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Interaction of Two-Level System with Time
Dependent Non-Uniform Magnetic Field

Abstract—We study the movement of a two-level atom in
interaction with time dependent nonuniform magnetic filed using the
path integral formalism. The propagator is first written in the standard
form by replacing the spin by a unit vector aligned along the polar and
azimuthal directions. Then it is determined exactly using perturbation
methods. Thus the Rabi formula of the system are deduced.

Keywords—Path integral, Formalism, Propagator, Transition
probability.

I. INTRODUCTION

UP to now, a whole class of potentials have been treated
successfully within the path-integral formalism, thanks to

the use of certain transformations [1]. However, it is known
that the most relativistic interactions are those where the
spin is taken into account which is a very useful and very
important notion in physics. From a practical point of view,
the explicit calculus of propagators for such interactions by
the path-integral formalism, are very scarce( [2], [3], [4]).

For this reason we are devoted to this type of interaction;
by considering a problem treats according to usual quantum
mechanics [5]. It acts of an atom which has two levels and
which interacts with a time dependent nonuniform magnetic
filed.

B (t) = (B1 cosωt, B1 sinωt, B0) , (1)

Its dynamics is described by the Hamiltonian

H = −γSB (2)

where γ is the gyromagnetic ratio. In the above Hamiltonian
we have neglected the exterior motion.

Another form of the Hamiltonian suitable for our
calculations is

H = −u (t)σ+ − u∗ (t)σ− − Ω(t)σz (3)

where

u (t) =
γ

2
(Bx(t)− iBy(t)) = ω1e

−iωt, (4)

with
ω1 =

γ

2
B1 and Ω(t) =

γ

2
B0 = ω0 (5)

The Pauli matrices are the following:

σz =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
.

(6)
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Considering this problem by the path integral approach,
our motivation is the following. We show that for interaction
with the coupling of spin-field type, the propagator
is first, by construction, written in the standard form∑

path exp (iS (path) /h̄), where S is the action that describes
the system. The discrete variable relative to spin being inserted
as the (continuous) path using coherent states. With this
approach, the formulation that uses the concept of trajectory is
more suitable for a discussion of the semiclassical case which
is based on the determination of classical paths [6].

notation and the spin coherent state path integral for spin 1
2

up a path integral formalism for the propagator, we perform
the direct calculations. The integration over the spin variables
is easy to carry out and the result is given as a perturbation
series. These are summed up exactly and the explicit result of
the propagator is directly computed and the Rabi formula is

II. PATH-INTEGRAL FORMULATION

There are several ways to represent the spin in the path
integral formalism ( [2], [7], [8], [9]). We use the simplest
way ( [4], [10], [6]), which consists of:

• replacing σ by a unit vector n directed according to
(θ, ϕ) ;

• associating a coherent state |Ω〉
|Ω〉 = |θ, ϕ〉 = e−iϕSze−iθSy |↑〉 , (7)

obtained from two rotations of the angles θ and φ around
z and y axes over the state |↑〉 , and whose scalar product
and projector are respectively:

〈Ω|Ω′〉 = cos
θ

2
cos

θ′

2
e

i
2 (ϕ−ϕ′)+sin

θ

2
sin

θ′

2
e−

i
2 (ϕ−ϕ′),

(8)
1

2π

∫
dϕd cos(θ) |Ω〉 〈Ω| = I. (9)

Now we move to the description of the system via path
integral. For this we consider the quantum state |θ, ϕ〉, where
the polar angles (θ, ϕ) are the spin-related variables.

The transition amplitude from the initial state |θi, ϕi〉 at
ti = 0 to the final state |θf , ϕf 〉 at tf = T is defined with
the matrix elements of the evolution operator:

K (f, i;T ) = 〈θf , ϕf | TD exp(−i

∫ T

0

Hdt) | θi, ϕi〉, (10)
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The paper is organized as follows. In Section II we give some

system for our further computations. In Section III, after setting

then deduced. Finally, in Section IV, we present our conclusions.
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where TDis the Dyson chronological operator.
To move to path integral representation, we first subdivide

the time interval [0, T ] into N + 1 intervals of length ε,
intermediate moments, by using the Trotter’s formula and we
then introduce the projectors according to these intermediate
instants N regularly divided distributes between 0 and T in
(9) .

Thus the propagator takes the following form:

K (f, i;T ) = lim
N−→∞

∫ N∏
n=1

d cos(θn)dϕn

2π
(11)

×
N+1∏
n=1

[〈Ωn | Ωn−1〉 − iε 〈Ωn|H |Ωn−1〉] .

where
ΩN+1 = Ωf and Ω0 = Ωi. (12)

It is easy to find that the following matrix elements can be
calculated:

〈Ω|σz |Ω′〉 =

cos
θ

2
cos

θ′

2
e+

i
2 (ϕ−ϕ′) − sin

θ

2
sin

θ′

2
e−

i
2 (ϕ−ϕ′), (13)

〈Ω|σ+ |Ω′〉 = cos
θ

2
sin

θ′

2
e+

i
2 (ϕ+ϕ′), (14)

〈Ω|σ− |Ω′〉 = sin
θ

2
cos

θ′

2
e−

i
2 (ϕ+ϕ′). (15)

and the propagator related to our problem (10) takes the form
of Feynman path integral

K =

∫
Dpath exp(iAction), (16)

which means in our case:

K (f, i;T ) =

∫ N∏
n=1

d cos(θn)dϕn

2π

exp

{
n=N+1∑
n=1

[
log < Ωn |Ωn−1〉 − iε

〈Ωn|H |Ωn−1〉
< Ωn |Ωn−1〉

]}
(17)

After having obtained the conventional form, it remains
to integrate it, in order to extract the interesting physical
properties. We thus proceed to the calculation of K (f, i;T ) .

