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Abstract—In this paper, the steady laminar three-dimensional 

boundary layer flow and heat transfer of a copper (Cu)-water 
nanofluid in the vicinity of a permeable shrinking flat surface in an 
otherwise quiescent fluid is studied. The nanofluid mathematical 
model in which the effect of the nanoparticle volume fraction is taken 
into account is considered. The governing nonlinear partial 
differential equations are transformed into a system of nonlinear 
ordinary differential equations using a similarity transformation 
which is then solved numerically using the function bvp4c from 
Matlab. Dual solutions (upper and lower branch solutions) are found 
for the similarity boundary layer equations for a certain range of the 
suction parameter. A stability analysis has been performed to show 
which branch solutions are stable and physically realizable. The 
numerical results for the skin friction coefficient and the local Nusselt 
number as well as the velocity and temperature profiles are obtained, 
presented and discussed in detail for a range of various governing 
parameters. 
 

Keywords—Heat Transfer, Nanofluid, Shrinking Surface, 
Stability Analysis, Three-Dimensional Flow. 

I. INTRODUCTION 
ANOFLUIDS are dilute liquid suspensions of 
nanoparticles with size smaller than ~100nm. 

Conventional heat transfer fluids such as oil, water, and 
ethylene glycol mixture are well known as poor heat transfer 
fluids. Thus, effective thermal conductivity of the nanofluids 
is expected to enhance the heat transfer performance [1]. The 
innovative technique, which uses a suspension of 
nanoparticles in the base fluid, was first introduced by Choi 
[2] in order to develop advanced heat transfer fluids with 
substantially higher conductivities. The presence of the 
nanoparticles in the nanofluid increases the thermal 
conductivity and therefore, substantially enhances the heat 
transfer characteristics of the nanofluid. A very good 
collection of the published papers on nanofluids can be found 
in the book by Das et al. [3] and in the review papers by Wang 
and Mujumdar [4]-[6], and Kakaç and Pramuanjaroenkij [7]. 
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Many researches on stretching sheet problem have been 
conducted as mentioned by Miklavcic and Wang [8], Das [9] 
and Prasad et al. [10]. On the other hand,there isless number 
of researches in the literature on the shrinking sheet problem. 
From the consideration of continuity, Crane’s stretching sheet 
solution induced far field suction towards the sheet, while 
flow over a shrinking sheet would give rise to a velocity away 
from the sheet [8], [10]. From a physical point of view, 
vorticity generated at the shrinking sheet is not confined 
within a boundary layer and a steady flow is unlikely to exist 
unless adequate suction on the surface is imposed [8], [10]. 

In this paper, we extend the shrinking sheet problem to a 
three-dimensional space in Cu-water nanofluid. The purpose 
of this paper is to study the properties of the flow and heat 
transfer due to a shrinking sheet with suction. Using 
appropriate similarity variables, the partial differential 
equations are transformed into ordinary differential equations 
and then are solved numerically. Since dual solutions are 
found for some range of parameters value, a stability analysis 
is performed in order to determine which solution is physically 
realizable. To the best of our knowledge, the stability analysis 
of the present problem has not been considered before and 
thus the reported results are original and new. 

II. GOVERNING EQUATIONS 
We consider the three dimensional boundary layer flow of a 

Cu-water nanofluid in the vicinity of a permeable shrinking 
flat surface in an otherwise quiescent fluid. It is assumed that 
the nanofluid is incompressible and the flow is laminar. A 
locally orthogonal set of coordinates ( , , )x y z  is chosen with 
the origin O  in the plane of the shrinking sheet. The x - and y
- coordinates are in the plane of the shrinking sheet, while the 
coordinate z  is measured in the perpendicular direction to the 
shrinking surface as shown in Fig. 1. It is assumed that the flat 
surface is shrinking continuously in both the x - and y -
directions with the velocities ( )wu x a x= and ( )wv y b y= , 
respectively, where a and b  are negative constants. It is also 
assumed that the surface temperature is wT  and the ambient 
temperature is T∞ where wT  and T∞ are constants, with .wT T∞>  
The nanofluid is the suspension of solid particles in nano-scale 
in a base fluid. The nanoparticles considered here is copper, 
Cu, and the base fluid is water. The thermophysical properties 
of the base fluid and the nanoparticles are given in Table I. 
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Using the mathematical model for nanofluids proposed by 
Tiwari and Das [11], the governing equations are given by 
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Here u , v  and w  are the velocity components along the 
,x y− −  and z −  axes, respectively, 0w  is the mass velocity 

with 0 0w <  for suction and 0 0w >  for injection, T  is the 
temperature of the nanofluid and λ  is the shrinking parameter. 
Further, nf nf,μ ρ  and nfα are the effective viscosity, the 
effective density and the effective thermal diffusivity ofthe 
nanofluid, which are defined as (see [12]) 
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where φ  is the solid volume fraction of the nanofluid, 

