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Learned Features Using Computational Auditory
Scene Analysis Principals in Noisy Environments
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Abstract—Speaker recognition is performed in high Additive
White Gaussian Noise (AWGN) environments using principals of
Computational Auditory Scene Analysis (CASA). CASA methods
often classify sounds from images in the time-frequency (T-F) plane
using spectrograms or cochleargrams as the image. In this paper
atomic decomposition implemented by matching pursuit performs a
transform from time series speech signals to the T-F plane. The
atomic decomposition creates a sparsely populated T-F vector in
“weight space” where each populated T-F position contains an
amplitude weight. The weight space vector along with the atomic
dictionary represents a denoised, compressed version of the original
signal. The arraignment or of the atomic indices in the T-F vector are
used for classification. Unsupervised feature learning implemented
by a sparse autoencoder learns a single dictionary of basis features
from a collection of envelope samples from all speakers. The
approach is demonstrated using pairs of speakers from the TIMIT
data set. Pairs of speakers are selected randomly from a single
district. Each speak has 10 sentences. Two are used for training and 8
for testing. Atomic index probabilities are created for each training
sentence and also for each test sentence. Classification is performed
by finding the lowest Euclidean distance between then probabilities
from the training sentences and the test sentences. Training is done at
a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s
of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline
classification accuracy of ~93% averaged over 10 pairs of speakers
from the TIMIT data set. The baseline accuracy is attributable to
short sequences of training and test data as well as the overall
simplicity of the classification algorithm. The accuracy is not affected
by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords—Time-frequency plane, atomic decomposition,
envelope sampling, Gabor atoms, matching pursuit, sparse dictionary
learning, sparse autoencoder.

1. INTRODUCTION

PEAKER identification in high noise environments is a

very challenging machine learning problem in today’s
information age. Humans have the remarkable ability to
follow a conversation in the presence of multiple speakers
talking at once. Bergman, a psychologist, described this ability
as Audio Scene Analysis (ASA) [1]. CASA is the organization
of sounds and application of ASA principles in machine
learning algorithms [2]. Bergman proposed humans perceive
sounds in time by creating audio streams. These audio streams
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are grouping of sounds that are segmented sequentially and
simultaneously. Sequential groupings connect sense data over
time whereas simultaneous grouping connect sounds that “are
probably parts of the same sounds” [1].

Zhao et al. implemented a robust CASA algorithm using a
bank of 54 gammatone filters to model the human cochlear
frequency response [2]. Gammatone Features were extracted
from speech by decimating the outputs of each filter to
produce a T-F representation or cochleargram. Additionally,
Gammatone Frequency Cepstral Coefficients (GFCC) features
were derived by direct cosine transform of each decimated
filter output. An ideal binary mask was derived by supervised
training of a hidden Markov model. The ideal binary mask
was used to select GFCC features for classification. The
GFCC’s were shown to significantly outperform Mel
Frequency Cepstral Coefficients for speaker identification
using the same binary mask technique for feature selection.
Zhao’s CASA method processes speech as images in the T-F
plane using a cochleargram for the visual representation.

Lee et al. also processed sound as images by applying deep
belief neural networks to spectrograms [3]. The neural
network was able to learn phones/phonemes from raw
spectrograms. The learned features were comparable in
classification performance to MFCC’s. The learned features
were combined with MFCC’s to further augment the accuracy
of the classifier. The combination of learned features and
MFCC’s were applied to phoneme classification, speaker
identification, music artist and music genera classification
with good results.

Gross et al. learned sparse dictionaries directly from audio
signals for classification purposes. The approach learns
features directly from speech for all possible shifts of the
audio signal. The learned basis features were shown to provide
better accuracy than MFCC’s for speaker identification and
music genera classification problems [8].

Olshausen and Fields found that a set of sparse
overcomplete basis vectors learned directly from natural
images are similar to the neural responses in the ganglion cells
of the retina [6]. Moreover, they showed at a linear
superposition of a few basis vectors from a large dictionary
were able to capture the statistical properties of the images.
The basis vectors are very similar to features learned by
Independent Component Analysis from natural images [7].
The basis vectors are “edges” that are similar to the rings of 2
dimensional Gabor atoms [6].

