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Abstract—In this paper, we are interested in attitude control of a 

satellite, which using wheels of reaction, by state feedback. First, we 
develop a method allowing us to put the control and its integral in the 
state-feedback form. Then, by using the theorem of Gronwall-
Bellman, we put the sufficient conditions so that the nonlinear 
system modeling the satellite is stabilisable and observed by state 
feedback. 
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I. INTRODUCTION 
HE attitude control, in the aeronautic area, occupies a 
particular place in the automatic control researches. In 

more of the severe criteria imposed by the schedules of 
conditions, in terms of precision and control robustness, the 
interest related to such systems also rests on structural 
considerations. 

Indeed, these nonlinear systems being, multivariable and 
strongly sensitive to the disturbances, constitute benchmarks 
for the checking of the control laws having to be synthesized 
for less constrained industrial systems. 

In addition, several works were established on the attitude 
control, where various approaches were used, and in particular 
PID regulators [7], quadratic regulation (LQR) [5], robust 
control [8,10]. Many works considers simplified linear 
models, which neglect a part of the system dynamics, or are 
based on an adaptive identification being able to weigh down 
calculations of the control laws. 
Our results are based on a nonlinear model while avoiding any 
simplifications, as it is the case in many related works.  

The dynamic model of a satellite with earth pointing, using 
a SCA 3axes  maneuvered by the reaction wheels and the 
magneto couplers (MC), and evolving under the effect of the 
disturbances, results from the equations of the dynamics and 
the movement cinematic of the satellite[4,7,9]. 

The mathematical model of the system is that given by the 
following state space representation:  
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 Where:  
- 0)0( xx = ; 

- )()( thtu w
•−=  : is the control where h(t) is the angular 

momentum of the wheel cluster; 

- ),,,,,()(
...
ψθφψθφ=tx  : the state representing respectively 

the Eulerian angles and their derivatives. 

- iCGBA ,,,  : matrixes with respectively (n, n) ;( n, p) ;( n, 
p) ;( n, n) dimensions. 
 

In this work, we present a control law computed by double 
poles placement; the studied model is nonlinear. In the second 
section, we present a control design method applied to the 
linear part of the system, which we generalize thereafter with 
the nonlinear model. In the next section, we treat a feedback 
control based on an observer that is generally used when a 
part or all variables of state are not measurable. The proof of 
the controlled system stability is established using the 
Bellman-Gronwall lemma [2, 3]. 

II. STATE-FEEDBACK  STABILIZATION 
In this section, we consider the system of attitude control 

for the satellite described by the nonlinear model above. We 
will carry out the synthesis, by steps, of the stabilizing control.  
 

A.  Linear System Design 
Neglecting the quasi-bilinear term in the system of equation 

(1), we obtains the following linear system:  
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Proposition: 
Consider the system described by the simplified model (2), 

and let the pair (A1, B1) be controllable, with:   
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There exist a state feedback of the form u (t) = - K x (t) that 
stabilise the system. 
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Proof: 
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From (2) and (3), the new system becomes:  
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Where I and 0 are respectively identity and null matrix. 
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Where: 

p)p,(n is   and p)np,(n is 
0           0

G         
11 +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

I
B

B
A

A  

If the pair (A1, B1) is controllable, then there is a linear state 
feedback allowing the system (5) to be stable. To design this 
control, we will develop two successive poles placements; the 
first pole placement allows having a relation between  
u (t) and its integral 
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The second pole placement is then: 
)()( 0 txKtu −=                                    (7) 

So, the two successive poles placements, enabled us to put  
u(t) and its integral in the state – feedback form. 
 

1st poles placement 
Let us seek a gain matrix K such as )( 11 KBA −  is 

asymptotically stable, and then stabilizes the system (5). 
Hence:   
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Remark:  K2 is chosen to be invertible matrix. 
So we have: 
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Let us replace this integral in the linear system (2), we 
obtains: 
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Such as:    
1
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1

22 .et  .. −− −=−= KGBBKKGAA  
 

2nd  poles placement 
Let us seek a gain matrix K0, such that the matrix (A2 - 

B2 K0) is asymptotically stable and then stabilizes the system 
(8). 

