
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:9, 2011

1053

 

 

  
Abstract—Designing and implementing intelligent systems has 

become a crucial factor for the innovation and development of better 
products of space technologies. A neural network is a parallel 
system, capable of resolving paradigms that linear computing cannot. 
Field programmable gate array (FPGA) is a digital device that owns 
reprogrammable properties and robust flexibility. For the neural 
network based instrument prototype in real time application, 
conventional specific VLSI neural chip design suffers the limitation 
in time and cost. With low precision artificial neural network design, 
FPGAs have higher speed and smaller size for real time application 
than the VLSI and DSP chips. So, many researchers have made great 
efforts on the realization of neural network (NN) using FPGA 
technique. In this paper, an introduction of ANN and FPGA 
technique are briefly shown. Also, Hardware Description Language 
(VHDL) code has been proposed to implement ANNs as well as to 
present simulation results with floating point arithmetic. Synthesis 
results for ANN controller are developed using Precision RTL. 
Proposed VHDL implementation creates a flexible, fast method and 
high degree of parallelism for implementing ANN. The 
implementation of multi-layer NN using lookup table LUT reduces 
the resource utilization for implementation and time for execution.  
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I. INTRODUCTION 
RTIFICIAL Neural Network (ANN) has promising 
applications in science and engineering. The main 

advantages of using ANN algorithms are simplifying the 
complicated algorithms, reducing heavy computation demands 
and improving fault tolerance. The ANN is particularly useful 
to implement nonlinear, time-varying input-output mapping 
[1]. Analog implementations have the potential for high 
densities and fast operations. Unfortunately, they are sensitive 
to noise; cross talk, temperature effects and power supply 
variations. Also long term weight storage requires special 
fabrication techniques. Another major drawback, which is 
very critical in ANNs is that conventional analog 
implementations are fixed (i.e. no programmability can be 
achieved). Digital integrated technology, in the other hand, 
offers very desirable features such as design flexibility, 
learning, expandable size and precision. Another advantage is 
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that mature and powerful CAD tools support design of digital 
VLSI circuits. 

Digital implementation of ANNs can make use of full 
custom VLSI, semi custom, ASICs (application specific 
integrated circuits) and FPGAs. Particularly, FPGA 
implementation of ANNs is very attractive because of the high 
flexibility that can be achieved through the re-
programmability nature of these circuits [2, 3]. Also, FPGA is 
concurrent, which supports the massively parallel calculation 
of neural network.  
Nowadays, with the increasing complexity of VLSI circuits, 
state of the art design is focused around high level synthesis 
which is a top down design methodology, that transform an 
abstract level such as the VHDL language into a physical 
implementation level. 

VHDL based synthesis tools have become very popular due 
to mainly these reasons: the need to get a correctly working 
system at first time, technology independent design, design 
reusability, the ability to experiment with several alternatives 
of the design, and economic factors such as time to market. In 
addition, synthesis tools allow designers with limited 
knowledge, of low level implementation details to analyze and 
trade off between alternative implementations without actually 
implementing the target architecture [4]. Beside this, the 
VHDL language is well suited for high regular structures like 
neural networks. However, although all these advantages, 
seldom attention has been done to use synthesis for ANNs 
implementations. 

The paper is organized as follow: Spacecraft power system 
architecture is given in section II. Section III reviews the 
basics of FPGA. Also, the theoretical background of artificial 
neural networks is given in section IV. Proposed spacecraft 
power control system architecture and data representation are 
introduced in sections and V and VI respectively. Section VII 
describes VHDL-implementation of NNC. Simulation and 
synthesis results are introduced in section VIII. Finally, 
conclusion is given in section IX. 
 

II. SPACECRAFT POWER SYSTEM ARCHITECTURE 
Photovoltaic conversion of the sun’s energy is the most 

common source of electrical power in space. An array of 
photovoltaic cells powers the load and charges a battery 
during sunlight. The battery powers the load during an eclipse. 
A typical solar panel–battery power system is shown in Fig. 1 
[5, 6].  
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Fig. 1 Typical solar  panel– battery system architecture 
 

Using the equivalent circuit of a solar cell, the non-linear I–
V characteristics of a solar array are extracted, neglecting the 
series resistance [5]: 
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Where: I0 is the PV array output current (A), V0 is the PV 

array output voltage (V), q is the charge of an electron, k is the 
Boltzmann’s constant in J/K, A the p–n junction ideality 
factor, T is the cell temperature (K), and Irs is the cell reverse 
saturation current (A).  

