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Stability analysis for a multicriteria problem with
linear criteria and parameterized principle of

optimality ”from lexicographic to Slater”
Yury Nikulin

Abstract—A multicriteria linear programming problem with
integer variables and parameterized optimality principle ”from
lexicographic to Slater” is considered. A situation in which initial
coefficients of penalty cost functions are not fixed but may be
potentially a subject to variations is studied. For any efficient
solution, appropriate measures of the quality are introduced
which incorporate information about variations of penalty cost
function coefficients. These measures correspond to the so-called
stability and accuracy functions defined earlier for efficient
solutions of a generic multicriteria combinatorial optimization
problem with Pareto and lexicographic optimality principles.
Various properties of such functions are studied and maximum
norms of perturbations for which an efficient solution preserves
the property of being efficient are calculated.

Index Terms—stability and accuracy, multicriteria optimiza-
tion, lexicographic optimality

I. INTRODUCTION

The frequently used tool of stability theory and post-optimal
analysis is so-called stability radius of some given optimal
solution. In single objective optimization, it gives an upper
bound on a subset of problem parameters for which this
solution remains optimal (see [4] and bibliography therein).
There are already similar investigations in multiobjective case,
where the stability radius defines extreme level of problem
parameter perturbations preserving efficiency of the given
solution. For example, in [2] one can find a large survey
on sensitivity analysis of vector unconstrained integer linear
programming, where the stability radius is a key object under
investigation.

It is important to note that even in single objective case the
stability radius does not provide us with any information about
the quality of a given solution in the case when problem data
are outside of the stability region. Some attempts to study
quality of the problem solution in this case are connected
with the concepts of stability and accuracy functions, being
originally proposed in [5] and [6] for scalar combinatorial
optimization problems. Later, the results were extended for the
case of multicriteria combinatorial optimization problems with
Pareto and generalized lexicographic optimality principles in
[7]. In [11], the similar questions of stability and accuracy
were investigated under the framework of game theory, more
precisely accuracy and stability functions for a coalition
game with bans, linear payoffs, antagonistic strategies and
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parameterized principle of optimality ”from Nash to Pareto”
were studied. In [12] a multicriteria Boolean programming
problem with linear cost functions and parameterized principle
of optimality ”from Condorcet to Pareto” is considered and
similar questions of stability and accuracy are studied. Some
aspects of robustness based on the concepts of stability and
accuracy functions were studied recently in [8] and [9].

A problem of decision making where experts are grouped
into coalitions and coalitions are ordered according to their
importance is considered in this paper. The decision making
process is based on penalty costs specified by each expert
according to their own preferences. The problem can be gen-
eralized in terms of multicriteria linear programming problem
with integer variables and parameterized optimality principle
”from lexicographic to Slater”. A situation, in which initial
coefficients of penalty cost functions are not fixed but may
be potentially a subject to variations, is considered. The
situation represents that fact that the experts may not be
completely confident with precise values of own preferences
during the decision making process. For any efficient solution,
specified with original information about expert preferences,
appropriate measures of the quality are introduced which
incorporate information about expert preferences variations.
These measures correspond to the so-called stability and
accuracy functions defined earlier for efficient solutions of
a generic multicriteria combinatorial optimization problem
with Pareto and lexicographic optimality principles. Various
properties of such functions are studied and maximum norms
of perturbations for which an efficient solution preserves the
property of being efficient are calculated.

In this paper an extension of the concepts of stability
and accuracy functions under the parameterized optimality
principle ”from lexicographic to Slater” is given. The paper is
organized as follows. In section II a multicriteria integer linear
programming problem is considered. The problem consists in
finding the set of optimal solutions, i.e. alternatives which
are optimal with respect to the chosen optimality principle. A
problem interpretation as one evaluation and decision making
problem is given. In section III, for a given solution an appro-
priate relative error is introduced. It characterizes the deviation
of the current solution from optimality. In section IV so
called stability and accuracy functions are introduced, which
are defined as functions of the corresponding norm of data
perturbations. Afterwards, extreme norm values of problem
parameter perturbations are specified, for which the stability
and accuracy functions are equal to zero. These extreme
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values are known as stability and accuracy radii. Formulae
to calculate values of both functions and corresponding radii
are presented. Final remarks and conclusions appear in section
V. The problem of using stability and accuracy functions as
efficient tools for post-optimal analysis and alternative ranking
is discussed at the end.

