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Abstract—This paper deals with the problem of stability of
neural networks with leakage, discrete and distributed delays. A
new Lyapunov functional which contains some new double integral
terms are introduced. By using appropriate model transformation
that shifts the considered systems into the neutral-type time-delay
system, and by making use of some inequality techniques,
delay-dependent criteria are developed to guarantee the stability of
the considered system. Finally, numerical examples are provided to
illustrate the usefulness of the proposed main results.
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I. INTRODUCTION

STABILITY analysis for neural network is an issue of

both theoretical and practical importance due to the fact

that its wide application in various areas such as image

processing,automatic control,pattern recognition,and so on.

Therefore, the study of stability analysis for neural networks

has been attracting the interest of many researchers in the

past years, and many important and interesting results have

been proposed in terms of all sorts of methods in the

literature [1-10] and the references therein.
Now, many sufficient conditions ensuring global

asymptotic stability and global exponential stability for

delayed neural networks have been derived [3-25], however,

only little attention has been paid towards the stability

analysis of neural networks and dynamic systems involving

time-delay in the leakage term [20-30]. To the bast of

authors’knowledge,up to now there are no result on the

problem of stability analysis for neural networks with

time-delays in the leakage term.
Motivated by this mentioned above, in this paper, two new

delay-dependent stability criteria for neural networks with

interval time-varying delay will be proposed by dividing the

delay interval, constructing new Lyapunov-Krasovskii

functional and shifting the considered systems into the

neutral-type time-delay system.The obtained criterion are

less conservative because free-weighting matrices method

and a convex optimization approach are considered. Finally,

numerical examples are given to illustrate the the usefulness

and feasibility of the proposed main results.
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II. PROBLEM STATEMENT

Consider the following neural networks with mixed time-

varying delays:

ẋ(t) = −Ax(t− σ) +Bg(x(t)) + Cg(x(t− ς(t)))

+D

∫ t

t−r(t)

g(x(s))ds+ I0
(1)

x(t) = ϕ(t), t ∈ [−h, 0]

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ Rn is the neuron

state vector, g(x(t)) = [g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]
T

denotes the neuron activation function, and I0 = [I1, I2, . . . ,
In]

T ∈ Rn is a constant input vector,A = diag{ai} ∈ Rn is

a positive diagonal matrix , B = (bij)n×n ∈ Rn is the

connection weight matrix,C = (cij)n×n ∈ Rn ,and

D = (dij)n×n ∈ Rn are the delayed connection weight

matrices,and σ is the leakage delay satisfying σ ≥ 0.The

initial vector ϕ(t) is bounded and continuous on [−h, 0].
The following assumptions are adopted throughout the paper.

Assumption 1: The delays ς(t), r(t) are time-varying

continuous function and satisfy:

0 ≤ ς(t) ≤ ς, 0 ≤ r(t) ≤ r, ς̇(t) ≤ μ (2)

where ς, r, μ are constant.

Assumption 2: Each neuron activation function gi(·), i =
1, 2, . . . , n,in (1) satisfies the following condition:

φ−
i ≤ gi(α)− gi(β)

α− β
≤ φ+

i , ∀α, β ∈ R,α �= β (3)

where φ−
i , φ

+
i , i = 1, 2, . . . , n are constants,and matrices

Φ1 = diag{φ+
1 , φ

+
2 , . . . , φ

+
n },Φ2 = diag{φ−

1 , φ
−
2 , . . . , φ

−
n }.

Based on Assumption 1-2, it can be easily proven that there

exists one equilibrium point for (1) by Brouwer‘s fixed-point

theorem. Assuming that x∗ = [x∗
1, x

∗
2, . . . , x

∗
n]

T is the

equilibrium point of (1) and using the transformation

y(·) = x(·) − x∗,system (1) can be converted to the

following system :

ẏ(t) = Ay(t− σ) +Bf(y(t)) + Cf(y(t− ς(t)))

+D

∫ t

t−r(t)

f(y(s))ds
(4)

where y(t) = [y1(t), y2(t), . . . , yn(t)]
T is the state vector of

the transformed system, and the neuron activation function in

system (4) f(y(t)) = [f1(y1(t)), f2(y2(t)), . . . , fn(yn(t))]
T ,
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satisfy that fi(yi(·)) = gi(xi(·)+x∗
i )−gi(x

∗
i ), i = 1, 2, . . . , n.

