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 
Abstract—This paper presents an approach for optimal cyber 

security decisions to protect instances of a federated Internet of 
Things (IoT) platform in the cloud. The presented solution 
implements the repeated Stackelberg Security Game (SSG) and a 
model called Stochastic Human behaviour model with 
AttRactiveness and Probability weighting (SHARP). SHARP 
employs the Subjective Utility Quantal Response (SUQR) for 
formulating a subjective utility function, which is based on the 
evaluations of alternative solutions during decision-making. We 
augment the repeated SSG (including SHARP and SUQR) with a 
reinforced learning algorithm called Naïve Q-Learning. Naïve Q-
Learning belongs to the category of active and model-free Machine 
Learning (ML) techniques in which the agent (either the defender or 
the attacker) attempts to find an optimal security solution. In this 
way, we combine GT and ML algorithms for discovering optimal 
cyber security policies. The proposed security optimization 
components will be validated in a collaborative cloud platform that is 
based on the Industrial Internet Reference Architecture (IIRA) and its 
recently published security model. 
 

Keywords—Security, internet of things, cloud computing, 
Stackelberg security game, machine learning, Naïve Q-learning.  

I. INTRODUCTION 

HE more ubiquitous and connected, the more unsafe and 
vulnerable – this is a simple rule of thumb in today’s 

connected world in which things, objects, processes, services, 
cloud bots, and human users need to seamlessly communicate, 
while performing online tasks of varying complexity.  

The Internet of Things (IoT) and Cloud computing bring 
new challenges to the existing landscape of cyber threats [1]-
[4]:  
 Security risks of systems and processes are continuously 

growing (i.e. risks concerning machine working 
conditions, information related to process performances, 
maintenance data);  

 The privacy of individuals is changing and becoming 
more vulnerable (i.e. risks related to purchasing 
preferences, medical records, social attitudes, ethical 
considerations);  

 Risks related to third-party suppliers and vendors are 
spreading (i.e. risks related to corrupt practices, 
disruption, data security breaches and espionage, 
outsourcing risks); 

 Security of physical environments, data, applications, etc. 
The existing security and privacy mechanisms relying on 

lightweight cryptography, standard privacy assurance methods 
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and secure protocols, are becoming less effective in the IoT. 
Trust management approaches are changing with broadening 
of the IoT business ecosystems, calling for new practices to 
detect fraudulent certificates and to trust online opinions.  

Critical infrastructures such as digital automation systems, 
manufacturing, the financial sector, etc. are getting more 
exposed to cybercrime, which results in additional net losses 
including both direct and indirect costs, reputation damage, 
and further effects on hundreds of people and companies who 
find more often their personal or corporate information stolen. 
Hence, one of the main challenges for cybersecurity 
researchers and practitioners is to decide to what extent 
existing approaches are worth integrating into the IoT, and 
where new IoT protocol designs may better accomplish 
privacy and security goals, overall [5]. These challenges bring 
a huge complexity of factors that need to be considered for the 
IoT and Cloud computing. For example, the top vulnerabilities 
in Cloud computing include [6], [7]:  
 Session ridings (when an attacker steals a user’s cookie 

and continues using the applications for which he/she 
does not have rights); 

 Insecure cryptography that provides a small entropy pool 
so that the numbers can be computed by brute force; 

 Data protection and portability when changing the cloud 
vendor; 

 Cloud provider lock-in (changing to another provider 
when needed, or combining services provided by various 
cloud provider); 

 Internet dependency. 
In this paper, we discuss some common cyber security 

issues related to the IoT and Cloud computing, and propose a 
distributed Game Theory (GT) model for ensuring cyber 
security of multiple instances of a federated platform, residing 
in the cloud. In section 2, we survey the existing GT 
approaches for maximizing cyber security in the IoT and in 
Cloud computing. Here, we consider four categories of GT 
approaches to Wireless Sensor Networks (WSN) security: (i) 
preventing Denial of Service (DoS) attacks, (ii) detecting 
intrusion, (iii) strengthening security, and (iv) detecting 
coexistence with malicious sensor nodes. In section 3, we 
summarize the future technological directions in decision 
support and GT in the IoT and Cloud computing, and identify 
the Stackelberg Security Games (SSG) and Machine Learning 
(ML) techniques as our candidate approach for security 
decision-making. Section 4 describes our decision-support 
approach to optimizing security in the cloud. The core 
problem to be addressed in this paper is about ensuring 
maximum cyber security on a B2B Internet platform where 
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individual firms can enter into supply chain agreements and 
enforce private contracts and transactions including data 
exchange. The context of our work is a European research 
project under Horizon 2020 programme. Finally, section 5 
concludes the paper.  

