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Some Rotational Flows of an Incompressible
Fluid of Variable Viscosity
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Abstract—The Navier Stokes Equations (NSE) for an
incompressible fluid of variable viscosity in the presence of an
unknown external force in Von-Mises system (Xa\V) are
transformed, and some new exact solutions for a class of flows
characterized by equation y=f (X)+ ay +Db for an arbitrary state

equation are determined, where f(x) is a function, \JJ the stream

function, g (;t O) and b are the arbitrary constants. In three, out of
four cases, the function f (X) is arbitrary, and the solutions are the

solutions of the flow equations for all the flows characterized by the
equation y= f (X)+ ay + b. Streamline patterns for some forms of

f (X) in unbounded and bounded regions are given.
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[. INTRODUCTION

Avast amount of work has been done on the Navier-Stokes
equations (NSE) in the absence of external forces, and
very small amount of work has appeared in literature on NSE
with known external forces. This can be found in
references [1-22], and references there in. Recently in [23]
some work has been done on the NSE for viscous fluid of
variable viscosity in the presence of external force in the
Martin’s coordinates (g, ), where y = constant represents the

stream lines and (I) = constant are the arbitrary curves. The

exact solutions of NSE are determined for radial, circular and
parallel flows by making the coordinate system (¢,v)

orthogonal. The expressions for the unknown external force are
also determined for these flows, and these contain arbitrary
function(s) enabling to construct a large number of external
forces, and hence a large number of solutions to the flow
equations. The objective of this paper is to present some exact
solutions of the equations governing the motion of an
incompressible fluid of variable viscosity in the presence of an
unknown external force for a class of flows characterized by
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the equation y = f (x)+ ay +b for an arbitrary state
equation, where f (x) is a function, ¥ the streamfunction,

a(:t 0) and b are the arbitrary constants. The plan of the
paper is as follows:

In section II, we consider the non-dimensional equations
describing the motion of an incompressible fluid of variable
viscosity in the presence of an unknown external force for an
arbitrary state equation. We first transform the basic flow
equation into the Martin’s system (¢, ) using transformation

defined by (15) and then into von-Mises system (x,t// ) In
section III, we determine the solutions of the flow equations in
Von-Mises system (x,l//) for the class of flows under

considerations. We also give streamline patterns for some
flows in the unbounded and bounded regions. In section [V, we
give conclusion on the present work.

II. FLOW EQUATIONS

The non-dimensional equations describing the steady plane
flow of an incompressible fluid of variable viscosity in the
presence of an unknown external force with no heat addition
are:

u +v, =01

)
uu, +vu, =—p, _,_RL(Z#UX)X
' e
+Rie{,u(u‘ +V~‘)}v + A1
)
uv, +vw, =-p, +*(2,uv )
B 3)
+i{ﬂ(“v +Vx)}x +Af,
e ]
2 2
1/!7; +VTy :F(T:Yx w)+ EZ 2('u(u" +;y)+ (4)
MHu, +v,
p=uT)
&)

where u, v are the velocity components, T the temperature,
il the viscosity, P the pressure, R, the Reynolds number, P,

the Prandtl number, E, the Eckert number, p the density of the

fluid and f, and f, are the components of the external force. In
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(2) and (3), A is a non dimensional number, and in case of
motion under the gravitational force, A is called Froude
number (F;). On substituting

O=V, —u,

(6)

1 u
H=p+—(u2+v2)—2u—" ™
2 Re
The system (1-5) is replaced by the following system of
equations

u,+v, =0
®
H, :Vm+é{u(uy +VX)}y +F
(wu) ®
4
H, :_uw_%+%e{“(uy+vx)}x+1:2 (10)
®=Vv,—Uu, (11)
uT, +vT, = ﬁ(ﬁx +T,)
+%{2p(ui +V§,)+ u(uy+vx)2} (12)
e
w=u(T) (13)

Equations (8-13) constitute a system of six equations in eight
unknowns u, v, W, H, T, o, Fy, F, as functions of x, y. In (9)

and (10) for convenience we have put F = 7Lf1’F2 = xf2.

