix P is 5, hence the system 
is thus completely state controllable [7]. The state error 
equation. 
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euBeAe ˆˆˆˆˆ +=           (35) 
 

Control signal is given by an Eq. (32) and K̂  by Eq. (33). 
Closed loop poles of the original fourth order system are 
placed as, 
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Position of the fifth pole is however adjusted at µ5= 

−0.1548 to achieve zero steady-state error in minimum time. 
State feedback gain matrix for a fifth order system is obtained 
using pole placement. The state feedback gain matrix obtained 
is, 

 
K =     
    = 103.49 32.64 30.02 0.64   and 

89.6355 =−= IKK  

 
Closed loop speed responses are plotted with a command 

signal that comprises typical steps as shown in Fig. 4 (upper). 
The controller is evaluated then on linear model to ensure its 
suitability for the real system. Settling time for engine speed is 
observed to be 0.41 s with the linear and 0.85 s with the 
nonlinear model. Negligibly small overshoot of 2 % with 
linearized and 9.2 % with nonlinear model are observed. 
Results show that the responses of the states with linearized 
and nonlinear plant are in agreement. Fuel rack position is also 
plotted for both linearized and nonlinear plant. Due to 
augmentation of the integrator speed tracking is possible and 
steady-state error reduced to zero. 

 

 
Fig. 4 Speed responses of state feedback with an integrator that 

utilizes full range of rack actuation  

V. SENSITIVITY OF CLOSED LOOP PERFORMANCE TO 
PERTURBATIONS IN MODEL PARAMETERS 

All control problems, encounter discrepancies between the 
actual plant dynamics and the dynamics of the model used for 

controller design. The mismatch may appear due to un-
modelled dynamics, variation in system parameters, 
linearization of the nonlinear model about an equilibrium 
point or the approximation of complex plant behaviour by a 
simpler model to ease the modelling and controller design 
processes.  

It is also a fact that, closed loop systems are inherently 
robust against model uncertainties in contrast to the systems in 
open loop. Controllers that are not sufficiently robust can 
poorly perform or may lead to system instability. Therefore, in 
this part of the paper, sensitivity of the closed loop 
performance to the perturbations in the parameters of the 
original nonlinear model is investigated. 

The nonlinear model developed in [2] includes variables 
such as indicated thermal efficiency ηi , volumetric efficiency 
ηV, friction mean effective pressure fmep and temperature rise 
across the engine ΔTe. As applicable to any mathematical 
model, the dynamics of this model also may deviate from the 
physical engine, as a result of which the closed loop 
performance is likely to vary. It is therefore imperative to 
investigate the closed loop performance when the model is 
subjected to parameter variations. In this part, above four 
model parameters are varied one at a time by +10% and -10% 
from the nominal values and the closed loop performance of 
the tracking controller with such perturbed models is 
investigated. 

 

 
Fig. 5 Perturbations in ηi , ηv , ΔTe and fmep from their nominal 

estimations considered for sensitivity analysis 
 
Fig. 5 (a) through 5 (d) indicate the range of perturbations 

in the model parameters, ηv,  ΔTe and fmep respectively, from 
their nominal values due to +10% variation. Fig. 6, 7, 8 and 9 
show the corresponding closed loop response of the system for 
the perturbations in ηi, ηv, ΔTe and fmep. 
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Fig.6 Sensitivity of performance to +10% perturbations in ηi. 

 
When the nonlinear model is used without any perturbation 

in parameters, i.e. using their nominal values, the overshoot 
and the settling time are found to be 9.2% and 0.85 s 
respectively. Table II presents the performance parameters of 
the closed loop system with the perturbed models. Although 
the performance with perturbed models deviate compared to 
the ones with the nominal model but does not necessarily 
deteriorate. Positive perturbation in ηi and ηV both, have 
favourable effects on the performance since the overshoot and 
the settling time are reduced, and the vice-versa. Variation in 
ηi by +10% from its nominal value reduces the overshoot and 
the settling time to 2% and 0.7 s respectively. However, -10% 
perturbations in ηi is found to have increased the settling time 
and overshoot both. For +10% perturbation in ηv, the 
overshoot is reduced to 4.82 %, as also the settling time to 
0.81 s. 

 

 
Fig. 7 Sensitivity of performance to 10% perturbations in ηv 

 
Fig. 8 Sensitivity of performance to 10% perturbations in ΔTe 

 

 
Fig. 9 Sensitivity of performance to 10% perturbations in fmep 

 
TABLE II 

EFFECT OF PERTURBATIONS IN PARAMETERS OF THE ENGINE MODEL 
Model 

Parameters 
+10% -10% 

Mp (%) Ts (s) Mp (%) Ts (s) 
ηi 2.0% 0.70 27.5% 1.22 
ηv 4.82% 0.81 14.4% 1.02 
ΔTe 0.92% 0.85 9.3% 0.85 

fmep 10.8% 0.88 7.4% 0.83 
 
Reduction in ηv by 10% has the reverse effect with 

overshoot and settling time increased to 14.4% and 1.02 s. The 
perturbations in ΔTe and fmep have the negligible effects on 
the performance. It may be noted from Fig. 8 and 9 that, 
inspite of a significantly large variation of 10% variations in 
the parameters, the closed loop system remains stable and the 
objectives of speed regulation continue to be met. 

 

VI. CONCLUSIONS 
In this paper, the state-space model of the engine was 

augmented with an integrator for designing controller. with 
this design, speed tracking is achieved and steady-state error is 
reduced to zero. It is also observed that if the system 
parameters such as thermal efficiency, frictional losses, 
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volumetric efficiency and exhaust gas temperature are varied 
by as much as 10%, the closed loop response of the system 
is insensitive to such variation. This indicates that even if the 
controller is designed for new engine, it works even after 
several years of its use, indicating its robustness over the 
entire life of the engine.  

ABBREVIATIONS 
B Input matrix 

C Output matrix 

R Gas constant for air (J/kg.K) 

cp Specific heat (J/kg.K) 

M Torque (N.m) 

J Reduced moment of inertia (kg.m2) 

K State feedback gain matrix 

φ  Propeller pitch (Load) setting 

h Fuel rack position (mm) 

nex Polytropic constant of exhaust gas. 

 Normalized form of state vector 

 Normalized form of output 

 Normalized variable for propeller pitch 

 Mass flow rate of air from intake manifold to the  
engine (kg/s) 

 Mass flow rate of  exhaust from engine to  exhaust  
manifold  (kg/s) 

 Mass flow rate through compressor (kg/s) 

   Mass flow rate through turbine (kg/s) 

 Mass of air in intake manifold (kg) 

 Mass of exhaust gas in the exhaust manifold (kg) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

SUBSCRIPTS 
a Ambient condition/an actual parameter 
c Compressor 
e Engine 
ex Exhaust manifold 
in Inlet manifold 
ie Inlet manifold to engine 
ee Engine to exhaust manifold 
T Turbine 
tc Turbocharger 
o Steady state values 
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