II. STATE-OF-THE-ART IN GAME THEORY FOR OPTIMIZING 

CYBERSECURITY IN THE IOT 

The problem of optimizing the trade-off between privacy 
and utility has been discussed in the literature notably in the 
context of statistical databases [8]-[12]. It is proven that the 
problem of maximizing privacy under utility constraint, 
assuming the existence of the prior knowledge, is equivalent 
to the user's best strategy in a zero-sum game against adaptive 
adversaries [13]. However, if we want to guarantee a certain 
level of privacy for the user and to maximize his/her utility, 
we cannot model the problem as a zero-sum game. One 
possible solution to this problem, as discussed in [14], 
involves a GT approach to privacy for designing optimal 
obfuscation mechanisms against adaptive inference. Such a 
game is formulated as a Stackelberg Game and uses linear 
programming to solve the identified problem.  

Currently, there is a plethora of GT algorithms and 
experimentations to balance and optimize privacy and security 
issues. For example, the authors in [15] explore several ways 
of combining security challenges and GT, i.e. intrusion 
detection systems (DIS), anonymity and privacy, 
cryptography, etc. The authors in [16] summarize 29 
publications with the focus on the use of GT approaches to 
formulate problems related to security and energy efficiency. 
Shen et al. in [17] summarize additional 30 publications on 
existing GT approaches to strengthen WSN security, which 
are classified into four categories: (i) preventing DoS attacks, 
(ii) detecting intrusion, (iii) strengthening security, and (iv) 
detecting coexistence with malicious sensor nodes. 

A. Game Theory Mechanisms for Preventing DoS Attacks  

GT mechanisms for preventing DoS attacks in sensor 
networks are based either on non-cooperative game algorithms 
[18]-[20], cooperative games [21] or repeated games [22], 
[23]. For example, the authors in [22] present a protocol based 
on repeated games, in which there are nodes that agree to 
forward packets but fail to do it (known as passive DoS). The 
jamming and anti-jamming attacks are modelled as a zero-sum 
stochastic game in [24]. Dong et al. in [25] establish an 
attacking-defending GT model for detecting active DoS 
attacks, in which the strategy space and payoff matrix 
describes both the IDS and the malicious nodes. 

B. Game Theory Mechanisms for Intrusion Detection 

Several GT frameworks for modelling IDS have been 
presented in literature; for example, the authors in [26] model 
IDS using a method similar to sampling in communications 
networks. The authors in [27], [28] analyse the interaction 
between an attacker and a host-based IDS using a dynamic 
two-player non-cooperative game. The authors in [29], [30] 
further discuss the available IDS techniques and model attacks 

using GT algorithms. They propose a framework for detecting 
malicious nodes based on a zero-sum approach for nodes in 
the forward data path. Mohi et al. in [31] model the interaction 
of nodes in WSN and IDS as a Bayesian game. Michiardi and 
Molva [32] use cooperative and non-cooperative GT 
algorithms to develop a reputation-based architecture with the 
aim to enforce cooperation. Xie et al. in [33] shows that non-
cooperative GT algorithms have the potential to improve 
performances and efficiency of anomaly detection schemes in 
WSN. The authors in [33] suggest the statistical models to be 
used over rule-based models as faster and more efficient for 
hierarchical structures. Qiu et al. in [34] propose an active 
defence model for WSN based on evolutionary GT. The 
authors in [35] analyse the cooperation stimulation and 
security in self-organized WSN under a GT framework. 