Equation (8) implies the existence of the stream function
\V(X, y) such that

u=y,,v=-y, (14)
y = constant defines the family of streamlines and if we
assume (I)(X’ y) = constant defines some family of curves such
that it generates a curvilinear net(q),\v) with s =constant,

then the transformation

x=x(9,v) y=y(0,v) (15)

defines the curvilinear net in the physical plane. The squared
element of arc length along any curve is defined by

ds® = E(¢,y)d” +2F(,y)dody + G(¢,y)dy>  (16)

where
E= xi + ydz)
G=x_+y, (17

F=x,Xx, +v,y,
Equation (15) can be solved to get

0=0(x,y), v=v(xy) (18)
such that
Xy =Jy,, x, ==J0,
Yo ==V v, =10, (19)

provided J, the transformation Jacobin, is finite and non-zero.
The transformation Jacobian J is given by

— _ 20
J= XYy ~ Xy Yo (20)
Assuming ¢ to be the local angle of inclination of the tangent
to the coordinate line \ = constant, directed in the sense of
increasing ¢, then from differential geometry, we have
J=to
X, = JE cosa, \7 =+E sina
F cosa -Jsina Fsina +J cose 21
x, = Ly, = 1)
JE JE

2

J > J
(X,¢ :EFH . (X,\U :Erlz

where

r2 = ' (-FE, +2EF, - EE,)

2W?

) 1 (22)
r2= W(EG(‘, ~FE,)

!
w=(EG-F?)2

The functions (¢, ), G(¢,W) and F(q),\l/) satisfy the Gauss

equation

(%ﬂijw —(%F ’22)¢ =0 (23)

Equations (8-13), utilizing (14-22) are replaced by the
following equations

Tw 24)
J,=-JL, +A¢{(F2 _Jz)M+ FJCOSZOL}
' 2E E

—Aw{Fsinoccosochoszoc}

F?cos20.  2FJsin20  J?cos2a
+By - + +
E E E
+B,, {Fcos 20 — Jsin 2a. |

25
+L{F(F1 coso+F,sina )+ J(F,cosa +F sina) } @5)

VE

0=-JL, +A¢{Fsinacosoc—lsin2 oz}—AW {Esinocosat}
+B, {Tsin20 — Fcos2a} + B, {Ecos2a}
+JVE(F, cosa +F, sina) (26)

(ﬂ,ﬂ] +(ﬂ,ﬂ}
o \J 1), _ EcRe(A’+4B") 4T, (27)

J J
IRePr 4p JE
), (&)
Wy W, (28)
\W%
(7))
VE ), UE )y (29)
w
n=u(T) (30)
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in which d) and \J/ are considered as independent variables.
This is a system of seven equations in ten unknown functions
E,F,G, W, L, T,q, i, Fi, F. In (25-27), the functions A and B
are given by

Aot (FsinaJchosaj( cosa—qsina,
JE B ST

~JRe
- Esina(qw cosa—qa, sina)J 3D
n Fcos2a Jsin2a)
B=—— - + +q,VE cos 20
JRJ%[ JE e )T
Fsin2a  Jcos2a . (32)
+ + a, —qvE a, sin2a
q( JE T VE j¢ A }

Equations (24-30) constitute a system of seven equations in ten
unknown functions E, F, G, W, H, T, q, p, F, and F,. Since our
objective is to determine exact solutions of the equations for a
class of flows characterized by the equation
y=f(x)+ay+b,a=0 (33)
For arbitrary state equation = H(T), in (24-30), utilizing

(33), and taking (I) = X are replaced by the following system

of equations

_Al+yy (34)
a
f”
~=-H, +B —f'B,+F, (35)
H, =B, +(1-f)B, +(F +f'F,) (36)
T, —f'T,—f'T, +(1+f’2)TUU —f'T,,
:_EcReuf,,z+RePrT 37)
a’ a

In above equations v = ay + b and the function B is given by
i (38)

B=
aRe

Equations (34-37) are the required flow equations in Von-
Mises system (x, ) for the flow under considerations.

