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Abstract—In this work, we exploit two assumed properties of the 

abundances of the observed signatures (endmembers) in order to 
reconstruct the abundances from hyperspectral data. Joint-sparsity is 
the first property of the abundances, which assumes the adjacent pixels 
can be expressed as different linear combinations of same materials. 
The second property is rank-deficiency where the number of 
endmembers participating in hyperspectral data is very small 
compared with the dimensionality of spectral library, which means 
that the abundances matrix of the endmembers is a low-rank matrix. 
These assumptions lead to an optimization problem for the sparse 
unmixing model that requires minimizing a combined l2,p-norm and 
nuclear norm. We propose a variable splitting and augmented 
Lagrangian algorithm to solve the optimization problem. Experimental 
evaluation carried out on synthetic and real hyperspectral data shows 
that the proposed method outperforms the state-of-the-art algorithms 
with a better spectral unmixing accuracy. 
 

Keywords—Hyperspectral unmixing, joint-sparse, low-rank 
representation, abundance estimation.  

I. INTRODUCTION 

ITH the rapid development of space technology, 
hyperspectral imaging (HSI) has been widely applied to 

various fields such as environmental monitoring, resource 
survey, and target detection [1]. Due to the insufficient spatial 
resolution of the hyperspectral remote sensors, some pixels of 
the hyperspectral image often contain a mixture of distinct 
materials. In order to deal with the great challenging task, the 
hyperspectral unmixing technique was proposed to decompose 
each pixel’s spectrum to identify the pure constituent spectra 
(endmembers) and estimate the abundances of the endmembers 
in the mixed pixel. The nonlinear mixture model (NLMM) and 
the linear mixture model (LMM) are two basic hyperspectral 
unmixing models, which we use to analyze the mixed pixel 
problem [12]. Under the LMM, several hyperspectral unmixing 
approaches based on statistics [2], [3], geometry [2], [4], and 
nonnegative matrix factorization [5] have been proposed. 
However, some of these methods [2]-[4] assume that the 
hyperspectral data contain at least one pure pixel per 
endmember. If the pure pixel assumption is not fulfilled, these 
methods are very likely to fail. 

Sparse unmixing, as a semi-supervised linear spectral 
unmixing approach, has been proposed to overcome this 
difficulty. It assumes that the measured pixels can be expressed 
as a linear combination of a few spectral endmembers from the 
spectral library that is known a priori [6], [12]. Several sparse 
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regression techniques, such as greedy algorithms (GAs) [7] and 
convex relaxation methods [8]-[10], are usually adopted to 
solve the sparse unmixing problem. Convex relaxation 
methods, such as SUnSAL [8], SUnSAL-TV [9], and 
CLSUnSAL [10], use the alternating direction method of 
multiples (ADMM) to solve the constrained l1 norm regression 
problem efficiently. The GAs, such as OMP [6] and SP, can get 
an approximate solution for the l0 norm problem without 
smoothing the penalty function and have low computational 
complexity. 

In this paper, we consider incorporating joint-sparse and 
low-rank representation into the sparse unmixing model, thus 
exploiting joint-sparsity and rank-deficiency information in 
hyperspectral images. Then, a novel cost function is proposed 
comprising a least-squares optimization problem which is 
regularized by the non-convex l2,p -norm as the sparsity penalty 
and the nuclear norm as the low-rank penalty. We introduce a 
new sparse unmixing algorithm, which is termed sparse 
unmixing via joint-sparse and low-rank representation 
(SUnJSLRR), to solve this optimization problem. The 
experiments were carried out on three simulated hyperspectral 
datasets and one real hyperspectral dataset. It was found that the 
proposed method yields the best spectral unmixing accuracy in 
terms of quantitative evaluation. 