From Eq.(3),fi(·) satisfies the following condition:

φ−
i ≤ fi(α)

α
≤ φ+

i , ∀α �= 0, i = 1, 2, . . . , n. (5)

Moreover, the above system has an equivalent form as follows:

d

dt

[
y(t)−A

∫ t

t−σ

y(s)ds

]
=

−Ay(t) +Bf(y(t)) + Cf(y(t− ς(t))) +D

∫ t

t−r(t)

f(y(s))ds

(6)

Lemma 1 [9].For any constant matrices G,S ∈ Rn×n, S =
ST , G = GT > 0,the following inequality holds:

− ς

∫ t

t−ς

xT (s)Gx(s)ds ≤

−
[∫ t

t−ς(t)
x(s)ds∫ t−ς(t)

t−ς
x(s)ds

]T [
G S
∗ G

] [∫ t

t−ς(t)
x(s)ds∫ t−ς(t)

t−ς
x(s)ds

] (7)

III. MAIN RESULTS

In this section,a new Lyapunov functional is constructed

and a less conservative delay-dependent stability criterion is

obtained.

Theorem 1 Given that the Assumption 1-2 hold, the system

(6) is globally asymptotic stability if there exist symmetric

positive definite matrices P,Qi, i = 1, 2, 3, 4, Rj , j = 1, . . . ,
6, positive diagonal matrices L = diag{l1, l2, . . . , ln},W1,
W2,K = diag{k1, k2, . . . , kn}, and symmetric matrix T1, T2,

such that the following LMIs hold:

Π < 0 (8)

[
Q2 T1

∗ Q3

]
< 0 (9)

where

Π = [πij ]11×11

π11 = −2PA+R1 +R2 +R3 +R4 +R5 + ςQ2 + σ2R6

+ T1 − 2Φ1W1Φ2

π12 = Φ2LA− Φ1KA

π17 = PB − Φ2LB +Φ1KB +W1(Φ1 +Φ2)

π18 = PC − Φ2LC +Φ1KC

π19 = PD − Φ2LD +Φ1KD,π1,11 = ATPA

π22 = −R5 + ςATQ3A

π27 = −AL+AK − ςATQ3B, π28 = −ςATQ3C

π29 = −ςATQ3D,π33 = −R2 − T1, π44 = −R3

π55 = −R4, π66 = −(1− μ)R1 − 2Φ1W2Φ2

π68 = W2(Φ1 +Φ2)

π77 = 2LB − 2KB + ςBTQ3B +Q1 + r2Q4 − 2W1

π78 = LC −KC + ςBTQ3C

π79 = LD −KD + ςBTQ3D,π7,11 = −BTPA

π88 = −(1− μ)Q1 − 2W2 + ςCTQ3C

π89 = ςCTQ3D,π8,11 = −CTPA

π99 = ςDTQ3D −Q4, π9,10 = −T2

π9,11 = −DTPA, π10,10 = −Q4, π11,11 = −R6

Proof: Construct a new class of Lyapunov functional

candidate as follow:

V (yt) =

4∑
i=1

Vi(yt)

with

V1(yt) = [y(t)−A

∫ t

t−σ

y(s)ds]TP [y(t)−A

∫ t

t−σ

y(s)ds]

V2(yt) = 2

n∑
i=1

∫ yi(t)

