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Stability Analysis for an Extended Model of the
Hypothalamus-Pituitary-Thyroid Axis

Beata Jackowska-Zduniak

Abstract—We formulate and analyze a mathematical model
describing dynamics of the hypothalamus-pituitary-thyroid
homoeostatic mechanism in endocrine system. We introduce
to this system two types of couplings and delay. In our model,
feedback controls the secretion of thyroid hormones and delay
reflects time lags required for transportation of the hormones. The
influence of delayed feedback on the stability behaviour of the
system is discussed. Analytical results are illustrated by numerical
examples of the model dynamics. This system of equations describes
normal activity of the thyroid and also a couple of types of
malfunctions (e.g. hyperthyroidism).

Keywords—Mathematical modeling, ordinary differential
equations, endocrine system, stability analysis.

I. INTRODUCTION

THE paper concerns a research of a secretion system,

especially hypothalamus-pituitary-thyroid axis. The

thyroid gland is responsible for the operation of virtually

all cells of human body and the control of metabolism.

Excessive or insufficient production of hormones by

thyroid gland can cause a number of abnormalities in

the body, including the suppression of physical and mental

development. Thyroid gland secretes among others a thyroxine

hormone (T4). This secretion is mainly regulated by the

hypothalamus-pituitary-thyroid axis. The anterior lobe of

pituitary gland produces the hormone called thyrotropin

(TSH) which is needed to stimulate the thyroid to produce

hormones. In turn, TSH is produced under the influence of

the thyrotropin releasing factor (TRF), which is secreted by

the hypothalamus. Thyroxine hormone production depends

on an activated enzyme, which is activated by the thyrotropin

hormone. The simplified mechanism of production of

hormones is presented in Fig. 1 (A).

Endocrine hormones have their controls at the biochemical

level cell, but moving information through the bloodstream

is also in the subsequent physiological regulation of feedback

loops. Loop in our model includes the effect of the target organ

feedback, both on the hypothalamus and lower intermediate

floor secretory-anterior lobe of the pituitary gland. It can

be easily seen that we have a homoeostatic mechanism in

endocrine system. It means the ability to maintain stability

of internal parameters in our system. Regulating work of the

system consists in the fact that when there is a high level of

thyroxine in blood, it operates inhibiting the pituitary gland

and reduces the production of thyrotropin. This reduces the

secretion of thyroxine by the thyroid gland and after some time

its level in the blood decreases. This is a signal to the pituitary
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Fig. 1 Sketch of mechanisms in our problem (A) The simplified mechanism
of production of thyroid hormones (B) Sketch of the homeostatic

mechanism in our problem

gland to resume production of tropic hormone and either cycle

repeats, or establishes an equilibrium between thyrotropin and

thyroxine hormones. Similarly, it works a feedback mechanism

that acts on the hypothalamus [4], [5], [9]. Irregularity in

the synthesis or release of hormones on any of the levels

(hypothalamic, pituitary or peripheral) causes a disturbance

in hormonal homeostasis and thus the whole body. The

homeostatic mechanism in our system is presented in Fig. 1

(B).

II. MATHEMATICAL MODEL

Modelling the formation of thyroid hormones is weakly

developed area of mathematical biology. For years, the

most popular model of the thyroid-pituitary homoeostatic

mechanism has been the Danziger and Elmergreen model [3].

This model, even though very effective, is not very suitable

for studying the dynamics of the system, which is described

in view of high dimensionality of the phase space and very

broad spatial parameters. Also this system does not include

hypothalamus, which is a very important part of the endocrine
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Fig. 2 Concentration of hormones in time, for parameters: a1 = 0.008,
a2 = 0.14, a3 = 0.00035, b1 = 2, b2 = 0.6, c1 = 47, c2 = 0.2, d1 = 2,

d2 = 0.1, the positive steady state of the system (4) is stable. The
parameters have been set so as to solution reflects the actual level of

hormones

Fig. 3 Concentration of hormones in time, for parameters: a1, a2, a3, b1, d2
- reference values, b2 = 0.5, c1 = 50, c2 = 0.5, d1 = 20, instable

behaviour of system (4). In all cases we obtain oscillatory behaviour of our
system

system. In [7], authors consider system with feedback, but it

is also pituitary-thyroid model, which does not include the

hypothalamus. It is worth noting that the author introduces a

Fig. 4 Concentration of hormones in time, for a1, a2, a3, b1, d2 - Reference
Values, b2 = 0.09, c1 = 47, c2 = 0.2, d1 = 2.1, τ1,2 = 0

discrete delay in feedback, which corresponds to delay which

reflects time lags required for transportation of the hormones.