II. SIMULTANEOUS SPARSE UNMIXING MODEL 

The LMM assumes that the measured spectrum vector of a 
mixed pixel can be expressed as a linear combination of only a 
few spectral signatures present in a known spectral library. Let 

Ly R  be the measured vector of the mixed pixel with L  

bands, L mA R   is a L m  spectral library, and m  is the 
number of endmembers in the spectral library A, then the linear 
sparse unmixing model can be expressed as: 
 

y Ax n                                      (1) 
 

The simultaneous sparse unmixing model expresses that 
several mixed pixels can be expressed as different linear 
combinations of the same spectral signatures in the spectral 
library. A similar sparsity pattern acts as a priori information, 
which improves the conditioning of the sparse regression 
problem. Then, the linear sparse unmixing model can be 
represented as a multiple measurement vectors (MMV) model: 
 

Y AX N                                         (2) 
 

where L KY R   denotes the hyperspectral data matrix with L  
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bands and K  mixed pixels, L mA R   is the spectral library, 
m KX R   is the fractional abundance matrix, where each 

column represents the abundance fractions of a mixed pixel. 
Under the simultaneous sparse unmixing model, the 
simultaneous sparse unmixing problem becomes as: 
 

2,1
min . . , 0

FX
X s t Y - AX X                (3) 

 

where 
2,1 1 2

=
m

ii
X X

  denotes the 2,1l norm of X , iX  

denotes the thi row of X . In [10], collaborative SUnSAL 
(CLSUnSAL), which is also based on the ADMM, has been 
proposed to solve it. 

III. PROPOSED HYPERSPECTRAL UNMIXING METHODOLOGY 

In this work, we exploit two assumed properties of the 
abundances of the observed endmembers for the sparse 
umixing model. Joint-sparsity is the first property of the 
abundances, which assumes a few adjacent pixels can be 
expressed as different linear combinations of some same 
signatures in the spectral library. So, we employ the 
joint-sparsity regularizer to enforce structured sparsity on the 
abundance coefficients. To exploit the abundance structure of 
the endmembers, we also employ the low-rank representation 
model to enforce rank-deficiency on the abundance 
coefficients. Reformulating the constrained optimization 
problem (3) with the joint-sparsity and the low-rank 
regularizer, we get 
 

2, *
min . . , 0S Lp FX

X X s t Y - AX X         (4) 

 

where 
( )

* 1
( ) ( )

rank XT
ik

X tr X X X


  , denotes the 

nuclear norm of X , ( )i X  is the ith largest singular value of 

X , ( )rank X  is the rank of X , the parameter S  and L  are 

the regularization parameters controlling the weight of 
joint-sparsity and low-rank terms.  

The optimization problem in (8) can be rewritten in the 
following equivalent form by minimizing the respective 
Lagrange function: 
 

2

2, *

1
min ( )

2 S L RF pX
Y AX X X X                 (5) 

 

where the term    Rl  X  denotes the ANC function:    Rl  X

is zero if  0X  is satisfied and   otherwise. 
The optimization problem in (5) can be written in a compact 

form as: 
 

2

2, *

1
min ( ) . .

2 S L RF pX
Y AX X V V s t V X        (6) 

 
The augmented Lagrangian of problem (6) is 
 

2

2, *

2

1
( , , ) ( )

2

2

S L RF p

F

L X V D Y AX X V V

X V D

  



    

  
   (7) 

 
where 0   is a positive constant representing the Lagrange 

multiplier, V  and D  are the intermediate variables. To solve 
(7), the optimal problem of (7) is decomposed into a sequence 
of simpler ones via the alternating direction method of 
multipliers (ADMM), which are defined as: 
 

( 1) ( 1)

,
( , )=arg min ( , )k k

X V
X V L X V                     (8) 

 
       1 1 1( )k k k kD D X V                         (9) 

 
Firstly, we need to achieve the solution X of the augmented 

Lagrange problem. The terms of the objective function (7) 
which do not contain the variable X  are not considered, so the 
reduced optimization problem of the variable X can be written 
as:  
 

2

2,

2

1
arg min

2

2

(k+1)
SF pX

F

X Y AX X

X V D





  

  
              (10) 

 
It is evident that the minimization problem (10) is still hard 

to solve efficiently in a direct way, since it involves a 2 pl , -norm 

terms. To solve this problem, we follow the M-FOCUSS 
algorithm [11] to derive the solution with good theoretical 
guarantee of correctness.  