Gabor proposed the idea that speech may be represented by
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a superposition of “quanta of information”. He recognized that
Fourier methods have a T-F uncertainty in a manner similar to
Heisenberg uncertainty in nuclear physics. Gabor introduce
the idea of Heisenberg boxes to describe the tiling of energy in
the T-F plane [4]. He noted that Fourier methods have a single
Heisenberg box size for all frequencies. He proposed the
Gabor atom, a sinusoid, modulated by a Gaussian pulse as the
“quanta of information”. By varying the length of the pulse
and the center frequency of each atom, the T-F plane could be
tiled with different size Heisenberg boxes.

Mallat and Zhang developed the matching pursuit algorithm
to perform atomic decomposition of signals using a redundant
dictionary of functions [5]. They showed that Gabor functions,
or atoms, can be used to perform an adaptive T-F transform.
The algorithm isolates structure in the data that is coherent
with Gabor atoms. Gabor’s idea of representing speech by
quanta’s of information is reduced to practice by the matching
pursuit algorithm. In a previous paper, a sparse autoencoder
was used to learn basis features from 16 Gabor and 16
gammatone “seed atoms” from TIMIT training data [10]. Both
the Gabor and gammatone atoms were logarithmically
distributed in frequency with increasing center frequencies and
bandwidth. The learned basis features were used as “custom
atoms” for matching pursuit decomposition. Oracle SNR
curves were generated that show the reconstruction SNR
verses the original clean speech signals. Fig. 1 shows Oracle
reconstructions of the learned basis features verses Gabor and
gammatone atoms. The learned basis features significantly
outperform the Gabor and gammatone atoms, particularly at
lower data compression rates. At -10dB SNR, the Gabor and
gammatone have ~8dB of denoising gain whereas, the Gabor
and gammatone atoms have ~ 3.5dB of denoising gain. At
0dB SNR, the Gabor and gammatone have ~5dB of denoising
gain as compared to the Gabor and gammatone atoms that
have ~ 2dB of denoising gain.
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Fig. 1 Basis Feature Denoising Gain verses SNR and data
Compression for Basis Features Learned from Gabor and
Gammatone Atoms Compared to Gabor and Gammatone Atoms

The SNR performance of basis features learned from Gabor
and gammatone atoms are very similar. For simplicity, only
the Gabor atoms are used for the remainder of this paper. In
another previous paper, a voice activity detector was

implemented using 16 Gabor atoms [9]. The VAD detects
audio snippets in the presence of AWGN, using matching
pursuit decomposition. The detector used the filtered output of
the atomic gains in the T-F plane. The detection accuracy
shown in Fig. 2 is 70% at 0dB SNR and approximately 95%
for SNR’s > 8dB.
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Fig. 2 Audio Segmentation Accuracy, Gabor Atoms, 98.15% Data
Compression, 640 Random TIMIT Sentences

The speaker identification algorithm is implemented in the
following steps:

For SNR’s of 0 dB, 5 dB, 10dB, and 30 dB:

1. Perform Audio Segmentation using matching pursuit with
16 Gabor atoms to generate Audio Snippets. Use, 96.3%
data compression to get good denoising gain.

2. Perform a second pass of matching pursuit to generate
envelope samples using the Audio Snippets. Generate
envelop samples from each sentence in the test and
training sets.

3. At 30dB SNR, train the classifier:

a. Learn basis features from envelope samples from the
training sentences. Use the best 8 atoms for each sentence.
Combine speaker’s envelope samples A and B to get 16
envelop samples for unsupervised feature learning.

b. Calculate frequency domain probabilities of T-F atomic
indexes.

c. Calculate time domain probabilities of the two atomic
indexes with the highest energies. Use time differences
along a single atom index in the T-F plane

4. Perform a 3" pass of matching pursuit using the learned
features as custom atoms. Use 90% data compression to
get good SNR performance and good statistical samples.

5. For each sentence in the training set, perform
classification to calculate training set accuracy.

6. For each sentence in the test set, perform classification to
calculate accuracy test set accuracy.

This paper is organized in the following manner. Section II
covers the topic of preprocessing the audio signal and
segmentation of the audio signal into audio snippets. Section
I provides details on matching pursuit envelope sampling.
Section IV covers sparse dictionary learning from envelope
samples implemented by a sparse autoencoder. Section V
describes classification in the T-F plane, and Section VI
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discusses the results.