II. PROBLEM FORMULATION

A problem with m ≥ 2 objective functions is considered.
Let X ⊂ Zn, |X| ≥ 2 be a non-empty set of feasible solutions
or alternatives x := {x1, ..., xn}T �= 0(n) := (0, 0, ..., 0)T ,
where n denotes the problem size and Zn is a set of integer
vectors of size n.

For each solution x ∈ X , a vector cost function

f(C, x) := (f1(C, x), ..., fm(C, x))T

consists of individual cost functions fi(C, x), i ∈ Nm :=
{1, 2, ..., m}, which are defined as linear functions, i.e.:

fi(C, x) := Cix.

Here Ci is i-th row of matrix C = [cij ] ∈ Rm×n
+ , where

Rm×n
+ is a set of m×n matrices with all elements being real

and positive.
Without loss of generality, it is assumed that fi(C, x) are

minimized on the set of feasible solutions X for each i ∈ Nm.
Contrary to the single objective case where the concept of

optimal solution is unique, under multicriteria framework the
concept of optimality may vary and is usually based on binary
relations reflecting preferability of one solutions over others
(see e.g. [1] and [10]). In its turn, any binary relation generates
a principle of optimality (in other terminology, sometimes
referred as a choice function).

Let us define two binary relations in the space Rm of
arbitrary finite dimension m ∈ N, where N denotes the set of
cardinal numbers:

y′ �Sl y ⇔ y′
i > yi, i ∈ Nm,

y′ �lex y ⇔ y′
k > yk,

where k = min{i ∈ Nm | y′
i �= yi}, y = (y1, y2, ..., ym) and

y′ = (y′
1, y

′
2, ..., y

′
m).

A solution x′ ∈ X is called weakly efficient if

{x ∈ X : f(C, x′) �Sl f(C, x)} = ∅.
The the set of all weakly efficient solutions is referred to as
the Slater set and denoted by Slm(C).

A solution x′ ∈ X is called lexicographically optimal if

{x ∈ X : f(C, x′) �lex f(C, x)} = ∅.
The set of all lexicographically optimal solutions is referred
to as the lexicographic set and denoted by Lm(C).

The Slater set contains the solutions improvement in some
objectives can only be obtained at the expense of some other
objective together with solutions where improvement of one
or several objectives is possible without deteriorating some
other objectives, however all the objectives cannot be improved
simultaneously.

Lexicographic optimality is generally applied to the situa-
tion where objectives have no equal importance anymore but
ordered according to their significance. A rigid arrangements
of partial criteria with respect to importance is often used
for a wide spectrum of important optimization problems,
for example problems of stochastic programming, problems
of axiomatic systems of utility theory and so on. Observe
also that any scalar constrained optimization problem may
be transformed to an unconstrained bicriteria lexicographic
problem by using as first criterion some exact penalty function
for problem constraints, and an original objective function as
a second constraint.

Let s ∈ Nm, I = {I1, I2, ..., Is} be a partition of the set
Nm into non-intersecting non-empty subsets. i.e.

Nm =
⋃

r∈Ns

Ir,

where Ir �= ∅, r ∈ Ns, and if p �= q, then Ip

⋂
Iq = ∅.

For any such partitioning, define the binary relation 	I
between two vectors y, y′ ∈ Rm, m ∈ N, y �= y′,
y = (y1, y2, ..., ym) and y′ = (y′

1, y
′
2, ..., y

′
m) as follows:

y′ 	I y ⇔ y′
Ik

>Ik
yIk

,

where k := min{i ∈ Ns : yIi �= y′
Ii
}, and yIk

and y′
Ik

are
the projections of the vectors y and y′ correspondingly onto
the coordinate axes of the space Rm with numbers from the
subset Ik. In other words, yIk

=
(
(yIk

)1, (yIk
)2, ..., (yIk

)m

)
,

y′
Ik

=
(
(y′

Ik
)1, (y′

Ik
)2, ..., (y′

Ik
)m

)
, and (yIk

)i = yi, (y′
Ik

)i =
y′

i if i ∈ Ik, and 0 otherwise. Notice that y′
Ik

>Ik
yIk

means
that (y′

Ik
)i > (yIk

)i for all i ∈ Ik.
It is easy to check that the binary relation 	I is antireflexive,

asymmetric, transitive, and hence it is cyclic.
The introduced binary relation 	I determines ordering of

the shaped subset of objectives such that any previous subset
is significantly more important that any consequent subset.
This relation induces the concept of I-optimality. A solution
x′ ∈ X is called I-optimal if

{x ∈ X : f(C, x′) 	I f(C, x)} = ∅.
The set of all I-optimal solutions is referred to as the I-set
and denoted by OptmI (C).