In [8], authors also considered the hypothalamus-pituitary

as a single unit. Author takes into account the coupling of

the system but without delay. Particularly, it is important to

introduce a time delay into this feedback. The model in [7]

is based on the experimental data, which included a very

serious illness, e.g. autoimmune thyroiditis (Hashimoto). The

pathological behaviours are modelled in [7] and a very good

agreement of the experimental results with the model was

obtained. We focus on the model proposed in [8] that reads

Ṗ = c−gP −hθ(t−τ1), Ė = mP (t−τ2)−kE, θ̇ = aE−bθ
(1)

where θ ≤ c
h ; P , E, θ represent the concentration of

thyrotropin, activated enzyme and thyroxine respectively; b,
g, k represent the loss constant s of thyroxine, thyrotropin

and activated enzyme; a, h, m are positive constant, c is the

rate of production of thyrotropin in the absence of thyroid

inhibition; τ1 and τ2 represent the discrete time delays required

for transportation of the hormones thyroxine and thyrotropin

respectively.

In [8], [7] the authors have studied model without

hypothalamus. Here, we would like to expand the

pituitary-thyroid model and add the equation corresponding

to the action of the hypothalamus in the secretory system

and we also introduce to this system two types of couplings

and delay. Feedback loop in our model includes the effect

of the target organ feedback, both on the hypothalamus

and lower intermediate floor secretory-anterior lobe of the

pituitary gland, which is presented in Fig. 1 (B). The linear

model, which is described in [3] can have negative solutions
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Fig. 5 Concentration of hormones in time, for parameters: a1 = 0.008,
a2 = 0.14, a3 = 0.00035, b1 = 2, b2 = 0.09, c1 = 47, c2 = 0.2,
d1 = 2.1, d2 = 0.1, the best fitting is in Fig. 5 (c) for τ1,2 = 0.5

(The condition below system (1) guarantees non-negativity,

but the condition does not need to be preserved), what is

a huge problem in describing the biological system (it can

Fig. 6 With increasing delay (τ1 = 0, 10, 15, τ2 = 0) the shape of
Mikhailov hodographs for B becomes more and more looped

mean that authors have negative values of concentrations of

hormones, which is impossible). In our system we introduce

the non-linear parts which eliminated this behaviour of

system. The non-linear parts are introduced by using a Hill

function as a control function of secretion of hormones.

The Hill function is often used as an approximation for the

input function when the production rate is a function. Hill

equations have the following forms:

a) f(G) =
(G/T )

n

(G/T )
n
+ 1

, b) f(G) =
1

(G/T )
n
+ 1

(2)

where T > 0 is a treshold and n ≥ 1 is a Hill coefficient.

The form (2a) is used as up-regulatory function and (2b) as a

down-regulatory function. We also use Hill function to model

a feedback control in our system. These feedback loops can

driving hormone oscillations. Although the negative feedback
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Fig. 7 With increasing delay (τ2 = 0, 10, 15, τ1 = 0) the shape of
Mikhailov hodographs for B becomes more and more looped

loop with time delay often generates oscillatory behaviour for

sufficiently large delays, the appearance of oscillation is not

guaranteed by this kind of terms. Using Hill functions of the

form (2), we write the general formula of system that we are

going to analyse reads as:

Ḣ = a1 − a2H +
a3

(θ(t− τ1)/TH)
nH + 1

, (3)

Ṗ = b1
(H/TP )

nP

(H/TP )
nP + 1

− b2P +
b3

(θ(t− τ2)/TR)nR + 1
,

Ė = c1
(P/TE)

nE

(P/TE)
nE + 1

− c2E,

θ̇ = d1
(E/T )

n

(E/T )
n
+ 1

− d2θ

where we assumed that τ1 is greater than or equal τ2 and

a3 << b3, we denote concentration of thyrotropin releasing

factor by H , a1 is the rate of production of thyrotropin

releasing factor; a2, b2, c2, d2 represent the degradation rate of

TRF, TSH, activated enzyme, thyroxine respectively; a3, b3,

b1, c1, a are positive constants; τ1 and τ2 represent the discrete

time delays required for transportation of the hormones.