The photocurrent Iph depends on the solar radiation and the 
cell temperature as described in the following equation [5]: 
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Where: Iscr is the PV array short circuit current at reference 

temperature and radiation (A), Tr is the cell reference 
temperature, ki the short circuit current temperature coefficient 
(A/K) and S  is the solar radiation (W/m2).                                                                                  
A generic model to most popular types of rechargeable 
batteries is represented as follows [5]: 
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Where:  E is no load voltage (V), E0 is constant voltage (V), 

K is polarization voltage (V), Q is battery capacity (Ah), C is 
exponential voltage (V), and D is exponential capacity (Ah–1). 
The state of charge (SOC) of the battery can be calculated as: 
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III. FIELD PROGRAMMABLE GATE ARRAYS 
FPGAs are a form of programmable logic, which offer 

flexibility in design like software, but with performance 
speeds closer to Application Specific Integrated Circuits 

(ASICs) [6]. With the ability to be reconfigured an endless 
number of times after having been manufactured so FPGAs 
have traditionally been used as a prototyping tool for 
hardware designers [7].  

A more advanced programmable logic than the CPLD is the 
FPGA. An FPGA is more flexible than CPLD, allows more 
complex logic implementations, and can be used for 
implementation of digital circuits that use equivalent of 
several Million logic gates [8]. 

An FPGA is like a CPLD except that its logic blocks that 
are linked by wiring channels are much smaller than those of a 
CPLD and there are far more such logic blocks than there are 
in a CPLD. FPGA logic blocks consist of smaller logic 
elements. A logic element has only one flip-flop that is 
individually configured and controlled. Logic complexity of a 
logic element is only about 10 to 20 equivalent gates. A 
further enhancement in the structure of FPGAs is the addition 
of memory blocks that can be configured as a general purpose 
RAM. Figure 2 shows the general structure of an FPGA [9, 
10]. 

As shown in Fig. 2, an FPGA is an array of many logic 
blocks that are linked by horizontal and vertical wiring 
channels. FPGA RAM blocks can also be used for logic 
implementation or they can be configured to form memories 
of various word sizes and address space. Linking of logic 
blocks with the I/O cells and with the memories are done 
through wiring channels. Within logic blocks, smaller logic 
elements are linked by local wires. FPGAs from different 
manufacturers vary in routing mechanisms, logic blocks, 
memories and I/O pin capabilities [11, 12]. 
 

 

 

 

 

 

 

 

 

 

Fig. 2 Generic FPGA architecture. 
 

IV. ARTIFICIAL NEURAL NETWORK  
Artificial intelligence (AI) techniques are becoming useful 

as alternate approaches to conventional techniques or as 
components of integrated systems. They have been used to 
solve complicated practical problems in various areas and are 
becoming more and more popular nowadays. Today, 
considerable attention has been focused on use of ANN on 
system modeling and control applications [1, 13]. 
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The basic processing elements of neural networks are called 
artificial neurons, or simply neurons or nodes. As indicated in 
Fig. 3, the effects of the synapses are represented by 
connection weights that modulate the effect of the associated 
input signals, and the nonlinear characteristic exhibited by 
neurons is represented by a transfer function. The neuron 
impulse is then computed as the weighted sum of the input 
signals, transformed by the transfer function. The learning 
capability of an artificial neuron is achieved by adjusting the 
weights in accordance to the chosen learning algorithm. The 
learning situations in neural networks may be classified into 
three distinct sorts. These are supervised learning, 
unsupervised learning, and reinforcement learning.The total 
synaptic input, u, to the neuron is given by the inner product 
of the input and weight vectors: 
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The output activation, y, is given by: 
 
  )(uy φ=                                                                          (6) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Nonlinear model of a neuron. 
 

The main advantages of the neural network technique are 
• Nonlinearity. 
• Mapping input signals to desired response.  
• Adaptivity. 
• Evidential response: confidence level improves 

classification.  
• Contextual information: Knowledge is 

represented by the very structure and activation. 
• Fault tolerent: graceful degradation of 

performance if damaged.  
• Uniformity of analysis and design. 
• Neurobiological analogy. 

 

V.  PROPOSED SPACECRAFT POWER CONTROL SYSTEM 
ARCHITECTURE 

Fig. 4 shows the block diagram of the control subsystem 
using NNC. In this diagram, the NNC controls whether the 
system is in peak power or in eclipse conditions. Comparing 
the solar array current with the load current, the change in 
battery charge current is considered as the difference between 
them. 

Fig. 5 indicates the proposed multi-layer perceptron 
network architecture. The inputs of this controller are the load 
current (IL) and the error signal (E) while the output is the 
change in battery charge current (∆IBC). The input and the 
output are fixed initially however the number of hidden layers 
and the neurons within these layers are optimized during the 
learning process based on the good performance of root mean 
square error (RMSE). A two layer feed-forward network with 
"purelinear" hidden neurons and "purlinear" output neurons 
are be used. The network will be trained using MATLAB–
SIMULINK. 