It is evident that

OptmI (C) = Slm(C) if I = Nm (s = 1),

and

OptmI (C) = Lm(C) if I = {{1}, {2}, ..., {m}} (s = m).

Since the set of feasible solutions X is finite, the set
OptmI (C) is non-empty for any C ∈ Rm×n

+ and I due to
acyclicity of 	I .

Notice that originally this type of parametrization, which is
known as ”from lexicographic to Slater” was proposed in [3].

The problem presented above may be considered as a
generalization of many combinatorial optimization and integer
programming problems. In what follows the problem interpre-
tation in terms of one evaluation and decision making problem
is given. Assume a collection of |X| projects is given and m
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experts make evaluation and decision about project acceptance
for funding or rejection. The experts specify own penalty costs
for each of n criteria, which are assumed to have negative
sense. So the penalty cost matrix C ∈ Rm×n

+ is formed as
the result. The quantitative measure of presence of negative
criteria i in project x is reflected by given value xi. Also
assume that all the experts are divided into coalitions, and
the coalitions are ordered by importance, so that any previous
coalition of experts is significantly more important that any
consequent coalition. The division by coalitions is defined by
I. The I-optimal solutions constitute the set of projects which
may be potentially funded.

In what follows assume also that one or several I-optimal
solutions have been detected, and concentrate on analyzing
some quality measures of these solutions with respect to
small perturbations of the original matrix of penalty costs.
This corresponds to the situation when the experts are not
completely sure about exact values of penalty costs, and
therefore some sort of uncertainty may appear in the original
problem.

III. RELATIVE ERROR

If the coefficients of the objective functions are allowed
to be changed, then initially I-optimal solution may lose
its optimality. The quality of this solution will be evaluated
from the point of view of its robustness on possible data
perturbations. Namely, for a given matrix C ∈ Rm×n

+ and
x∗ ∈ OptmI (C), introduce the so-called relative error of this
solution:

ε(C, x∗) := max
x∈X

min
i∈I1

fi(C, x∗) − fi(C, x)
fi(C, x)

. (1)

Note that ε(C, x∗) ≥ 0. The numbers fi(C,x∗)−fi(C,x)
fi(C,x) , i ∈

I1, x ∈ X are well-defined, since x �= (0, 0, ..., 0)T and cij >
0 for all i ∈ I1 and j ∈ Nn.

Obviously if s = 1, i.e. I = {I1} = {Nm}, and (1)
transforms into

ε(C, x∗) = max
x∈X

min
i∈Nm

fi(C, x∗) − fi(C, x)
fi(C, x)

. (2)

If s = m, i.e. I = {{1}, {2}, ..., {m}}, and (1) transforms
into

ε(C, x∗) = max
x∈X

f1(C, x∗) − f1(C, x)
f1(C, x)

. (3)

In the scalar case, i.e. for m = 1, the lexicographic and Slater
sets transform into the set of optimal solutions. Therefore the
relative errors (2) and (3) convert into (see [6]):

ε(C, x∗) =
f1(C, x∗) − min

x∈X
f1(C, x)

min
x∈X

f1(C, x)
.

The use of relative error is evidently advantageous to the use
of simple absolute error, since the deviation from the optimal
solution is measured taking into account the cost function
ranges.

In the scalar case the equality ε(C, x∗) = 0 gives necessary
and sufficient conditions for the optimality of x∗. However, in
the multicriteria case the situation is a bit different. Observe,

that for arbitrary C ∈ Rm×n
+ it is true that ε(C, x∗) ≥ 0. The

equality ε(C, x∗) = 0 formulates in general only necessary
condition for x∗ to be I-optimal, i.e. ε(C, x∗) = 0 does not
guarantee that x∗ ∈ Optm(C). Indeed, consider the following
example.

Example 1. Let m = 4, n = 2, s = 2, I = {{1, 2}, {3, 4}}
and

C0 =

⎛
⎜⎜⎝

2 2
2 2
2 1
1 2

⎞
⎟⎟⎠ .