C. Game Theory Mechanisms for Strengthening Security 

GT mechanisms to strengthening security often refer to 
auction theory [36] and coalitional games [37]. For example, 
the authors in [36] propose the Secure Auction-based Routing 
(SAR) protocol, which uses the First-Price auctions to isolate 
suspicious sensor nodes. Similarly, the authors in [38] propose 
auction theory to be used to satisfy different users’ requests in 
manufacturing resource models, while the greedy method is 
used to further search for the optimal bid in the bid set.  

In addition, coalitional games establish specific 
characteristics functions, based on rules such as:  
 A sensor node will join a coalition only if it can create 

more payoff than being alone;  
 A coalition will exclude a sensor node if the sensor node 

cannot benefit the coalition. 
These are examples of rules under which the selfish sensor 

nodes that do not forward others’ data packets will hardly be 
admitted into coalitions because of their poor reputation. With 
such rules, sensor nodes are forced to participate in a coalition 
and those that cannot join into any coalitions, are under high 
suspicion of being interpreted as malicious. 

D.  Game Theory Mechanisms for Detecting Coexistence 
with Malicious Sensor Nodes 

GT mechanisms for detecting coexistence with malicious 
sensor nodes use two separated sets of strategies for describing 
behaviour of the sender and the receiver, with an assumption 
that one of them is a malicious node and the other is a regular 
sensor node in WSN [39]. In this case, the overall net utility is 
calculated based on various combinations of the sender-
receiver interaction strategies. 

III. FUTURE DIRECTIONS IN SECURING THE IOT AND CLOUD 

COMPUTING 

In the IoT, objects and “things” often communicate via 
Cloud computing servers, which enable the use of a collection 
of distributed services, applications, information and 
infrastructure, and which are comprised of pools of 
computing, network, information and storage resources [40]. 
Cloud computing brings new functionality such as storage and 
management, business processes execution, etc., to the IoT. In 
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parallel, it brings new challenges and risks for data security, 
privacy and trust. As noted in [41], security issues and their 
solutions in one area are not always directly applicable in 
others; for example, the security solutions used in ad-hoc 
networks are similar to those in sensor networks, but the 
defense mechanisms are not directly applicable for several 
reasons:  
 Public key cryptography used in ad-hoc networks is too 

expensive to be implemented in sensor networks;  
 Symmetric key cryptography protocols from ad-hoc 

networks are unsuitable for sensor networks. 
Cybersecurity challenges related to IoT devices and Cyber 

Physical Systems (CPSs) affect the entire IoT ecosystem, 
leading to malfunction of devices and control systems for 
manufacturing, energy suppliers, implying severe financial 
losses or, in the worst case, danger to people’s lives. The state 
of the art in the development and implementation of CPSs 
does not deliver secure software yet. Many security enhancing 
programming languages have been proposed, but none have 
had traction in CPSs [42]. For example, some problematic 
aspects of the existing security enhancing programming 
languages could be:  
 They do not provide support for type checking of data 

objects passed through interfaces;  
 Object types might have attributes, which need to be 

formulated at the various levels, including the level of 
interfaces for authentication;  

 They are not fast enough for CPSs,  
 They neither offer predictable behaviour nor features that 

significantly enhance security (i.e. update security 
features).  

As stated in [42], more research is needed in areas such as 
increasing confidence in sensor readings by checking 
consistency with other sensors and information sources. At the 
same time, security of service interoperability plays an 
important role supporting both security and availability of 
services (and data) through their interoperability. Given the 
importance of cloud services to the IoT, the challenges related 
to cloud-to-cloud interoperability and security need to be 
better explored, too [43]. Some novel approaches for security 
in cloud computing add more intelligence in the data itself 
using, i.e. the framework of Trusted Computing (TC) and 
privacy enhanced business intelligence that implements the 
encryption of all cloud data via methods such as: searchable 
(or predicate) encryption [44], homomorphic encryption [45] 
and private information retrieval (PIR) [46].  

Here, we explore the usage of the SSG for formulating 
distributed strategies in the cloud. As stated in [47], the 
Stackelberg equilibrium is achieved if and only if the 
continuous dynamics converge to a fixed point corresponding 
to the Stackelberg equilibrium, while minimizing the costs. 
We enhance the SSG model by recording the states and 
actions of the attackers and the defenders. We also apply 
Machine Learning (ML) techniques to assist decision-making 
in network security.  