 

Fig. 4 Block diagram of NN controller 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 5 The architecture of the NN controller model 
 

VI. DATA REPRESENTATION 

There are two problems during the hardware 
implementation of ANNs. How to balance between the need 
of reasonable precision (number of bit), that is important for 
ANN and the cost of more logic area associated with 
increased precision. How to choose a suitable number format 
that dynamic range is large enough to guarantee that 
saturation will not occur for a general-purpose application. So, 
before beginning ANN’s based FPGAs system design with 
VHDL, number format (floating point, fixed point etc.) and 
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precision which used for inputs, weights and activation 
function must be considered. Floating point offers the greatest 
amount of dynamic range, making it suitable for any 
application so it would be the ideal number format to use. 

So ANN’s architecture was developed using VHDL with 32 
bit floating point arithmetic. Unfortunately, there is currently 
no clear support for floating-point arithmetic in VHDL. As a 
result, a VHDL library was designed for using ANN's on 
FPGAs. The library supports to the IEEE-754 standards for 
single-precision (32-bit) floating point arithmetic, and it is 
referred to, fixed_pkg.vhdl, float_pkg.vhdl, and 
fixed_float_types.vhdl packages [14].  

The single precision floating point numeric representation 
supports to IEEE-754 standard is shown in Fig. 6. 
 

 

 

 

Fig. 6 32 bit Floating Point Format 
 

The floating point number (n) is computed by: 

 

   ( )bn es .121 127−−=                                              (7)  

            

In Fig. 6, sign field is referred to 's' is bit 31 and is used to 
specify the sign of the number. Exponent field is referred to 'e' 
which ranges from bits 30 down to 23. The bias of 127 is used 
because of 8 bit quantity is a signed number representation. 
The bits 22 down to 0 are used to store binary representation 
(b) of floating point number. 
 

VII. VHDL-IMPLEMENTATION OF NNC 
VHDL is an industry standard language used within the 

design of digital circuits and systems. Toolsets based on the 
language allow the designer to model, simulate and ultimately 
synthesis into hardware logic complex digital designs 
commonly encountered in modern electronic devices. A 
number of benefits are derived from using VHDL as a neural 
network representational framework. First VHDL provides a 
powerful language suitable for modeling, simulation, and 
behavioral representation. VHDL also provides an interface to 
powerful circuit simulators used to predict responses and 
convergence of circuits and the neural networks they 
represent. The designer can embody both circuits and 
mathematical model constraints in the same VHDL 
representation. In this way, VHDL neural network design 
simulations represent not only the simulation of the 
mathematical model itself, but also the actual behavior of the 
intended device [15].The first level in the design of the 
spacecraft power system controller is the top-level block 
diagram using FPGA as indicated in Fig. 7. The previous 

figure describes a 2–3–1 multilayer feed forward neural 
network. The input layer neurons pass the input signal to the 
hidden layer based on multiplexing.The neurons in the hidden 
and output layer perform the computation. Each neuron in the 
hidden and output layers calculates its net output by 
determining the product of input and weight of each 
connection. The final output of each neuron is determined 
based on the activation function. The hidden and output layers 
use pure linear function as activation function.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Hardware implementation of spacecraft power system 
controller using NN 

VIII. SIMULATION AND SYNTHESIS RESULTS 

The ANN computation can be divided in two phases: 
learning phase and recall phase. The learning phase performs 
an iterative updating of the synaptic weights based upon the 
error back-propagation algorithm. It teaches the ANN to 
produce the desired output for a set of input patterns. The 
recall phase computes the activation values of the neurons 
from the output layer according to the weighted values 
(computed in the learning phase).In our control subsystem, the 
recall phase of a neural network is implemented which has 
been previously trained on MATLAB–SIMULINK where the 
final synaptic weights are obtained, i.e. "off- chip 
training".After the design description is created using FPGA 
Advantage® 8.1, the second procedure is to simulate the total 
design using Modelsim.A design process is incomplete 
without design verification. There are several ways to verify a 
VHDL design. However the most popular way is to use a test 
bench. A test bench is an environment where a design (called 
a design or unit under test, UUT) is checked by applying 
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stimulus to its inputs and monitoring the output responses. 
Test bench is described using VHDL code. Figure 8 
represents test bench Modelsim results of the ANN. The final 
results of the designed NNC can be obtained during 100 ns. 
This value is not comparable with the microcontroller or the 
DSP speed of the algorithm execution. This is due to the very 
long time of sequential execution of the NNC algorithm on 
this type of devices. Output results show that, the required 
functionality is well achieved. It is indicated that, hardware 
implementation will result in very fast digital neurons 
compared to a biological system. Where biological neurons 
respond in milliseconds, our digital neurons will respond in 
tens of nano-seconds using a modest 100 MHz clock. This is a 
speed enhancement of at least a factor of 104, and a large-scale 
neuron network such as the human brain operating at these 
speeds is an interesting conjecture.Once the functionality is 
verified, the VHDL – RTL (Register Transfer Level) code is 
used for synthesis. At this level, the RTL description can be 
transformed to a netlist in term of configurable logic blocks 
(CLB) depending on the target technology transforms. Tile 
synthesis tool proceeds to estimate area in terms of CLBs. 
Synthesis is a two step process with an optional third step. 