Assume also that X = {x1, x2}, x1 = (1, 0)T , x2 = (0, 1)T .
Then f(C0, x1) = (2, 2, 2, 1)T , f(C0, x2) = (2, 2, 1, 2)T , i.e.
Opt4I(C0) = {x1, x2}. If consider matrix

C =

⎛
⎜⎜⎝

2 2
2 2
1 2
1 2

⎞
⎟⎟⎠ ,

then f(C, x1) = (2, 2, 1, 1)T , f(C, x2) = (2, 2, 2, 2)T , i.e.
Opt4I(C) = {x1}. Then it can be deduced that x2 ∈ Opt4(C0)
and ε(C0, x2) = 0, but x2 �∈ Opt4I(C) and ε(C, x2) = 0. This
ends the example.

Later it will be shown, that if the equality ε(C, x∗) = 0
is valid for any matrix in some open neighborhood of C0,
i.e. there exists φ > 0 such that ε(C, x∗) = 0 for any C,
‖ C − C0 ‖< φ, where ‖ · ‖ denotes a norm in Rm×n,
then this equality provides also a sufficient condition for the
solution x∗ to belong OptmI (C0).

Now assume that the set of feasible solutions X is fixed,
but the matrix of objective costs C may vary or be estimated
with errors. Moreover, assume also that for some originally
specified matrix C0 = [c0

ij ] ∈ Rm×n
+ , an I-optimal solution

x∗ is known, which is an element of the set of I-optimal
solutions OptmI (C0).

IV. STABILITY AND ACCURACY FUNCTIONS

In the following the focus is given to the maximum value
of the error ε(C, x∗) when the matrix C belongs to some
specified set which describes possible absolute perturbations
of the original matrix C0. Two particular cases are considered:
In the first case the research interest is related to absolute
perturbations of the weights of elements, and the quality of
a given solution x∗ is described by the so-called stability
function. For a given ρ ≥ 0, the value of the stability function
is equal to the maximum relative error of a given situation
under the assumption that no penalty costs are increased or
decreased by more than ρ.

In the second case, the focus is given to relative pertur-
bations of weights. This leads to the concept of accuracy
function. The value of the accuracy function for a given
δ ∈ [0, 1) is equal to the maximum relative error of the solution
x∗ under the assumption that the penalty costs are perturbed
by no more than δ · 100% of their original values.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:5, 2009

339

The two types of perturbations, absolute and relative, reflect
different types of input data uncertainty that may appear in
the problem. While the absolute perturbations are usually
specified by some global parameter which reflects admissible
perturbation range valid for all the elements, the relative
perturbations incorporate discrepancy in element ranges, i.e.
the range of actual admissible perturbations depends on the
nominal element range.

Observe that if two I-optimal solutions are compared from
the point of view of their robustness on data perturbations
or inaccuracy, then smaller value of the stability or accuracy
function for a given norm of data perturbation is more prefer-
able. Thus, both defined functions may be used to evaluate
the quality of solutions, which are I-optimal in the original
problem.

For a given ρ ∈ [0, q(C0)), where q(C0) = min{c0
ij : i ∈

Nm, j ∈ Nn}, consider a set

Ωρ(C0) := {C ∈ Rm×n
+ :

|cij − c0
ij | ≤ ρ, i ∈ Nm, j ∈ Nn}.

For x∗ ∈ OptmI (C0), and ρ ∈ [0, q(C0)), the value of the
stability function is defined as follows:

S(C0, x∗, ρ) := max
C∈Ωρ(C0)

ε(C, x∗).

In a similar way, for a given δ ∈ [0, 1), consider a set

Θδ(C0) := {C ∈ Rm×n
+ :

|cij − c0
ij | ≤ δ · c0

ij , i ∈ Nm, j ∈ Nn}.
For x∗ ∈ OptmI (C0) and δ ∈ [0, 1), the value of the accuracy
function is defined as follows:

A(C0, x∗, δ) := max
C∈Θδ(C0)

ε(C, x∗).