Since the partial derivative of 
2,p

X  with respects to an 

entry ,m nx  is: 

 

22, 2 / 2
, , ,n2

, ,

( )
pp p

i j m m
i jm n m n

X
x p x x

x x





 
 

        (11) 

 

Then, the gradient of 
2,p

X  writes: 

 

22,
, 2

( )
pp

m

X
diag p x X

X









                     (12) 

 
Using (12), the gradient of the objective function (10) writes: 

 

( ) ( ) 0T
SA Y AX PX X V D                  (13) 

 

where 
2

, 2
( )

p

mP diag p x


 , and the weighting matrix W is 

defined as 
1 /21/2

, 2
( )

p

mW diag p x


 , 2W P  .  

After simple algebras, the solution of (10) is  
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( 1) 1(( ) ( ) ( ) ) (( )

( ))

k T T T
S

T

X W AW AW W I AW Y

W V D

 



   

 
  (14) 

 

To compute  1kV  , the optimization problem can be solved 

as: 
 

      21 1

*
min ( )

2
k k k

L R
V F

V V V X V D
  

         (15) 

 

Considering the nonnegative constraint function ( )R   , we 

can firstly solve the following optimization problem for the 
variable Z . Then, the variable Z  is projected onto the 

non-negative orthant, thus    1 max ,0kV Z  . 

 

    2
1

*
min

2
k k

L
V F

Z Z X Z D
               (16) 

 
The solution of (16) can be easily solved by the singular 

value shrinkage26: 
 

    1( 1)
/ ( )

L

k kkZ S X D 
                        (17) 

 
where the singular value shrinkage is defined by 
 

( ) ( ( )) TS Q U diag V                          (18) 
 
where U , V , and   are the singular vectors and values of Q, 
and ( ) max{ ,0}x x  . 

IV. EXPERIMENTAL RESULTS 

In this section, we conduct both simulated hyperspectral data 
and real hyperspectral data to evaluate the effectiveness of the 
proposed algorithm. The proposed algorithm is compared with 
SUnSAL and CLSUnSAL. All the considered algorithms have 
taken into account the abundance nonnegativity constraint. The 
signal-to-reconstruction error (SRE) is used to assess the 
quality of the reconstruction of spectral mixtures. 

A. Evaluation with Simulated Data 

In the simulated experiments, the spectral library A   was 
generated by using the United States Geological Survey 
(USGS) digital spectral library (splib06a), which contains 498 
spectral signatures with reflectance values given in 224 spectral 
bands between the interval of 0.4 m and 2.5 m . Using the 

spectral library A , we generated three datacubes of 50  50 
pixels and 224 bands per pixel, each containing a different 
number of endmembers: 1 4k  (denoted by DC1), 2 6k 

(DC2), 3 8k  (DC3). The endmembers were randomly 

selected from the spectral library A . The fractional 
abundances of the endmembers selected from the spectral 
library were generated randomly, using a Dirichlet distribution. 
After the simulated datacubes were generated, Gaussian white 
noise was added to the simulated datacubes, having three levels 

of the signal-to-noise ratio (SNR), i.e. 20, 30, and 40 dB. 
Table I shows the SRE (dB) obtained by the different tested 

methods with the three considered datacubes, using three SNR 
levels. The SREs of all the algorithms increase as the SNR 
increases. From Table I, we can find that the proposed method 
and CLSUnSAL perform better than SUnSAL in all the cases. 
This result indicates that the proposed method and CLSUnSAL, 
imposing joint-sparsity on the abundance coefficients of the 
endmembers for all pixels, can obtain a higher accuracy than 
SUnSAL. In all the cases, the proposed method behaves better 
than CLSUnSAL. This observation indicates that the 
non-convex 2 pl , -norm and nuclear norm can get better 

recovery results than the convex 2,1l -norm. For high SNR 

values, the improvements of SREs obtained by the proposed 
method are significant, with regard to CLSUnSAL and 
SUnSAL. This is due to the fact that, the proposed method, 
using the 2 pl , -norm and nuclear norm to enforce joint-sparsity 

and rank-deficiency on the abundance coefficients, is able to 
recover the fractional abundances with good accuracy. 