0

[li(fi(s)− φ−
i s) + ki(φ

+
i s− fi(s))]ds

V3(yt) =

∫ t

t−ς(t)

yT (s)R1y(s)ds+

∫ t

t−ς

yT (s)R2y(s)ds

+

∫
t− ς

3

yT (s)R3y(s)ds+

∫
t− 2ς

3

yT (s)R4y(s)ds

+

∫ t

t−σ

yT (s)R5y(s)ds+

∫ t

t−ς(t)

fT (y(s))Q1f(y(s))ds

V4(yt) =

∫ 0

−ς

∫ t

t+θ

[yT (s)Q2y(s) + ẏT (s)Q3ẏ(s)]dsdθ

+ σ

∫ 0

−σ

∫ t

t+θ

yT (s)R6y(s)dsdθ

+ r

∫ 0

−r

∫ t

t+θ

fT (y(s))Q4f(y(s))dsdθ

Then, taking the time derivative of V(t) with respect to t along

the system (6) yield

V̇1(yt) = 2[y(t)−A

∫ t

t−σ

y(s)ds]TP [−Ay(t) +Bf(y(t))

+ Cf(y(t− ς(t))) +D

∫ t

t−r(t)

f(y(s))ds]

(10)

V̇2(yt) = 2(fT (y(t))− yT (t)Φ2)Lẏ(t)

+ 2(yT (t)Φ1 − fT (y(t)))Kẏ(t)
(11)
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V̇3(yt) ≤ yT (t)(R1 +R2 +R3 +R4 +R5)y(t)

−(1−μ)yT (t−ς(t))R1y(t−ς(t))+fT (y(t))Q1f(y(t))

− yT (t− ς)R2y(t− ς)− yT (t− ς

3
)R3y(t− ς

3
)

− yT (t− 2ς

3
)R4y(t− 2ς

3
)− yT (t− σ)R5y(t− σ)

− (1− μ)fT (y(t− ς(t)))Q1f(y(t− ς(t)))
(12)

V̇4(yt) = ς[yT (t)Q2y(t) + ẏT (t)Q3ẏ(t)]

−
∫ t

t−ς

[yT (s)Q2y(s) + ẏT (s)Q3ẏ(s)]

+ σ2yT (t)R6y(t)− σ

∫ t

t−σ

yT (s)R6y(s)ds

+r2fT (y(s))Q4f(y(s))−r

∫ t

t−r

fT (y(s))Q4f(y(s))ds

(13)

Consider the following zero equality with any symmetric

matrix T1 :

yT (t)T1y(t)−yT (t−ς)T1y(t−ς)−2

∫ t

t−ς
yT (s)T1ẏ(s)ds=0

(14)

Using Jensen’s inequality,we can obtain that:

−σ

∫ t

t−σ

yT (s)R6y(s) ≤ −(

∫ t

t−σ

y(s)ds)TR6(

∫ t

t−σ

y(s)ds)

(15)

Using Lemma 1,we can obtain that:

− r

∫ t

t−r

fT (y(s))Q4f(y(s))ds

≤ −
[∫ t

t−r(t)
f(y(s))ds∫ t−r(t)

t−r
f(y(s))ds

]T [
Q4 T2

∗ Q4

] [∫ t

t−r(t)
f(y(s))ds∫ t−r(t)

t−r
f(y(s))ds

]

(16)

From (5), we can obtain that:

−2fT (y(t))W1f(y(t)) + 2yT (t)W1(Φ1 +Φ2)f(y(t))

−2yT (t)Φ1W1Φ2y(t) ≥ 0
(17)

−2fT (y(t− ς(t)))W2f(y(t− ς(t)))

+2yT (t− ς(t))W2(Φ1 +Φ2)f(y(t− ς(t)))

−2yT (t− ς(t))Φ1W2Φ2y(t− ς(t)) ≥ 0

(18)

Basing on (10)-(18),one can obtain that:

V̇ (yt) ≤ ξT (t)Πξ(t)−
∫ t

t−ς

[
y(s)
ẏ(s)

]T [
Q2 T1

∗ Q3

] [
y(s)
ẏ(s)

]
where

ξT (t) = [yT (t), yT (t− σ), yT (t− ς), yT (t− ς

3
), yT (t− 2ς

3
),

yT (t−ς(t)), fT (y(t)), fT (y(t−ς(t))),

∫ t

t−r(t)

fT (y(s))ds,

∫ t−r(t)

t−r

fT (y(s))ds,

∫ t

t−σ

yT (s)ds]