1. Translate synthesizable RTL–HDL (Hardware 
Description Language) to generic gate level netlist, such 
as technology independent gates. 

2. Optimize and map generic gate level netlist to 
technology gates utilizing any special architectural 
features wherever possible. This optimization can be 
for area and/or speed. 

3. Timing optimization if timing constraints not met 
(optional step). 

The output from synthesis is an EDIF netlist ready for 
vendor place and route tools. 
In the synthesis phase the target technology must be 
determined.The synthesis results are taken with the help of 
XILINX SPARTAN3 (device 3S4000fg900), VIRTEXII 
(device 2V2000bf957), and VIRTEX5 (device 
5VFX100TFF1136) device technologies which contain 
27648, 10752, and 16000 CLBs respectively as depicted in 
Table I. Synthesis results indicate that XILINX VIRTEX5 has 
the lowest utilization percentage of resources than the other 
device technologies. So the target technology used to 
implement our design is the XILINX FPGA VIRTEX5 
(device 5VFX100TFF1136). PrecisionTM RTL Synthesis is a 
synthesis platform that maximizes the performance of FPGAs. 
PrecisionTM RTL Synthesis is a comprehensive tool suite, 
providing design capture in the form of VHDL, Verilog and 
SystemVerilog entry, advanced register- transfer-level logic 
synthesis, constraint-based optimization, state-of-the-art 
timing analysis, schematic viewing and encapsulated place-
and route.Figure 9 describes the RTL schematic of the 

spacecraft power system NNC using Xilinix FPGA Virtex5 
device technology. The previous figure consists of basic logic 
gates (AND, OR, etc.) for a particular fabrication process. 
These are connected using wires, and due to the size of the 
final schematic, specific details can only be seen by zooming 
in a particular part of the design. At this point, it is necessary 
to consider cell delays due to interconnect and gate loading 
effects. Technology schematic using Xilinix FPGA Virtex5 
device technology which indicates the connections between 
the lookup tables is depicted in Fig. 10.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Fig. 8 Simulation results of NNC for implementation on FPGA 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 The RTL view of the synthesized architecture of NNC using XILINX 

VIRTEX5 
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Fig. 10 Technology schematic of NNC using XILINX VIRTEX5 

IX. CONCLUSION 
This paper presents a spacecraft power system controller 

which is designed, modeled, and simulated using FPGA 
Advantage R 8.1. Synaptic weights can be obtained from 
MATLAB – SIMULINK which save computation time. A fast 
and flexible feed forward neural network can be obtained 
which is capable of dealing with Floating point arithmetic 
operations using VHDL programming language. The final 
results of the designed NNC can be obtained in very low 
simulation time as compared to microcontroller and 
DSP.Model was synthesized into Precision RTL. Three 
technologies (XILINX SPARTAN3, VIRTEXII, and 
VIRTEX5) are compared with respect to the utilization of the 
resources. It is found that XILINX VIRTEX5 has the lowest 

utilized resources than others. The hardware architecture of 
neural network with two input, one output and three hidden 
neurons occupies only 23.54 % of available CLB slices using 
XILINIX VIRTEX5 target technology. 
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TABLE I 
AREA REPORT FOR  A 2-3-1 NN FOR XILINX SPARTAN3, VIRTEXII, AND VIRTEX5 DEVICE 

 
Resource 

SPARTAN3 VIRTEXII VIRTEX5 
   Available        Used   Utilization 

% 
Available Used Utilization 

% 
Available Used Utilization 

% 
IOS 633 610 96.37 624 610 97.76 640 610 95.31 
Global Buffers 8 1 12.50 16 1 6.25 32 1 3.13 

Function 
Generators 

55296 25390 45.92 21504 20059 93.28 64000 1506
6 

23.54 

CLB Slices 27648 12695 45.92 10752 10030 93.28 16000 3767 23.54 
Dffs or Latches 57195 96 0.17 23376 96 0.41 65280 96 0.15 
Block RAMs 96 0 0.00 56 0 0.00 228 0 0.00 
Block 
Multipliers 

96 12 12.50 56 42 75.00 – – – 

Block 
Multiplier Dffs 

3456 0 0.00 2016 0 0.00 – – – 

DSP48Es – – – – – – 256 21 8.20 
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