We show in the next section that the construction of our

model allows to generate oscillations, even if there is feedback

without delay. It can be caused by high Hill coefficients in our

control function (large non-linearity). However, oscillations

may be generated also when we have feedback with non-zero

delay.

A. Results: The Model without Delay

We first consider the case of our model in which τ1, τ2
equals 0. It is given by as:

Ḣ = a1−a2H+
a3

θ + 1
, Ṗ = b1

H3

H3 + 1
−b2P+

b3
(θ/5)10 + 1

,

(4)

Ė = c1
(P/5)

2

(P/5)
2
+ 1

− c2E, θ̇ = d1
(E/30)

2

(E/30)
2
+ 1

− d2θ

For the numerical analysis of the discussed system a

numerical model was created using Matlab. In Fig. 2, we can

observe that the steady state of the system is stable. The set

of parameters are given in the description of figures.

For parameters a1 = 0.008, a2 = 0.14, a3 = 0.00035,

b1 = 2, b2 = 0.6, c1 = 47, c2 = 0.2, d1 = 2, d2 = 0.1,

we obtain following values of concentration of hormones:

TRF = 0.057, TSH = 1.34, AE = 15.8, θ=4.33. The

normal reference ranges of TRF , TSH , FT4 are 0.05-0.25

U/ml, 0.3-5.0 U/ml and 0.8-3 ug/dL [2]. We have similar

values of concentration of hormones as in clinical data.

However, we must mention the important observation between

the two clinical variables is that the TSH changes on the order

of hours and FT4 changes on the order of days in the blood.

In Fig. 3, we have unstable behaviour of considered system

(4).

B. Results: The Model with Delay

Now we consider system (4) with delays. Results from some

simulations were used to analyze the influence of feedback

loops (a3 �= 0, b3 �= 0) with delay on behaviour of our system

(4). We analyze how feedback loops with delays influence the

behaviour of (4). According to theory the feedback loops in

endocrine system try to regulate the value of concentration

of thyroxine hormone. If we have a small value (close to

zero) of thyroxine (hyperthyroidism), we try to increase the

value of the concentration of hormone in the system by using

feedback, which is shown in Fig. 4. These results confirm that

feedback is a regulation function of our system. The range of

concentration of TSH in result adding feedback is similar to

physiological range of this hormone, 0.5-3.8 U/dL. We obtain

a periodic behaviour of our system.

In Fig. 5, we analyze influence change of delay for solution

of this model, the parameters are a1, a2, a3, b1, d2- reference

values, b2 = 0.09, c1 = 47, c2 = 0.2, d1 = 2.1 and delays

τ1 = 4, τ2 = 1, τ1 = 2, τ2 = 0.5, τ1 = 0.5, τ2 = 0.5,
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τ1 = 10, τ2 = 5, respectively. We can see in Fig. 5 that

delay can regulate the oscillation amplitude. We can get

oscillations corresponding exactly to the physiological range

of concentrations of the hormone, TSH.

Two conclusions can be drawn from the plots illustrating the

model (4). The first one is that we can see that in the modified

model with delay; the oscillation amplitude is changing when

delay changes. This is caused by the delay; similar results

were obtained in [1].

Important is the fact that when we regulate a system using

feedback with delay, we know that there is high concentration

of thyroxine in the blood so delay has a small value. Because

the time that information about the concentration of the

hormone in the blood needs to get to the hypothalamus (and

pituitary) is very short.