IV. SECURITY GAMES AND MACHINE LEARNING FOR 

OPTIMAL DISTRIBUTED SECURITY DECISIONS 

A. Stackelberg Security Games (SSGs) for Distributed 
Decisions 

A SSG is a two-player GT model, which is used to 
formulate the interaction between the defender and the 
attacker. In SSG, the defender commits to a strategy S, and the 
attacker optimizes its rewards REW according to the 
defender’s action A [48]. In SSG, the attacker knows the 
mixed strategy S of the defender, but not the exact action A the 
defender will take in real time. In real world security 
situations, the defender is often uncertain about the type of the 
defender, which is considered by the Bayesian SSG [48].  

In our game, we are focused on repeated interaction 
scenarios between defenders and attackers in the cloud. Our 
work follows Repeated SSG and a model called Stochastic 
SHARP [49]. SHARP extends the standard Rationality models 
in Repeated Stackelberg Games (BRRSG), by evaluating 
some alternative aspects of the security interaction, during 
decision-making [49] such as:  
 Success/failure of the opponent’s past actions;  
 Similarity between exposed and unexposed areas of the 

surface, and  
 Probability weighting function based on the existing 

human behaviour models.  

B. Machine Learning for Decision Support in Network 
Security  

To learn specific values of the attacker’s behaviour for each 
attack, which is necessary to find the optimal decisions on the 
defender performances, the SHARP model [49] employs the 
SUQR [50]. SUQR is based on work in behavioural decision-
making from 1972 [51], [52], and its main idea is that 
individuals have their own evaluations of each alternative 
during decision-making. For example, the subjective 
evaluations (݈݁ܽݒଵ  encode information about the	௡ሻ݈ܽݒ݁	…
importance of security attributes as considered either by the 
defenders or by the attackers.  

Here, in order to formulate a Subjective Utility (SU) 
function, we briefly introduce the necessary notation. 

 ܴܧ ௜ܹ
ௗ௘௙ is the defender’s reward for selecting action A to 

protect security resource i;  

 ܲܧ ௜ܰ
ௗ௘௙ is the defender’s penalty for selecting action A 

that will not protect security resource i;  
 ܴܧ ௜ܹ

௔௧௧ is the attacker’s reward for targeting security 
resource i, which is not adequately protected; 

 	ܲܧ ௜ܰ
௔௧௧ is the opponent’s penalty for targeting security 

resource I, which is adequately protected. 
A SU function of the attacker ܵ ௜ܷ

௔௧௧	can be defined as a 
linear combination of three elements: (i) the defender’s 
coverage probability for security resource i, (ii) the attacker’s 
reward ܴܧ ௜ܹ

௔௧௧and (iii) the attacker’s penalty ܲܧ ௜ܰ
௔௧௧ (1).  

 
SU୧

ୟ୲୲ 	ൌ 	 evalଵS୧ 	൅	evalଶREW୧
ୟ୲୲ 	൅	evalଷPEN୧

ୟ୲୲	      (1) 
 
Two alternative approaches to learning the attacker’s 
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behaviour and the defender’s performances are given in [53]: 
 Bayesian SUQR, which implements a Bayesian 

Stackelberg game with infinite types, and  
 Robust SUQR, which combines data-driven learning and 

robust optimization to address settings without sufficient 
data available to provide a reasonable hypothesis about 
the distribution of the attack values. 

In our approach, in addition to the SHARP and SUQR 
models from [49], we employ reinforced ML algorithms to 
complement GT-based optimal security decisions. Reinforced 
learning is a general-purpose framework for Artificial 
Intelligence (AI), which similarly to GT, selects specific 
actions in order to maximize future rewards, and provides 
learning features like memory, conditional computations, etc. 
The recent comparison of the efficiency of Q-Learning 
algorithms (such as Minmax and Naïve Q-Learning) and 
traditional Markov games, shown that Naïve Q-Learning is 
promising approach compared to the Markov game and 
Minmax Q-Learning [54]. In order to solve some remaining 
limitations, the authors in [54] suggest that it is necessary to 
further study how to tune the parameters of a Naive Q-
Learning algorithm given real data from a series of attacks, 
which we expect to be one of the core contribution of our 
mixed GT and ML security optimization.  