Hence,we can obtain that:

V̇ (yt) ≤ −ξT (t)Ξξ(t)

where Ξ = −Π. Thus,it can be deduced that

V (yt) +

∫ t

0

ξT (s)Ξξ(s)ds ≤ V (y0), t > 0

where

V (y0) ≤
{
2λmax(P )(1 + σ2 max

i∈A
a2i ) + 2λmax(Φ1 − Φ2)(λmax(L)

+ λmax(K)) + ς(λmax(R1) + λmax(R2) +
1

3
λmax(R3)

+
2

3
λmax(R4)) + σλmax(R5) + ςφ2λmax(Q1)

+ 2ς2[λmax(A
TA) + φ2λmax(B

TB) + φ2λmax(C
TC)

+r2φ2λmax(D
TD)]

}
sup

−h≤s≤0
‖y(s)‖2 < ∞

Furthermore,one can obtain that:

‖y(t)‖ = ‖y(t)− y(t+ θ) + y(t+ θ)‖, (t ∈ [0, 1])

≤ ‖
∫ t+θ

t

ẏ(s)ds‖+ ‖
∫ t+1

t

y(s)ds‖

≤
∫ t+θ

t

‖ẏ(s)‖ds+
∫ t+1

t

‖y(s)‖ds

≤
∫ t+1

t

(‖ẏ(s)‖+ ‖y(s)‖)ds

≤ 2√
λmin(Ξ)

∫ t+1

t

ξT (s)Ξξ(s)ds

≤ 2√
λmin(Ξ)

∫ ∞

t

ξT (s)Ξξ(s)ds → 0, (t → ∞)

(19)

Therefore, combined with (8)-(9) and (19), we conclude that

model (6) has a unique equilibrium point which is globally

asymptotically stable.

Remark 1 In this paper, time-varying delay is assumed to

be differentiable. But in many cases μ is unknown,

considering this situation, we can set Q1 = R1 = 0 in

Lyapunov-Krasovskii functional V (yt) of Theorem 1, then

the time-varying delay becomes non-differentiable.

Remark 2 In system (6), if we consider the σ = 0,we can

get the following system:

ẏ(t) = Ay(t) +Bf(y(t)) + Cf(y(t− ς(t)))

+D

∫ t

t−r(t)

f(y(s))ds
(20)

For system (20), we have the following result.

Theorem 2 Given that the Assumption 1-2 hold, the system

(20) is globally asymptotic stability if there exist symmetric

positive definite matrices P,Qi, i = 2, 3, 4, Rj , j = 2, . . . , 6,

positive diagonal matrices L = diag{l1, l2, . . . , ln},W1,W2,
K = diag{k1, k2, . . . , kn}, and symmetric matrix T1, T2, such

that the following LMIs hold:[
Q2 T1

∗ Q3

]
< 0 (21)
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E=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E11 0 0 0 0 E16 E17 E18 0
∗ E22 0 0 0 0 0 0 0
∗ ∗ −R3 0 0 0 0 0 0
∗ ∗ ∗ −R4 0 0 0 0 0
∗ ∗ ∗ ∗ E55 0 E57 0 0
∗ ∗ ∗ ∗ ∗ E66 E67 E68 0
∗ ∗ ∗ ∗ ∗ ∗ E77 E78 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ E88 −T3

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
<0

(22)

where

E11 = −2PA+R1 +R2 +R3 +R4 +R5 + ςQ2 + σ2R6

+ T1 − 2Φ1W1Φ2 +Φ2LA− Φ1KA

E16 = PB − Φ2LB +Φ1KB +W1(Φ1 +Φ2)

E17 = PC − Φ2LC +Φ1KC

E18 = PD − Φ2LD +Φ1KD

E22 = −R2 − T1

E55 = −(1− μ)R1 − 2Φ1W2Φ2

E57 = W2(Φ1 +Φ2)