III. SoLuTION

In this section, we determine the solutions of (34-37) as
follows: The compatibility condition iy —p_ | yields

-2f"B,,

vLv

~f"B, +E, —(F, +{'E,,) (39)

This is the equation in which f, p, Fjand F, must satisfy for the
flow under consideration. Once a solution of this equation is
determined the function H and T are determined from (35-37).
Equation (39) possesses solution for the following cases:

Casel. p_- B(x)-

Casell. B= B(u)~

CaseII. B=nv+Z(x),n#0,Z"(x)=0-

CaselV. B=nuv+mx,n#0, m=0.
We consider these four cases separately

LI
a

Case I
In this case (39) becomes
ZT:M,’+F2X7(Flu+f,F2u) (40)
where
B(x,y)=M(x)
This holds for all X and U provided
F, =n,v+Q(x) (41)
F, =n,0+Q(x) (42)
£ (43)

a—zzl\/["+R'—(nI +n2f')
In (41-43), n; and n, are both non-zero arbitrary constants, and
R(x), Q(x) are unknown functions to be determined. Equation
(43) yields

M=£;—JR(X)dX+ (44)
a

2
nlzx +1, [f(x)dx+c,x +c,

where €| and C, are arbitrary constants. Now (35), using

the fact that B(x, y) = M(x), and (42) yields
” 2
H:_%+UM’+%+0R(x)+I(x) 43)
a
where [(x) is an unknown function to be determined using

(45) and (36). Differentiating (45) with respect to x and using
(36), we get

I(x)=£'M +Q(x)+f R(x) (46)
whose solution is given by:
1(x) = [(f'M'+Q(x)+ ' R(x) )dx +m, (47)

where m;(x) is an arbitrary constant.

Since B(x, y) = M(x), (38) implies that p is a function of x-
alone, and therefore the R.H.S of (37) suggests to seek solution
of it of the form

T=tv+W,/(x) (48)
This on substituting in (37), we obtain
WIH_RePr “]1’ :tlf”—ECIzr“f”z (49)
a

whose solution is

W, = WZU W;{tl g EePr Juf”zdx+t2}dx+t3}
a
where

W, = exp(@ xj
a

(50)

and t 1 by, t, are all non-zero arbitrary constants. We note that

the solution of (35-37) involve arbitrary functions Q(x) and
R(x) for given f(x). This means that for a given flow pattern
there exist large number of expressions for the functions H, T,
p and the external force (Fy, F»).

Case I1.
When B(x, v) is a function of v alone, (35) and (36), become
H, =—%—f’ V'(v)+F, (1)
H, =(1-£")Vi(©)+ (5 +£'F) (52)
where
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B(x,v)=V(v)
On eliminating H from (51) and (52), we get

f,” "ot ’ " ’ 53
=t V(o)+F2X—(1—f 2)\/ (0)-(F, +£'E,,) &

This holds for all x and v provided.

V=c,0 (54)
F, =n,u+R,(x) (55)
F, :(—2—031‘"”+R'2 —n3f'ju+c4 (56)

a

Equations (35) and (36), utilizing (54-56), provide

" 2
H=- Y +UR2(x)+C3I(1—f’2)dx

’
> —cuf’+
a

+ [f'R,(x) dx +c,x +cg (57)
As B is a function of v alone, therefore (38) implies that

£" must be constant and therefore
2

f:Kl%+K2x+K3 (58)
_cyuRe (59)

aK,
In above equations €35 Cy» C55 N3, Kl’ K2, K3 are all

non-zero arbitrary constants. In this case the function T is

given by
’ 72
13 =25 | |1+ f

2 Re Pr
T:z4u+tsu + exp X

a
dx + lg
exp(_ Re Pr xj s t& (60)
a
where
c3EcPr Re
tg ==
5 2a
Case I11.
In this case (39) yields
%zz’,_nf’,+F2x_(Fiu-"—f,FZU) (61)

which gives

f' Fov
= wnf-[F dv- dx dx
2 a’ e[y ' Fy,, |7 (62)

+ le + K2
where K and K, are both non-zero arbitrary constants. Also
(35) and (36) yield
f!l , ,
HU:——2+Z—nf +F, (63)
a
’ ’ !2 r
H,=f'Z"+n(l-f )+(F1+f Fz) (64)