III. THE PROPAGATOR CALCULATION

We note that (16) is written in the following form

K (f, i;T ) = lim
N−→∞

∫ N∏
n=1

d cos(θn)dϕn

2π

×
N+1∏
n=1

(
cos θn

2 e+
i
2ϕn , sin θn

2 e−
i
2ϕn

)

×R(tn)

(
cos θn−1

2 e−
i
2ϕn−1

sin θn−1

2 e+
i
2ϕn−1

)
, (18)

with

R(tn) =

[
eiεΩσz + iε

(
0 u (tn)

u∗(tn) 0

)]
. (19)

Let us integrate over all angular variables θn and ϕn

according to [4] then (17) becomes

K (f, i;T ) =
(

cos
θf
2 e

i
2ϕf , sin

θf
2 e−

i
2ϕf

)

× lim
N−→∞

(−1)
N

N+1∏
n=1←

R(tn)

(
cos θi

2 e
− i

2ϕi

sin θi
2 e

i
2ϕi

)
. (20)

We develop the product (of 2 × 2 matrix) which appear
in the expression (19) according to [9] we can see that the

propagator takes the following form

K (f, i;T ) =
(

cos
θf
2 e

i
2ϕf , sin

θf
2 e−

i
2ϕf

)

×
(

R11 (T ) −R12 (T )
−R21 (T ) R22 (T )

)(
cos θi

2 e
− i

2ϕi

sin θi
2 e

i
2ϕi

)
, (21)

where Rij are the elements of the matrix R. These are
numbers which are represent the possible propagators between
two given spin states.

The angles θ, ϕ are allowed to vary only in the limited
domains [0, 2π] and [0, 4π]. Our propagator is the following:

K (f, i;T ) =

+∞∑
n=−∞

K (θf + 2nπ, ϕf + 4nπ; θi, ϕi;T )

= K (θf , ϕf ; θi, ϕi;T ) . (22)

A simple calculation shows that the expression of the
elements Rij are the following [9]:

R11 (T ) = ei
∫ T
0

Ω(s)ds +
∞∑

n=1

[
i2n
∫ T

0

ds1

∫ s1

0

ds2 · ··∫ s2n−1

0

ds2ne
i
∫ T
s1

Ω(s)ds
u (s1) e

−i
∫ s1
s2

Ω(s)ds

....e−i
∫ s2n−1
s2n

Ω(s)dsu∗ (s2n) ei
∫ s2n
0 Ω(s)ds

]
,(23)

and

R12 (T ) = i

∫ T

0

ds1e
i
∫ T
s1

Ω(s)ds
u (s1)R22 (s1) (24)

From the above expressions we can see that the elements Rij

verify

R22 (T ) = R∗
11 (T ) , R21 (T ) = − R∗

12 (T ) (25)

Thus the transition amplitude of the system between an initial
state of spin mi and a final state of spin mf is related to

K (f, i;T ) by

K (mf , ,mi;T ) =

∫
d cos(θf )dϕf

2π

d cos(θi)dϕi

2π

×〈mf |Ωf 〉K (f, i;T ) 〈Ωi| mi〉 , (26)

where

〈m |θ, ϕ〉 =
√

(2s)!

(s+m)! (s−m)!

(
sin

θ

2

)s−m

×
(
cos

θ

2

)s+m

e−imϕ. (27)
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IV. THE TRANSITION PROBABILITY

If we fix the initial state of the atom to be |mi〉 = |↓〉 , and
the finale state to be |mf 〉 = |↑〉 , thus from (26) we obtain

〈↑ |Ωf 〉 = cos

(
θf
2

)
e−

i
2ϕf and 〈Ωi| ↓〉 = sin

(
θi
2

)
e+

i
2ϕi .

(28)
After integration over polar coordinates we obtain for instance
the propagator K (↑, , ↓;T ) between an up-state and a
down-state of spin which coincides with element R12 (T )

K (↑, , ↓;T ) = R12 (T )

=

∞∑
n=0

[
(iω1)

2n+1
∫ T

0

ds1e
−iΔs1

∫ s1

0

ds2e
+iΔs2 · ·· (29)

∫ s2n−1

0

ds2n+1e
−iΔs2n+1

]
eiωT

where Δ = ω − ω0.
Now we pass to its Laplace’s transformation and apply the

convolution theorem we obtain the result

K (↑, , ↓; p) =
∫ ∞

0

dTe−pTK (↑, , ↓;T ) = iω1

p (p+ iΔ)− ω2
1

(30)
Taking the inverse Laplace transform we have

K (↑, , ↓;T ) = iω1e
i(ω−Δ/2)T

λ
sinλT, (31)

with λ = 1
2

√
(ω − ω0)

2
+ 4ω2

1 . The transition probability is
then given by

P−1/2,1/2 = |K (↑, , ↓;T )|2

=
4ω2

1

(ω − ω0)
2
+ 4ω2

1

sin2
T

2

√
(ω − ω0)

2
+ 4ω2

1 (32)

This formula is exactly the well-known Rabi formula given in
the literature [5].

V. CONCLUSION

By using the formalism of the path integral and the spin
coherent states approach, we showed how to determine the
Rabi formula. The propagator relative to a system have been
given in the series form, which for this case, these series are
summed up exactly. The Rabi formula, relative to our model
in this case were exactly deduced.
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