nf( )pCρ  is the heat capacitance of the nanofluid, nfk  is the    
effective thermal conductivity of the nanofluid and  the 
subscript ‘nf’ represents the nanofluid, ‘f’ represents the base 
fluid and ‘s’ represents the solid or nanoparticles. The 
expression of nfμ  has been proposed by Brinkman [13]. It is 
worth mentioning that (6) is restricted to spherical 
nanoparticles where it does not account for other shapes of 
nanoparticles. Other models for the effective thermal 
conductivity of the nanofluid, nfk   can be found, for example, 
in the paper by Ding et al. [14]. 

III. STEADY-STATE FLOW CASE 
We introduce now the following similarity variables: 
 

1/2
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where primes denote differentiation with respect to η and fν  is 
the kinematic viscosity of the base fluid. Substituting the 
similarity variables (7) into (1)-(4), it is found that the 
continuity (1) is automatically satisfied, and (2)-(4) are 
reduced to 
 

2
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2
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and the boundary conditions (5) become 
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Here f fPr /ν α= is the Prandtl number, /c b a= is the ratio of 

the surface velocity gradients along the y - and x -directions, s 
is the suction parameter, and 1ε and 2ε are two constants 
relating to the properties of the nanofluid, defined by 
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It is worth mentioning that for 0s =  (impermeable surface) 

and 0c =  (plane shrinking sheet), (8)-(10) reduce to 
 

2
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However, for 0s =  (impermeable surface) and 1c =  

(axisymmetric shrinking sheet), (8)-(10) reduce to 
 

2
1 ''' 2 '' ' 0f f f fε + − =                          (16) 

2 '' 2 ' 0
Pr

fε θ θ+ =
                             

(17) 

 
with the boundary conditions (15). Therefore, we will confine 
our attention here only to the case when 0 1c≤ ≤ . 
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Fig. 1 Physical model and coordinate system 

 
The physical quantities of practical interest are the local 

skin friction coefficients f xC  and f yC and the local Nusselt 
number xNu , which are defined as 
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where w xτ  and w yτ  are the shear stresses in the x - and y -
directions, respectively, and wq  is the heat flux from the 
surface of the shrinking sheet, which are given by 
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Substituting (7) into (18) and using (19), we obtain 
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where fRe ( ) /x wu x x ν=  and fRe ( ) /y wv y y ν= are the local 
Reynolds numbers based on the velocities ( )wu x and ( )wv y , 
respectively. 

 
TABLE I 

THERMOPHYSICAL PROPERTIES OF FLUID AND NANOPARTICLES a 
Physical properties Fluid phase(water) Cu (Copper) 
Cp (J/kg K) 4179 385 
ρ (kg/m3) 997.1 8933 
k (W/mK) 0.613 400 
α × 107 (m2/s) 1.47 11163.1 
β × 10-5 (1/K) 21 1.67 
aOztop and Abu-Nada [12] 

IV. STABILITY ANALYSIS 
It has been shown in some papers ([16] or [17]) that dual 

(lower and upper branch) solutions exist. In order to determine 
which of these solutions are physically realizable in practice, a 
stability analysis of (8)-(11) is necessary. Following Weidman 
et al. [16], a dimensionless time variableτ has to be 
introduced. The use of τ is associated with an initial value 
problem and this is consistent with the question of which 
solution will be obtained in practice (physically realizable). 
Thus, the new variables for the unsteady problem are 
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Substituting (21) into (2)-(4), we obtain 
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subject to the boundary conditions 
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To determine the stability of the solution 

0 0( ), ( )f f g gη η= =  and 0 ( )θ θ η=  satisfying the boundary-
value problem (8)-(11), we write (see [16] or [17]) 
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where γ is an unknown eigenvalue parameter, and  ( , ),F η τ

( , )G η τ and ( , )S η τ are small relative to 0 ( ),f η 0 ( )g η and 0 ( ).θ η
Substituting (26) into (22)-(24), we obtain the following 
linearized problem: 
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As suggested by Weidman et al. [16], we investigate the 
stability of the steady flow and heat transfer solution 0 ( ),f η

0 ( )g η and 0 ( )θ η by setting 0τ = , and hence 0 ( ),F F η=

0 ( )G G η= and 0 ( )S S η=  in (26)-(28) to identify initial growth 
or decay of the solution (25). To test our numerical procedure 
we have to solve the linear eigenvalue problem: 
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It should be mentioned that for particular values ofλ, s and 
c, the corresponding steady flow solution 0 ( ),f η 0 ( )g η and 

0 ( )θ η , the stability of the steady flow solution is determined 
by the smallest eigenvalue 1γ . According to Harris et al. [18], 
the range of possible eigenvalues can be determined by 
relaxing a boundary condition on 0 '( ),F η 0 '( )G η or 0 ( )S η . For 
the present problem, we relax the condition that 0' ( ) 0G η →  as 
η → ∞  and for a fixed value of γwe solve the system (31-33) 
along with the new boundary condition 0 ''(0) 1G = . 