Consider the control: 

)()( 0 txKtu −=  
The closed loop system is: 

( )txFxKBAtx 0022 )()( =−=&                                          (9) 

The eigenvalues of the matrix F0, λi (λi ≠λj pour i ≠ j ) are 
such as Re (λi)<0. Hence the system that models the satellite 
attitude movement is stable.  

The following result enables us to give the stability 
conditions of the nonlinear system. 
 

B.  Application to the Non Linear System Stabilization  
Consider the non linear system (1) that models the satellite: 
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Where the choice of the control law can be derived from the 
two poles placement, it’s easy to see that the non linear system 
can be written in the following form: 
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Where, according to the previous calculation, F0 is 
asymptotically stable. 

The matrix F0 is asymptotically stable, then from the Hille-
Yoshida theorem, there exists M>0 and ω<0 such as: 

wttF eMet   :0 0 ≤≥∀                            (11) 
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For Rx ≤0 , the system (10) controlled by the linear state feed 

back: ( ) ( )txKtu 0−=  
And then is asymptotically stable. 
Where: iδ  is a matrix that depends on the control choice. 

Proof: 
From (1), (2)  et (9), we can write: 
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The studied system is: 
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The solution of the system (13) is: 
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Application of Hille-Yoshida theorem leads to: 
The matrix F0 is asymptotically stable, if there exists M>0 and 
ω<0 such as: 
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Hence: 
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From the Bellman – Gronwall lemma [2]: 
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III.  OBSERVATION AND STABILIZATION 

We consider the non linear system representing the satellite 
(10); we will investigate the case when states measurements 
are not all available, i.e. it is not possible to design a control of 
the form: ))(()( txgtu = .then a linear feedback on the estimate 
state of x (t) is considered: 

                      )(.))(( tzKtzg −=                               (14)                                                                    
Where z (t) is the estimation of x(t). 
The system considered is written in the form: 
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Without loss generality, let p =1. The system considered will 
be described by: 
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We design an observer modeled by the equation: 
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Our objective is to show that the dynamic system with the 

augmented state vector [ ]Txtw ε      )( = is asymptotically 
stable. 

 
Main hypotheses 

1-The pair (F0, D) is detectable, i.e.: there exist a matrix L 
such that: F=F0-LD is asymptotically stable, which implies 
that there exist 02 fM and 02 pw , 0≥∀t : 
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For Rw ≤0 , and under the previous main hypotheses, the 

system (15) controlled by the linear state observer feedback 
(14) satisfies for all 0≥t : 

wtewMtw 00)( ≤                                                            (18)                     

Hence the system (15) is asymptotically stable and (16) 
asymptotically observes (15). 
 

Proof: 
The system and the estimation error xz −=ε  are 

described by equations: 
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Where: F is chosen to verify: DLFF .0 −= . 

Hence, such dynamical system with a state vector )(tw  is 
written as: 
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The solution of the system (21) is written as: 
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The theorem of Schumacher [6] asserts that: 
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Application of the Bellman- Gronwall’s lemma leads to the 
result in theorem; under the main hypotheses, we have: 
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Hence the system (15) is asymptotically stable and 
asymptotically observed by (1 6). 
 

IV.  CONCLUSION 

In this paper, we proposed a general stabilization method, 
with linear state – feedback laws, for a micro satellite that uses 
the wheels of reaction and whose model is nonlinear. In the 
first part, we simplified the system by treating only its linear 
part; then we proposed a control law by successive poles 
placement. 

By generalizing this control to the nonlinear model of the 
satellite, we studied the problem of state feedback stabilization 
and observation, while giving the conditions so conditions that 
the system considered is stabilisable. 

The synthesis of the control suggested is based on the 
solution of the state space equation and on the Bellman-
Gronwall lemma. 
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