C. Equilibrium State and Stability in the Model

Now, we turn to the analysis of steady states for the

parameters; a1 = 0.008, a2 = 0.14, a3 = 0.00035,

b1 = 2, b2 = 0.5, c1 = 50, c2 = 0.5, d1 = 20,

d2 = 0.1. We calculated steady states of (3) without

delays. For simplicity, we assume that TH , TP , TR, TE , T
and nH , nP , nR, nE , n equal 1. We obtain three steady

states: A=(0.0568732, -0.000488202, -0.0488441,-10.2705),

B=(-1.00473, -0.0000498653, -0.00498678, -1.00235),

C=(0.057156, 0.226749, 18.4837, 189.735). We used

in our calculation a Grobmann-Hartman theorem about

linearization [6]. The Jacobi matrix for the system of ODE

has the form:
⎡
⎢⎢⎣

−a2 0 0 a3
1

(1+H∗)2 −b2
−1

(1+θ∗)2
0 1

(P∗+1)2 −c2 0

0 0 1
(E∗+1)2 −d2

⎤
⎥⎥⎦

Taking into account above formula we obtain: A and B are

unstable and C is always stable steady state. Now, we turn

to study possible stability switches due to the presence of

delays. It is possible to check stability using the Mikhailov

criterion:

Let a function W : �→ � be of the form

W(z)=
∑m

k=0 Ak(z)
−hkz ,

where 0 = h0 < h1 < . . . < hm, Ak(z) =
∑nk

j=0 ajkz
j ,

ajk ∈, n0 ≥ 1 and nk < n0, for k = 1, . . . ,m. If W (z)
has no zeros on the imaginary axis, then all roots of W lie

in the open left half-plane of the complex plane if and only

if Δ = n0
π
2 , where Δ denotes the change of the argument of

W (iω) when ω increases from 0 to ∞.

Now, we use this theorem to check stability of the steady states

of (3). After the linearization system at (H∗, P∗, E∗, θ∗) the

characteristic quasi-polynomial has the following form:

W (λ) = λ4 + (a2 + b2 + c2 + d2)λ
3+ (5)

+(a2d2+a2b2+a2c2+ b2d2+ c2d2+ b2c2)λ
2+ −αβγξ−λτ1

+(a2b2d2 + a2c2d2 + a2b2c2 + b2c2d2)λ+ a2b2c2d2 +

+a2zγξ
−λτ2 + zγλξ−λτ2

where z = 1
(θ∗+1)2 , α = − a3

(θ∗+1)2 , β = b1
(H∗+1)2 , γ =

c1
(P∗+1)2 , ξ = d1

(E∗+1)2 .

The curve drawn by the vector W (iω) =
(Re(W (iω)), Im(W (iω))) in the complex plane, when

ω increase from 0 to ∞, is called Mikhailov hodograph.

The change of the shape of Mikhailov hodographs with

increasing τ1 for B steady state is shown in Fig. 6. The

change of the shape of Mikhailov hodographs with increasing

τ2 = 0, 10, 15 for B steady state is shown in Fig. 7. The

Mikhailov criterion implies that for A and C steady states

then it does not change stability with increasing delay (τ1,τ2).

For both steady states that the shape of hodographs becomes

more and more looped but the total change of argument of

W(iw) remains the same. But when we check B steady state,

the stability switches with increasing τ1 , τ2 can occur (see

Figs. 6 and 7 (Mikhailov hodograph)).

III. CONCLUSIONS

Principal aim of this work is to present a mathematical

model describing the secretion system HPT using ODEs with

feedback loops. According to control theory the feedback

loops in endocrine system, we tried to regulate value of

concentration of thyroxine hormone. We used Hill functions to

simulate the feedback process. Our model exhibits oscillatory

behaviour, even if time delay is not present. Numerical

analysis suggest that periodic solution to model (4) can be

observed for large values of the Hill coefficient (i.e. fast

switch) and sufficiently large delay. We can see also that

feedback with delay has impact on quantitative behaviour of

our system (Mikhailov hodograph). In this work, usage of the

presented model allowed to reproduce physiological behaviour.

The system is able to generate correct results for feedback

even if the concentration of TSH is almost zero (modeling

hyperthyroidism). The problems are different time scales used

for description of concentration of each hormones as well as

different units (some are defined by mass while others by

volume).
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