It is easy to check that S(C0, x∗, ρ) ≥ 0 for any ρ ∈ [0, q(C0))
as well as A(C0, x∗, δ) ≥ 0 for each δ ∈ [0, 1).
Let

Ω′
ρ(C

0) := {C ∈ Rm×n
+ :

|cij − c0
ij | < ρ, i ∈ Nm, j ∈ Nn},

Θ′
δ(C

0) := {C ∈ Rm×n
+ :

|cij − c0
ij | < δ · c0

ij , i ∈ Nm, j ∈ Nm}.
Note that cl(Ω′

ρ(C
0)) = Ωρ(C0) as well as cl(Θ′

ρ(C
0)) =

Θρ(C0).
Here two results will be formulated which motivate the

use of stability and accuracy functions as possible quantitative
measures to estimate solution robustness.

Proposition 1: For x∗ ∈ OptmI (C0) and ρ ∈ [0, q(C0)), it
is true that x∗ ∈ OptmI (C) for any C ∈ Ω′

ρ(C
0) if and only

if S(C0, x∗, ρ) = 0.
Proposition 2: For x∗ ∈ OptmI (C0) and δ ∈ [0, 1), it is

true that x∗ ∈ OptmI (C) for any C ∈ Θ′
δ(C

0) if and only if
A(C0, x∗, δ) = 0.

For any z ∈ Rm, denote linear norm in standard way:

‖z‖1 :=
∑

i∈Nm

|zi|,

The following theorem gives a formula for calculating value
of the stability function.

Theorem 1: For x∗ ∈ OptmI (C0) and ρ ∈ [0, q(C0)), the
stability function can be expressed by the formula:

S(C0, x∗, ρ) = max
x∈X

min
i∈I1

C0
i (x∗ − x) + ρ‖x∗ − x‖1

C0
i x − ρ‖x‖1

. (4)

Theorem 2: For x∗ ∈ OptmI (C0) and δ ∈ [0, 1), the
accuracy function can be expressed by the formula:

A(C0, x∗, δ) = max
x∈X

min
i∈I1

C0
i (x∗ − x) + δ

∑
j∈In

c0
ij |x∗

j − xj |

C0
i x(1 − δ)

.

For shortening purposes the proofs will be omitted.
Propositions 1 and 2 suggest, that it is of special interest to

know the extreme values of ρ and δ, for which S(C0, x∗, ρ) =
0 and A(C0, x∗, δ) = 0, respectively, because these values
determine maximum norms of perturbations which preserve
the property of a given solution to be I-optimal. These values
are analogous to the so-called stability and accuracy radii
introduced earlier for single/multiple objective combinatorial
optimization problems (see e.g. [2]). Formally, the stability
radius RS(C0, x∗) and the accuracy radius RA(C0, x∗) are
defined in the following way:

RS(C0, x∗) := sup {ρ ∈ [0, q(C0)) : S(C0, x∗, ρ) = 0},
RA(C0, x∗) := sup {δ ∈ [0, 1) : A(C0, x∗, δ) = 0}.

If these radii are equal to zero, then it means that there
exist arbitrary small perturbations of the original matrix C0

such that the initially I-optimal solution x∗ loses its I-
optimality. Otherwise, the solution x∗ remains I-optimal for
any problem with matrix C ∈ Ωρ(C0), ρ < RS(C0, x∗) or
C ∈ Θδ(C0), δ < RA(C0, x∗).

The following theorems give formulae for calculating value
of the stability and accuracy radii.

Theorem 3: (c.f. [3]) For x∗ ∈ OptmI (C0), the stability
radius can be expressed by the formula:

RS(C0, x∗) = min
{

q(C0), min
x∈X\{x∗}

max
i∈I1

C0
i (x − x∗)
‖x − x∗‖1

}
.

(5)
Theorem 4: For x∗ ∈ OptmI (C0) and δ ∈ [0, 1), the

accuracy radius can be expressed by the formula:

RA(C0, x∗, δ) = min
{

1, min
x∈X\{x∗}

max
i∈I1

C0
i (x − x∗)∑

j∈Nn

c0
ij |xj − x∗

j |
}

.

As corollaries from theorem 3, the following well-known
results (c.f. [3]) can be formulated:

Corollary 1: The stability radius of x∗ ∈ Slm(C0) can be
expressed by the formula

RS(C0, x∗) = min
{

q(C0), min
x∈X\{x∗}

max
i∈Nm

C0
i (x − x∗)
‖x − x∗‖1

}
.