E66 = 2LB − 2KB + ςBTQ3B +Q1 + r2Q4 − 2W1

E67 = LC −KC + ςBTQ3C

E68 = LD −KD + ςBTQ3D

E77 = −(1− μ)Q1 − 2W2 + ςCTQ3C

E78 = ςCTQ3D, E88 = ςDTQ3D −Q4

Proof: Following the similar procedure in Theorem 1,we

have

V̇ (yt) ≤ ξT1 (t)Eξ1(t)−
∫ t

t−ς

[
y(s)
ẏ(s)

]T [
Q2 T1

∗ Q3

] [
y(s)
ẏ(s)

]

where

ξT1 (t) = [yT (t), yT (t− ς), yT (t− ς

3
), yT (t− 2ς

3
),

yT (t−ς(t)), fT (y(t)), fT (y(t−ς(t))),∫ t

t−r(t)

fT (y(s))ds,

∫ t−r(t)

t−r

fT (y(s))ds]

Hence, we can obtain that system (20) is globally

asymptotically stable. This completes the proof.

TABLE I
ALLOWABLE UPPER BOUND OF ς FOR EXAMPLE 1.

Method Theorem 2
μ = 0 11.382
μ = 0.3 10.879
μ = 0.6 10.075
μ = 0.9 9.621

TABLE II
ALLOWABLE UPPER BOUND OF ς FOR EXAMPLE 1.

Method Theorem 1
μ = 0, σ = 0.2 11.051
μ = 0.3, σ = 0.4 10.256
μ = 0.6, σ = 0.6 9.832
μ = 0.9, σ = 0.8 8.879

IV. NUMERICAL EXAMPLES

In this section,we provide two numerical examples to

demonstrate the effectiveness and less conservatism of our

delay-dependent stability criteria.

Example 1 Consider the system (4) with the following

parameters:

A =

⎡
⎣6 0 0
0 5 0
0 0 7

⎤
⎦ , B =

⎡
⎣ 1.2 −0.8 0.6

0.5 −1.5 0.7
−0.8 −1.2 −1.4

⎤
⎦ ,

C =

⎡
⎣−1.4 0.9 0.5
−0.6 1.2 0.8
0.5 −0.7 1.1

⎤
⎦ , D =

⎡
⎣ 1.8 0.7 −0.8

0.6 0.4 1.0
−0.4 −0.6 1.2

⎤
⎦

Let Φ2 = diag{−1.2, 0,−2.4},Φ1 = diag{0, 1.4, 0}.

For various μ,the maximum of ς calculated by Theorem

2.According to Table I,when σ = 0,this example shows that

the stability criterion in this paper can lead to less

conservative results.In Table II,we can obtain that the

maximum of ς with various σ, μ.

Example 2 Consider a delayed recurrent neural networks

with the following parameters:

ẏ(t) = −Ay(t− σ) +Bf(y(t)) + Cf(y(t− ς(t)))

where

A=

[
1.5 0
0 0.7

]
,B=

[
0.0503 0.0454
0.0987 0.2075

]
,C =

[
0.2381 0.9320
0.0388 0.5062

]

The neuron activation functions are assumed to satisfy

Assumption 2 with Φ2 = diag{0, 0},Φ2 = diag{0.3, 0.8}.

,For various ς and μ,the maximum of σ calculated by

Theorem 1.According to Table III,we can see that the

stability criterion in this paper can lead to less conservative

results.

TABLE III
ALLOWABLE UPPER BOUND OF σ FOR EXAMPLE 2.

Method Theorem 1
μ = 0, ς = 0.2 1.976
μ = 0.3, ς = 0.4 1.549
μ = 0.6, ς = 0.6 1.025
μ = 0.9, ς = 0.8 0.946
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V. CONCLUSION

In this present paper, we have deal with the problem of

stability for neural networks with leakage,discrete and

distributed delays. Two new delay-dependent stability criteria

for neural networks with time-varying delay will be

proposed. The obtained criteria are less conservative because

free-weighting matrices method and a convex optimization

approach are considered. Finally,two examples have been

given to illustrate the effectiveness of the proposed method.
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