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Some New Upper Bounds for the Spectral
Radius of Iterative Matrices
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Abstract—In this paper, we present some new upper bounds for
the spectral radius of iterative matrices based on the concept of
doubly & diagonally dominant matrix. And subsequently, we give
two examples to show that our results are better than the earlier ones.
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I. INTRODUCTION
E consider the linear system
Ax=h, 1)
where A € C™" is a nonsingular square matrix, and
X,b € C" with X unknown and b known.
To solve (1), we often split Ainto A=M — N, where
M is nonsingular, and apply iterative schemes
X' =M7NX*+d, k=0,1---.
For example, let
A=D-C,
Where D = diag (A) , then the associated Jacobi iteration

matrix J can be expressedas J = D™'C .
Let us denote the class of all complex matrices by C™" , any
eigenvalue by A ( A) and the spectral radius of matrix A by

P (A). And we denote
<n>={1,2-.n}, R(A)=|ay,

ji
S,(A)=[a;|. P, (A)=aP(A)+@-a)Q(A),
i#]
ie<n>.
Definition 1[1] A= (aij ) €C™" then Ais called a

strictly diagonally dominant matrix and denoted by A € D if
|a;| > R (A), forany i e (n);if
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|a“”ajj‘> Ri(A)R-(A),for i j e<n>,i # |, then Alis

j
said to be a doubly diagonally dominant matrix and denoted by
AeDD.

Definition 2 [2] if exists an oz €[0,1] , and such

that|aii”ajj‘ >P, (AP, (A), fori, j e<n>,i # ], then

)
A'is said to be a doubly & diagonally dominant matrix and
denoted by A e DD(a).

As is well known, it is interesting to estimate upper bounds
for moduli of eigenvalues or the spectral radius 2(M'N) of
iteration matrix M N, and the bound play an important role in
many of theoretic analysis (cf.[3.5-10]). In Refs.[3,4,5,6], the
following results are presented.

Theorem 1 [3,4] Let M =(mij)e D,N =(nij)e c™.

Then
|”ii|+2‘nij‘
‘,1 M N ‘Smax#.
ji

Theorem 2 [5] Let M =(mij)e DD,N =(nij)e c™.

Then
‘/I(M ’1N)‘ < ma&(#
where -

A=|mmy|-R (M)R; (M),

B =|myn;|+[mmy|+ R (M)R; (N)+R (N)R; (M),
C =|nin;| =R (N)R;(N).

Theorem 3 [6] LetM =(mij)e DD,N =(nij)eC”X”.

Then
‘/I(M_lN)‘gmi(B'+\/BZ';—4AC"
where -

A=|mmy|-R (M)R; (M),

]
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\m,,n” +n,,m”\+R. M)R;(N)+R;(N)R;(M),

C'=~[|mn;|+ R (N)R;(N)].

In the following section, we present some new bounds of
iteration matrix M "N when M € DD (a).

II. MAIN RESULTS

Lemma 1 [2] LetA= (aij ) eC™ ifAe DD(a) , then
A is a nonsingular matrix.

Lemma?2[7] Let A= (aij ) € C™" | then each eigenvalue of
Aisincluded in
iyj{zec:m a,[[4-a,| <R (A)R;(A)}.

Theorem 4 LetM = (mij ) eDD(a),N= (nij ) eC™.
Then

‘p(Mle)‘SmaX P2+\/P22_4P1P3 .

s 2Rk
where
P, =[mim;| P (M)P, ),
‘m" u‘ ‘n" JJ‘+ @ (N)’

Re(N)P (M )
‘nu jj‘ Ia(N)P (N)

Proof. Since M € DD( ) by Lemma 1, we know that
M is nonsingular. Without loss of generality, let A be an
arbitrary eigenvalue of M "N | then

det(A1 -M*N)=0, ie,

det(AM —N)=0.
Moreover if AM —N e DD(a) ,
Lemma 1, we have that
|Am, — n“Himjj - njj‘>
i, ] e<n>,i¢ j,
then A is not an eigenvalue of M "N . Especially, if
‘(|/1||mii|‘|nii|)(|/1||mji|‘|”ij|)‘ >R, (AM=N)P,, (AM -N)
, i,je<n>,i¢ J,

A is not an eigenvalue of M 'N . Hence by Lemma 2, if A is

by Definition 1 and

P,(AM=N)P,, (AM —-N),

an eigenvalue of M "IN, then there exists at least a couple of
i, je(n)(i# j), such that