 
TABLE I 

SRE VALUES OBTAINED BY DIFFERENT UNMIXING METHODS 

Data 
cube 

SNR 
SRE (dB) 

SUnSAL CLSUnSAL SUnJSLRR 

DC1 

20dB 2.098 3.105 9.113 

30dB 7.1615 10.3514 22.348 

40dB 15.0799 20.3994 36.5292 

DC2 

20dB 1.842 3.063 6.27 

30dB 6.213 7.736 18.2016 

40dB 13.552 19.315 31.3057 

DC3 

20dB 1.281 2.386 3.7196 

30dB 4.902 6.739 14.7291 

40dB 10.728 17.297 26.2334 

 
For visual comparison, Fig. 1 shows the estimated fractional 

abundances of the considered unmixing methods in DC2 with 
SNR of 30 dB, along with the ground-truth abundance. In order 
to better visualization, the same abundances of 100 randomly 
selected pixels are shown. From Fig. 2, we can find that the 
estimated abundances by SUnSAL contain more noise points 
compared with CLSUnSAL and the proposed method. 
Compared with CLSUnSAL, the proposed method that 
considers joint-sparsity and low-rank information can achieve a 
better visual effect and contain fewer noise points. 

B. Evaluation with Real Data 

We use the AVIRIS Cuprite dataset as the hyperspectral 
dataset in our real data experiment. The size of the real data 
cube is a 250 191  pixels subset with 188 spectral bands; 
water absorption bands and low SNR bands were removed. The 
spectral library for this dataset is the USGS spectral library 
(contains 498 pure signatures), in which corresponding bands 
were removed. For illustrative purposes, Fig. 2 shows a 
qualitative comparison among the fractional abundance maps 
of three different materials (alunite, buddingtonite, and 
chalcedony) estimated by all the algorithms. From Fig. 2, the 
abundances estimated by SUnJSLRR are comparable or higher 
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in the regions assigned to the respective minerals in comparison 
to SUnSAL and CLSUnSAL, with regard to the classification 

maps produced by the Tricorder3.3 software. 

 

 

(a) Ground-truth abundances                                                                  (b) SUnSAL 
 

 

(c) CLSUnSAL                                                       (d) SUnJSLRR 

Fig. 1 Ground-truth and estimated abundance in DC2 with 30 dB white noise 
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 Alunite Buddingtonite Chalcedony 

   

Tricorder 3.3 software product 

   

SUnSAL 

   

CLSUnSAL 

   

SUnJSLRR 

Fig. 2 Abundance maps estimated for the minerals: alunite, buddingtonite, and chalcedony by applying the different algorithms 
 

V. CONCLUSION 

In this paper, we employ joint-sparse and low-rank 
representation to exploit the spatial structure of the abundance 
vectors for sparse unmixing. Then, we propose a novel sparse 
unmixing model to exploit two assumed properties of the 
abundances vectors. Based on the sparse unmixing model, we 
formulate an optimization problem that minimizes a 
combination of the 2 pl , -norm and the nuclear norm. Then, we 

present a new algorithm, which is called SUnJSLRR, to solve 
this optimization problem. Three simulated hyperspectral 
datasets and one real hyperspectral dataset were used to 
evaluate the performance of the proposed SUnJSLRR. The 
experimental results show that the proposed method 

significantly outperforms SUnSAL and CLSUnSAL. 
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