II. PREPROCESSING AND AUDIO SEGMENTATION

Audio segmentation is a critical part of speaker
identification in noisy environments. In a previous paper, a
noise tolerant Voice Activity Detector was implemented using
matching pursuit atomic decomposition with 16 Gabor or 16
gammatone atoms [9]. The detector filtered a sparsely
populated T-F vector of atomic indexes in “weight space”.
Data denoising and data compression using 16 Gabor and 16
gammatone atoms was shown to achieve peak denoising
performance at data compression rates > 95 % for speech [10].
The VAD and denoising/data compression characteristic were
very similar for the Gabor and gammatone atoms. Based on
the previous research, 16 Gabor atoms are used for the VAD
implementation with a data compression of 96.3% in this

paper.
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Fig. 3 TIMIT Sentence SA1, Speaker MMDRO, DR1, After
Amplitude Normalization and Resampling to 8ksps, 30dB SNR
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Fig. 4 Audio Segmentation by Matching Pursuit Showing Atomic
Indexes in the Time Domain, Filter Output and Thresholded Output
at 30dB SNR

The first preprocessing step is to change the sample rate of
TIMIT data from 16ksps to 8ksps to minimize simulation

time. The TIMIT data is also normalized so that the peak
amplitude is 1. A typical TIMIT sentence is shown in Fig. 3.
Fig. 4 shows the results of audio segmentation at 30dB SNR.
Fig. 5 shows normalized audio snippets.
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Fig. 5 Normalized Audio Snippets Found by Matching Pursuit
Atomic Decomposition using 16 Gabor Atoms at 30dB SNR

Following amplitude normalization and resampling, the
speech waveform is segmented into active audio snippets. This
process eliminates the silent periods between sounds that
would not have any value in classification. The audio
segmentation is performed by performing atomic
decomposition on the TIMIT data using a set of 16 Gabor
atoms. The 16 Gabor atoms are logarithmically distributed in
frequency from 300 Hz to 2700 Hz. The sample rate is, Fi=
8ksps. The window length for all Gabor and gammatone
atoms is 40.6 mSec which corresponds to 325 samples at
8ksps.

The logarithmically spaced center frequencies (F,) are:

F.=1[299, 347, 402, 465, 538, 624, 722, 836, 968, 1121, 1298,
1502, 1739, 2014, 2332, 2699] Hz.

The Gabor atoms are defined as a sinusoid multiplied by a
Gaussian envelope. The same center frequencies F,, for the
sinusoid are used for the Gabor atoms. The equation for the
Gabor atom is given by,

y(t) = \/%U et/ cos(w,t + 0) (1)

The bandwidth of the Gabor atoms is set by o, which
increases logarithmically with center frequency. The vector
o.s was determined empirically to produce high VAD
accuracy at 0dB SNR. The Gabor vector ;4 is:

o.=[.50,.71,1.01, 1.44,2.05, 2.92, 4.16, 5.92, 8.43, 12.01,
17.09, 24.34, 34.65, 49.33, 70.24, 100.00].

The audio segmentation response using 16 Gabor atoms is
shown in Fig. 2. The segmentation process generates audio
snippets. The minimum size snippet is limited to 50 msec.
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This eliminates short spurious bursts that might not be useful
for classification. In this example, 5 audio snippets are
generated. Out of a total of just over 3.1 seconds of audio data,
there are approximately .75 seconds of audio snippets. The
final audio preprocessing step is to normalize individual audio
snippets to a peak amplitude of 1. This supports uniform
amplitude scaling of extracted audio data from each audio
snippet. Normalized audio snippets are shown in Fig. 3. Figs.
6-8 show the same set of waveforms for 0 dB SNR. This
demonstrates the robustness of the audio segmentation process
for low SNR’s. Audio segmentation is accurate for the high
energy audio snippets, however, for lower energy snippets the
detector found 6 audio snippets at 0dB as compared to 5 at
30dB SNR. This behavior affects the accuracy of the classifier
as the amount of sampled data is different between high and
low SNR samples.

Normalized Amplitude
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Fig. 6 TIMIT Sentence SA1, Speaker MMDRO, DR1 After
Amplitude Normalization and Resampling to 8ksps, 0dB SNR
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Fig. 7 Audio Segmentation by Matching Pursuit Showing Atomic
Indexes in the Time Domain, Filtered Output and Thresholded
Output at 0dB SNR

Normalized Audio Snippets ‘

L

Normalized Amplitued

-0.8 |

0 0.5 1 1.5 2 25 3
Time in Seconds

Fig. 8 Normalized Audio Snippets Found by Matching Pursuit
Atomic Decomposition using 16 Gabor Atoms at 0dB SNR

III. MATCHING PURSUIT ENVELOPE SAMPLING OF AUDIO
SNIPPETS

Matching pursuit is a greedy algorithm that represents time
series data as a linear superposition of fundamental atoms.
Matching pursuit follows a simple heuristic of finding
correlation peaks between input data and a set of atoms for all
possible shifts of each atom. The algorithm finds correlation
peaks that represent a minimum mean square error (MMSE)
fit between portions of the data and the best atom provided the
L, norm of the atom is set to 1. The algorithm halts once it
reaches stopping goal that is specified by a fixed number of
iterations based on the desired data compression.