Equations (62-64), proceeding in the same manner as in
previous cases, provide

Fy =1, (65)
F= Gy ()1, /" (66)
H:—Uafzﬁ+Z'o—nuf’+llu+J[f;”+nf’2 ~Lf + K f
+n(1—f’z)+Fl +1.f"] dx + K, (67)
Z=%+nf—llx+K1x+K2 (68)

a

where 1;, K, K», K; are non-zero arbitrary constants and G;(x)
is an arbitrary function.
The viscosity  in this case is given by

e aRe (n;:— Z(x))’f” <0, (69)

The temperature distribution T is given by

( Re Pr j
exp| — X
2 Re Pr a
T:lzu + exp b

a [ EcPrRe

a

2
J(Zf',+fl +ljdx+l3]dx+l4}. (70)

In (70), 1; and 14 are both non-zero arbitrary constants. We note
that the solution of the flow equations involves two arbitrary
functions G;(x) and f(x), and therefore we can construct a large
number of solutions to the flow equations.

Case IV.

In this case we, proceeding in manner similar to previous
cases, we find

F1 =nxX+ny0
FZ =n30+5; (x)
aRe(mx+nz))

ﬂ: r
/
(71)
sl(x):—2+nf'+n2x+n3f+n4
a
EcPrRen
T :—02 +n50+s2(x)
2a

RePrx ang RePrx
$y = exp Sy (x)— + N7 exp)
a RePr a

where

- j p( Re P”][ oy ()

a
EcRePrmx [ ., EcRePr!1+f'2?
sy =———————+ng [~ .
a a
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We note that ng, n, and n- are arbitrary constants and

f (x) is an arbitrary function. The streamline patterns for some

forms of f° (x) in unbounded and bounded regions are given in
Figs. (1-6). Fig. 2, represents the flow pattern for the fluid
impinging on a porous wall x =0 satisfying boundary
conditions u(O, y) = constant, v(O, y) = 0. Fig. 4, depicts the
streamline pattern for the fluid flow on the left of an infinite

plate x=0, satisfying boundary conditions

u(O,y) = l, V(O,y) =0. For a<0, we have injection at
a

x =0 and for a > 0, we have suctionat x =0 .

y- axis

v

7

0 2 4

S

&

o

Fig. 1 Streamline pattern for y-(2x>-2x)/(1+x*)=constant in
unbounded domain

y-axis
) /~
3 : Pouros
wall
0 X- axis

~—

Fig. 2 Streamline pattern for y — (Zx3 - Zx)/(l + x2
boundary value problem

= constant for

10 +

x- axis

i

_10 -
0 0.5 1 1.5 2 2.5 3
Fig. 3 Streamline pattern for y —1/+/x = constant
y-axis
10+
Plate
d J
0 \\—/—/ X- axis
_5 L
_10 L

Fig. 4 Streamline pattern for y + 3x3 + 4)c2 = constant for
boundary value problem

y- axis

X

x- axis

=

%//

-2

2 q

Fig. 5 Streamline pattern for y+3x3+4x2=c in unbounded domain
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y- axis

z N\V

TN
. M\

-3 -2 -1 0 1 2

x- axis

Fig. 6. Streamline pattern for y-x*(3x-4)(x+2)*=constant in unbounded
domain

IV. CoNCLUSION

In this paper the equations describing the steady plane flow
of an incompressible fluid of variable viscosity in the presence
of unknown external force are considered. The flow equations

are transformed in (¢, W) system in which the curves

v =constant represents family of streamlines and

¢ = constant, a family of arbitrary curves. To determine the
exact solutions of these equations for a class of flows
characterized by the equation y = f (x)+ ay +b for an

arbitrary state equation u = ,u(T ), ¢ is taken equal to x, and

employing the integrability condition H,, = H,, the

equation which the functions f, p, F;, F, must satisfy is
obtained. This equation possesses solutions for four possible
cases. The solution for each case is determined. All solutions
involve arbitrary function or functions, and this arbitrariness of
the function(s) enables to construct a large number of solutions

to the flow equations. It is worth noting that the function f° (x)

in cases I, II and IV is arbitrary, and therefore the solutions
determined are the solutions of the flow equations for all flows
characterized by

y=f (x)+ ay +b. Streamline patterns for some flows in
unbounded and bounded region are also given.
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