V. DECISION SUPPORT FOR OPTIMIZING CYBERSECURITY OF 

THE FEDERATED IOT PLATFORM INSTANCES 

This paper presents our approach to cybersecurity research 
challenges as defined in the NIMBLE project (H2020 Grant 
No. 723810), and which combines SSG, SHARP and Naïve 
Q-Learning in finding the optimal security decisions in the IoT 
and Cloud computing. The main objective of the NIMBLE 
project is to create a collaborative and federated platform for 
industry, manufacturing, business and logistics in Europe. The 
NIMBLE platform is multi-sided and cloud-based. It includes 
various end-to-end IoT solutions and devices, used to provide 
communication and collaboration via cloud-based sector-
centric platform instances (Fig. 1). 

The main security challenges in NIMBLE include risks at 
the level of edge devices, gateways and communication, cloud 
services, and lifecycle management data. The overall 
architecture is distributed, which requires non-centralized 
algorithms to be used for computing mixed-strategy equilibria 
and for translating these equilibria in specific security policies. 
The security policies vary from one federated platform 
instance to the other, and by employing SSG, we will enable 
each platform instance to set its specific “randomization 
policy” for which the opponent can further choose a “scanning 
rate” (subjective evaluations of each alternative during 
decision-making) after observing the “randomization policy”. 
For example, for the platform instance defenders, the trade-off 
is expected to be between the cost of scanning and protecting 
the platform nodes, while for the attacker, the trade-off is 
between the cost of scanning and attacking the real node. 

 

  

Fig. 1 NIMBLE federated collaboration network with sector-centric 
platform instances 

 
Employing the SHARP and SUQR models in NIMBLE 

enables the analysis of the attacker-defender behaviour and 
learning about their performances (their states and actions). 
Fig. 2 illustrates the OPtimization Reinforced learning 
Architecture (OPRA), which will be implemented as a security 
optimization component in the NIMBLE platform. The OPRA 
components are inspired by the Google DeepMind’s GORILA 
(General Reinforcement Learning Architecture), a framework 
for massively distributed reinforcement learning [55].  

The OPRA security optimization components include: 
 Platform Instance Defender: Each defender process 

contains a replica of repeated SSG model and of the 
distributed Q Network, which is a Naïve Q-Learning 
model. Both models, repeated SSG and Q Network 
complement each other in learning about optimal security 
decisions in the cloud.  

 Attacker: Each attacker process contains a replica of 
repeated SSG model and of the distributed Q Network, 
which are used in learning about the attacker’s behaviour 
(the outcomes of the attacker’s actions on the distributed 
environment).  

 Distributed Memory contains records of evaluated states 
and actions generated by the attacker. 

 Parametrized Policies receives gradients from the 
Platform Instance Defenders, and iteratively uses these 
gradients to optimize (update) the parameter vector and to 
search for an optimal security policy. The optimization is 
based on a gradient descent algorithm (the Q-Learning 
algorithm), which iteratively updates the parameters and 
estimates the gradient based on experience (Fig. 2).  
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Fig. 2 NIMBLE OPtimization Reinforced learning Architecture 
(OPRA) based on SSG and Naïve Q-Learning 

VI. CONCLUSION 

GT has been proved in the literature and in numerous real 
world successfully deployed applications as an approach for 
improving WSN performance objectives caused by the limited 
capabilities of sensor nodes in terms of computation, 
communication, and energy (i.e., GT can maximize sensing 
coverage, extend operation periods, or improve security 
aspects via adequate mathematical generalization). 
Furthermore, GT mechanisms can be used to monitor 
behaviour of sensor nodes and to evaluate reputation of each 
node based on collected observations, which can be used to 
predict the future behaviour of nodes in WSN. Similarly to 
WSN, the distributed environment of the IoT and the Cloud 
computing can be seen as an experimental playground for 
distributed strategies for cyber security. Therefore, in this 
paper, we analyse the background GT approaches to be used 
for optimal security decisions, which we further complement 
with Naïve Q-Learning, a reinforced learning algorithm. 
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