The audio stream x(t)may be represented by a linear

superposition of atoms ¢,, from a dictionary D.

x(t) = %:1 Z:an Sm,iq’m(t - Tm,i) +e(t) (2)
where e(t) is the approximation error or residual, after n
iterations of matching pursuit. The input data length is
designated by L,so that the number of iterations of the
algorithm is given by,

n=DL 3)

where, D is the data compression.

Simulation parameters:
The length of the input audio data, L.
Number of iterations, n = DL.
The number of Gabor and gammatone atoms, M = 16.
The index of the correlation peak,i.
The amplitude coefficient for the time index i and atom
mis denoted by Sy, ; .

0O O O O O

o The time index i and atom mcoefficient are denoted by
Tm,L'~

The steps of matching pursuit envelope sampling are:
Initialize the algorithm R, = x(t)

2. Compute for all ¢,,, € D:CORR(R,—1, ¥ )= U Rn-1, P )|

Find the largest inner product, maxArg(|[(Ry—1, ¢m )|)

—_

had
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4. Extract the audio patch by envelope sampling ap =
xi(t - Tm,i) ® (Pm_l(t - Tm,i)

5. Where ap = audio patch, and ¢,y 4 is @;normalized to 1

Compute the new residual, R, = Rj_1 — (Rp—1, @m ) Om,

7. Repeat step 2-5 until # iterations of the algorithm are
complete.

&
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Fig. 9 Envelop Sampling of TIMIT Sentence SA1, Speaker
MMDRO, DRI using Gabor Atom #6 at 30dB SNR
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Fig. 10 Envelop Sampling of TIMIT Sentence SA1, Speaker
MMDRO, DRI using Gabor Atom #6 at 0dB SNR

Envelope samples are shown in Figs. 9 and 10 for 30 dB
and 0 dB respectively. In these examples, the 6th Gabor atom
matches coherent structure in the data. The reconstruction
shows that Gabor atom does not match the data exactly. The
envelope sample is generated by multiplying the raw data by
the Gaussian envelope of the 6th Gabor atom. These examples
show the results of the 1st iteration of the algorithm which
represent the highest energy portion of the audio signal. Also,
the envelope samples are very similar even under noise
conditions. Note that the sampler captured a high energy pulse
at the beginning of the sample. This will be useful for learning
basis vectors from envelope samples data in the next section.

IV. SPARSE DICTIONARY LEARNING USING A SPARSE
AUTOENCODER

In order to increase the signal to noise performance of the
classifier, a sparse autoencoder is used to learn basis features
from the training data. The basis features are used as custom
atoms that provide superior denoising and data compression
compared to the performance of the Gabor atoms. Envelope
samples are extracted from audio snippets by a second
application of matching pursuit using 16 Gabor atoms. The
envelope samples are arranged in a column vector for
processing by a sparse autoencoder. A block diagram of a
Sparse Autoencoder (SAE) is shown in Fig. 11. The SAE is a
neural network in which the target outputs are equal to the
inputs during training. The network represents an input as a
superposition of a few basis vectors from a larger set of
overcomplete basis vectors. A sparsity parameter punishes
overactive nodes in the hidden layer ensuring that the average
rate of activation for all nodes is typically <10%. The network
has an input layer, a single hidden layer and an output layer.
The SAE learns the identity function and performs data
compression by 2 mechanisms. This input data is compressed
from an input size of 324 to 16 based on using only 16 hidden
nodes. Additional data compression results from a sparsity
penalty that limits average activation for each hidden node to
1/16. The overall data compression in the SAE is 324:1. The
detailed design equations including the cost function and the
sparsity equations are found in [10]. The SAE simulation
parameters are:

e  Number of Inputs = 324
e  Number of Hidden Nodes = 16

e  Sparsity Parameter p = i =.0625
e  Sparsity Influence § = 3;
e Regularization A = 3.0e-3

Fig. 11 Sparse Autoencoder Block Diagram

The hidden nodes and the output nodes use a soft limiter
based on a sigmoid function that is shown in Fig. 12.