Corollary 2: The stability radius of x∗ ∈ Lm(C0) can be
expressed by the formula

RS(C0, x∗) = min
{

q(C0), min
x∈X\{x∗}

C0
1 (x − x∗)
‖x − x∗‖1

}
.
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V. CONCLUSION

Now it becomes evident that small changes or inaccuracies
in estimating objective function coefficients may have signif-
icant influence on the set of I-optimal solutions. Moreover,
some solutions being initially optimal, cannot be considered
as stable, because very small changes of input data destroy
their properties of being optimal.

The simplest measure of the stability of the optimum is its
stability or accuracy radius. But frequently, this measure is
not sufficient to rank the solutions, among multiple optimal
solutions, which so often occur in multicriteria optimization.
Therefore, calculating stability radii only may be not sufficient
to make a conclusion about solution stability, thus it is nec-
essary to calculate some complementary measures reflecting
more information about solution behavior under uncertainty.

The accuracy and stability functions describe the quality of
I-optimal solutions in the problem with uncertain coefficients
of objective functions. The definitions of these functions are
directly connected with a given optimality principle. Such
common optimality principles, as weak and lexicographic
optimality, may not fully cover all of the decision maker
preferences. Sometimes, introducing a parameterized version
of optimality principles may reflect the desirable preference
specific much better.

The accuracy and stability functions can be potentially used
as an efficient tool for ranking multiple optimal solutions. The
problem of solution ranking is especially important in multi-
objective optimization where a large number of solutions can
be optimal, and therefore there is a need to find some methods
which could help to select the most preferred solutions. Most
previously known selection procedures are mainly based on
asking decision maker about his or her specific preferences,
and therefore very subjective and personal. Provided some
efficient algorithms how to calculate the exact or approximated
values of stability and accuracy functions could be found,
they might become a very efficient tool for optimal alternative
ranking in multicriteria optimization. The concepts of stability
and accuracy functions would provide more flexible approach
to the alternative ranking which is less sensitive to the decision
maker personality.

As possible continuation of the research within this topic, it
would be interesting to study whether the approach presented
in this paper may be extended for the case of non-linear
objective functions. Finding efficient strategies to compute
stability and accuracy functions for the problems with larger
dimension may be also interesting to study.
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REFERENCES

[1] M. Ehrgott, Multicriteria optimization, Springer, Berlin, 2005.
[2] V. Emelichev, E. Girlich, Y. Nikulin and D. Podkopaev, (2002). ”Stability

and regularization of vector problems of integer linear programming”.
Optimization 51, 645 – 676.

[3] V. Emelichev, A. Platonov, (2006). ”About one discrete analog of
Hausdorff semi-continuity of suitable mapping in a vector combinatorial
problem with a parametric principle of optimality (”from Slater to
lexicographic”)”. Revue dAnalyse Numerique et de Theorie de lApprox-
imation 35.

[4] H. Greenberg, (1998). ”An annotated bibliography for post-solution
analysis in mixed integer and combinatorial optimization.” In D.
Woodruff (ed.) Advances in computational and stochastic optimization,
Logic programming and heuristic search, 97 – 148. Dordrecht: Kluwer
Academic Publishers.

[5] M. Libura, (1999). ”On accuracy of solution for combinatorial opti-
mization problems with perturbed coefficients of the objective function”.
Annals of Operation Research 86, 53 – 62.

[6] M. Libura, (2000). ”Quality of solutions for perturbed combinatorial
optimization problems”. Control and Cybernetics 29, 199 – 219.

[7] M. Libura and Y. Nikulin, (2006). ”Stability and accuracy functions
in multicriteria linear combinatorial optimization problems”. Annals of
Operations Research 147, 255 – 267.

[8] M. Libura, (2007). ”On the robustness of optimal solutions for com-
binatorial optimization problems”. Research Report 2/2007, Systems
Research Institute, Polish Academy of Sciences.

[9] M. Libura, (2008). ”Robustness tolerances for combinatorial optimiza-
tion problems”. Research Report 4/2008, Systems Research Institute,
Polish Academy of Sciences.

[10] K. Miettinen, Nonlinear Multiobjective Optimization (Kluwer Academic
Publishers, Boston, 1999).

[11] Y. Nikulin, (2008). ”Stability and accuracy functions in a coalition game
with bans, linear payoffs and antagonistic strategies”. (to appear in
Annals of Operations Research)
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