V. RESULTS AND DISCUSSION 
The system of nonlinear ordinary differential equations (8), 

(9) and (10) subject to the boundary conditions (11) was 
solved numerically using the function bvp4c in Matlab for 
different values of the nanoparticle volume fraction φ , suction 
parameter s andsurface velocity gradients ratio c. Following 
Oztop and Abu-Nada [12], the Prandtl number Pr is set equal 
to 6.2 (water) and the range of nanoparticle volume fraction is 
considered as 0 0.2φ≤ ≤ , in which 0φ =  corresponds to the 
regular base fluid. The dual (first and second) solutions are 
obtained by setting different initial guesses for the missing 
values of ''(0)f , ''(0)g , and '(0)θ , where all profiles satisfy 
the far field boundary conditions (11) asymptotically. The 
effects of the nanoparticle volume fraction φ, suction 
parameter s, surface velocity gradients ratio c, and the Prandtl 
number Pr on the skin friction coefficient, Nusselt number, 
velocity profiles and temperature profiles are analyzed for the 
Cu–water nanofluid. Since the present problem has more than 
one solution (dual solutions), the bvp4c function requires an 
initial guess which should satisfy the boundary conditions and 
reveals the behavior of the desired solution. While it is easy to 
find the first (upper branch) solution even using a poor initial 
guess, it is very difficult however to find the second (lower 
branch) solution. To overcome this difficulty, we begin with a 

set of parameter values for which the problem is easy to be 
solved. The obtained results are then used as initial guess for 
the solution of the problem with small variation of the 
parameters. This step is repeated until the desired values of 
parameters are reached. This technique is called continuation 
[19], [20]. 

 
TABLE II 

COMPARISON OF REDUCED SKIN-FRICTION COEFFICIENT AND REDUCED 
NUSSELT NUMBER FOR SOME VALUES OF c a 

c 
Upper Branch Lower Branch 

f''(0) g''(0) (-)θ'(0) f''(0) g''(0) −θ'(0) 
0.0 

 
2.5290 

[2.5290] 
- 

[   -    ] 
6.8225 

[6.8225] 
0.5847 
[0.5847] 

- 
[   -    ] 

6.6931 
[6.6931] a 

0.2 2.4444 2.7061 6.7371 0.7165 2.4073 6.6086 
0.5 2.2885 2.4777 6.5946 0.9764 2.1097 6.4708 
0.8 2.0403 2.1404 6.4172 1.4444 1.7315 6.3254 
aRohni et al.  [15] 

 
In order to validate our numerical results, a comparison of 

the reduced skin friction coefficient and the reduced Nusselt 
number has been made as shown in Table II when λ= −1, 
s=2.1, and 0.2φ = . The present results shows an excellent 
agreement with those reported by Rohni et al. [15],thus gives 
us confidence on the accuracy of our numerical results 
presented in this paper. Figs. 2 to 10 show the existence of 
dual solutions for the shrinking sheet problem. The solution 
exists up to some critical value of λ , say cλ , beyond which 
the boundary layer separates from the surface and the solution 
based upon the boundary-layer approximations are not 
possible. Some values of cλ are presented in Table III for 
various values of φ , s and c. It can be seen that the absolute 
value of cλ increases with the increase of nanoparticle volume 
fraction parameter φ  and suction parameters, while it 
decreases with the increase of surface velocity gradient ratio. 

 
TABLE III 

THE VALUES OF λc FOR VARIOUS VALUES OF φ , s and c 
φ  s c λc 

0 2.1 0.5 -0.8326 
0.05 2.1 0.5 -1.0239 
0.1 2.1 0.5 -1.1490 
0.2 2.1 0.2 -1.4585 
0.2 2.1 0.5 -1.2353 
0.2 2.1 0.8 -1.0528 
0.2 2.3 0.5 -1.4817 
0.2 2.5 0.5 -1.7507 
0.2 2.7 0.5 -2.0420 

 
The variations of the reduced skin friction coefficient ''(0)f  

and ''(0)g with λ  are shown in Figs. 2-7 for which the effect 
of parameter φ , s and c are investigated. It can be seen that 
the skin friction coefficient increases with nanoparticle 
volume fraction and suction parameter. Physically this means 
increasing the magnitude of φ and s will consequently 
increases the heat transfer rate at the surface. On the other 
hand, the reverse effect occurs when the surface velocity 
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gradient ratio increases. As seen from the figures, the values 
of ''(0)f  and ''(0)g  are always positive (for all the first 
solution) when 0λ < until some critical value cλ . A positive 
sign for ''(0)f  and ''(0)g implies that the fluid exerts a drag 
force on the plate while a negative sign implies the opposite. 