1
1+e~%

f(z) = sigmoid(z) = €]
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Sigmaid function
. B .

Fig. 13 Random Samples of Speech Viewed as Images by Folding
the Time Domain into columns

Fig. 14 SAE Reconstruction of the input data from Fig. 13

The sigmoid function is used to facilitate viewing audio
data as images, with the darkest portions corresponding to
values near 0, while the whitest portions correspond to values
near 1. The envelope samples are 324 samples long and are
folded into 18 columns of 18 samples per column so that large
amounts of audio data can be observed simultaneously. Fig. 13
shows envelope samples that are based on 16 Gabor atoms.
Fig. 14 shows the output of the SAE using 16 basis features

shown in Fig. 15. The SAE output can be seen to approximate
the input data with the image definition being a slightly
blurred version of the original input. The SAE is trained by
batch backpropagation and the basis features are simply the
input weights to the network. The basis features appear as
bands when viewed as images. The width of the band is
proportional to frequency, while the image intensity is
proportional to amplitude.

Fig. 15 Basis Features Viewed as Images Learned by a Sparse
Autoencoder. Learned from Speakers A and B

V.CLASSIFICATION IN THE T-F PLANE

A final 3rd pass of matching pursuit is applied to the audio
snippets using the basis features learned from the training
data. The basis vectors are learned at 30dB SNR. This
application of matching pursuit uses a data compression rate
of 90%. This generates a large number of atomic
decomposition components in the T-F plane that produce a
rich set of statistics. The atomic indexes are collected from all
the audio snippets within a given sentence. Statistical models
are generated for each sentence in the training set. Statistics
are collected from the test data a SNR’s of 0dB, 5dB, 10dB
and 30dB using learned basis feature decomposition. The test
statistics are compared to the individual sentence training
models for speaker identification. The following statistics are
generated for classification:

1. Frequency measurements are identified by summing the
absolute value across time for each atomic index. Since
the atoms are logarithmically distributed in frequency,
this will produce an estimate of the total frequency
content for each sentence. The amplitude weights
represent the energy content for each atom in the T-F
plane.

2. Differential time measurements are made by finding the
differences between consecutive time indexes for each
atom. This is done for the individual snippets. The data is
collected for the 2 highest energy atoms in a given
snippet. Differential time is used as opposed to absolute
time to eliminate large numbers of zero elements in the T-
F plane.
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Fig. 16 Example of Atomic Index Probabilities Showing Frequency
Content of TIMIT Sentence at 0dB and 30dB SNR’s
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Fig. 17 Example of Differential Time of Highest Energy Atom #6 for
a TIMIT Sentence at 0dB and 30dB SNR’s
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Fig. 18 Example of Differential Time of 2" Highest Energy Atom #4
for a TIMIT Sentence at 0dB and 30dB SNR’s

Examples of statistics for the frequency content for a
TIMIT sentence is shown in Fig. 16. The SAE learned features
typically have a high energy atom that best matched the

speakers voice fundamental frequency response. The
differential time distributions for the 1st and 2nd highest
energy atoms are shown in Figs. 17 and 18 for atom 6 and 4
respectively. Note that the time differences for the 2" highest
energy atom provide a good match between the training data
at 30dB and the test data at 0dB SNR.

The classification was performed on a sentence by sentence
basis by finding the minimum Euclidean distance between the
measured probabilities and the model probabilities. The
classification accuracy averaged over 10 pairs of speakers
with SNR’s of 30dB, 10 dB, 5dB and 0 dB:

e  Atomic Total Energy 81.72%
e Time differences 1* highest energy Atom 84.06%
e Time differences 2™ highest energy Atom 92.81%

VI. SUMMARY AND CONCLUSIONS

This paper used principals of CASA to perform speaker
identification at low SNR’s with AWGN. Classification was
performed by using statistics of atomic energy and time
differences in the T-F plane. The algorithm has identical
classification accuracies for SNR’s of 0dB, 5dB, 10dB and 30
dB using 2 TIMIT sentences for training and 8 for testing. It is
not clear why the 2™ highest energy atom produces the best
classification accuracy. Learning basis features from speech,
and then decomposing speech using these features appears to
be a validate Gabor’s theory that speech can be represented as
a summation of “quanta’s of information”.
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