Figs. 8-10 illustrate the variations of the reduced Nusselt 
number -θ'(0) with λ due to the effect of the nanoparticle 
volume fraction φ , suction parameter s, and surface velocity 
gradient ratio c, respectively, when default parameter values 
are fixed as φ =0.2, s=2.1, and c=0.5, unless stated otherwise. 
From these figures, the nanoparticle volume fraction 
parameter gives the most significant effect on the reduced 
Nusselt number, while the surface velocity gradient ratio is the 
less significant factor. 

The samples of velocity and temperature profiles are 
presented in Figs. 11-13. These profiles have essentially the 
same form as in the case of regular fluid ( 0)φ = . Figs.11-13 
show that the far field boundary conditions (11) are satisfied 
asymptotically, thus support the validity of the numerical 
results, besides supporting the existence of the dual solutions 
shown in Figs. 2-10. 

 

 

Fig. 2 Variation of ''(0)f  with λ for different values of φ when 
2.1s = and 0.5c =  

 

 

Fig. 3 Variation of ''(0)f  with λ for different values of s when 
0.2φ = and 0.5c =  

 

Fig. 4 Variation of ''(0)f  with λ for different values of c when 
0.2φ = and 2.1s =  

 

 

Fig. 5 Variation of ''(0)g  with λfor different values of φ when 
2.1s =  and 0.5c =  

 

 

Fig. 6 Variation of ''(0)g  with λ for different values of s when 
0.2φ = and 0.5c =  

 

 

Fig. 7 Variation of ''(0)g  with λ for different values of c when 
0.2φ = and 2.1s =  
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Fig. 8 Variation of '(0)θ−  with λ for different values of φ when 
2.1s =  and 0.5c =  

 

 

Fig. 9 Variation of '(0)θ−  with λ for different values of s when 
0.2φ = and 0.5c =  

 

 

Fig. 10 Variation of '(0)θ−  with λ for different values of c when 
0.2φ = and 2.1s =  

 

 
Fig. 11 Velocity profiles '( )f η  for some value of nanoparticle volume 

fraction φ  
 

 
Fig. 12 Velocity profiles '( )g η  for some value of nanoparticle volume 

fraction φ  
 

 
Fig. 13 Temperature profiles ( )θ η  for some value of nanoparticle 

volume fraction φ  
 

A stability analysis is performed using bvp4c in Matlab to 
determine which solution is more stable. Numerical solutions 
obtained from the steady ordinary differential equation (8)–
(10) need to be used while solving the linear eigenvalue 
problem (31)–(33). The smallest eigenvalue 1γ  for some 
values of s and λ are shown in Table IV when Ԅ=0.2 and 
c=0.5. The results show that all the upper branch solutions 
have positive eigenvalue 1γ  while all the lower branch 
solutions have negative eigenvalue 1γ . We conclude that the 
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upper branch solution is stable while the lower branch is 
unstable over time. Notice that as λ approaches critical value 

cλ , the smallest eigenvalue becomes closer to zero. In fact the 
eigenvalue signs changed from positive to negative at the 
turning point of the upper and lower branch. 

 
TABLE IV 

SMALLEST EIGENVALUE 1γ FOR SOME VALUES OF S 

s λ 1γ (upper branch) 1γ (lower branch) 

2.1 1 0.7522 -0.5014 
1.2 0.2884 -0.2497 

1.23 0.1088 -0.1029 
2.3 1 1.156 -0.6412 

1.4 0.4855 -0.3967 
1.48 0.0687 -0.0667 

2.5 1 1.5481 -0.7283 
1.5 0.9254 -0.6597 
1.7 0.4114 -0.3561 

1.75 0.0466 -0.0458 

VI. CONCLUSION 
We have studied numerically the problem of steady three 

dimensional boundary-layer flow of a Cu-water nanofluid past 
a permeable shrinking surface. The governing partial 
differential equations are transformed into ordinary 
differential equations by similarity transformation and then are 
solved numerically using bvp4c in Matlab. The comparison of 
the results with previously published results show an excellent 
agreement thus gives us confidence in our computations 
presented in this paper. Numerical results for the reduced skin-
friction coefficient and the local Nusselt number as well as the 
velocity and temperature profiles are illustrated in tables and 
graphs for some values of parameters. Dual solutions are 
found for this shrinking sheet problem. The stability analysis 
is performed and shows that the upper branch solution is 
stable while the lower branch solution is unstable. 
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