(2l 1m =) (12| [~ )

<R ()< (NP (M), (N)]
<|miimjj| P. M)Pj,a(

) (Im.. o #{mam |
(N)P,, (M))}4 @

and
(Jmimy|+ P (M)P,, (M) )|A| (|m ny|+[memy |
=P (M)P(N)=P,(N)P;, (M)} @)
Un" i +PL(N)P, (N)]zo
For |nequaI|ty(2) . we have
P.|A[ —P, ||+ P, <0. 4)
SinceM e DD («) —|mII lJ| P,(M)P,(M)>0a

nd P, >0,P, >0, and the discriminant of a curve of second

order A =P, —4P,P, > 0, the solution of (4) satisfies

Pz_\/Pzz_A'PlPa <|/1|< P2+\/P22_4P1Ps
2P, T 2P, ’

i, je(n)i=]j,
Thus,
|/1|S P, +1/P22 —-4PP, .
2P,
For inequality (3): Obviously,
mgmy |+ P, (M)P,, (M

Ja

M ) > 0, so we have that the

discriminant of a curve of second order A < 0, solutions of (3)

are all complex numbers, i.e., A €C.
Summarizing the above analysis, we get

)< P2+1/P22—4PlP3.

2P,

1

Because A is an arbitrary eigenvalue of M N | then

p(MN) < max P +/P —4RRy .

i,je<n> 2Pl

i#]

Theorem 5 LetM :(mij)e DD(«),N :(nij)eC”X”.
Then

(s max 2SR

ie<n> 2P,

where P1 is the same as in Theorem 4 and
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‘mn +n;m, ‘+Piya(M)P. (N)

i jj 1l ji

+P,(N)P (M)

ja
PS:—D g+ P N)Pjya(N)].
Proof. Since M € DD () ,

that M is nonsingular. Without loss of generality, let A be an

by Lemma 1, we have

arbitrary eigenvalue of M "N , then
det(A1-M*N) =0, ie,
det(AM —N)=0.
Moreover, if AM —N € DD(a) , by Definition 1 and
Lemma 1, we have that
|Am, —n“||}tmjj —njj| >
ij e<n>,i ],
then _/1 is not an eigenvalue of M "N . Especially, when
i #
(|mu JJ|)|/1| (|mu ii +numu|)|/1| |nu JJ|
(1R (M)+ R, (N)][1A1P (M) Py, (N)]

A is not an eigenvalue of M "N . When A is an eigenvalue

P, (AM -N)P, (AM —N)

of M XN , then there exists at least a couple of
i ] e< >( # j), such that

(‘mu JJDW (‘mu JJ+nHmJJD|’I| ‘nn JJ‘

<[Iﬂl (N)J[IAIP. (M) +P,, (N)]

(‘mu Jj‘ PI M) Ja )|;t| (‘mn jj+nm ‘

R (MR (N)+R,, (NP, (M)A
\n.. il

Ra(N ),a( )<0
that is,

R4 -P,J4|+R <0. 5)
Since P, >0,P, 20and P, <0. and the discriminant of a

curve of second order A = P,” —4P,P, > 0, the solution of (5)

satisfies
P4_\]P42_4Plps <|/1|< P4+\]P42_4Plps
2P, B 2P ’
i,j€<n>,i¢ j-
Thus,

p(MN) < max P+ —4RR .

ie(m) 2P

i#]

From Theorem 4 and Theorem 5 we can obtain the following
corollary.

Corollary LetM = (mij ) eDD(a),N= (nij ) eC™.
Then

(M)
< min] max +./|D2 4P P +./P2 4PP}
i#] i#]

Where B, P,, B, P4 and P, are the same as in Theorem 4
and Theorem 5.

I1l. ExAmpLES
-3 21 1 0 3
Examplesl1 Let M =] 1 3 2|, N={0 2 1].
1 1 4 2 01

Obviously, M € DD (%) but M ¢ DD, so we can’t
apply Theorem 1, 2 and 3 here. By Theorem 4, we have
‘z(M N )‘ <10.77.

By Theorem 5, we have
‘/’L(M N )‘ <7.115.

So
‘A(M*N)‘szn&
3 21 1 0 3
Examples2LetM =|1 3 2|, N=|{0 2 1|.
11 4 2 01

Obviously, M € DD(%), but M ¢ DD, so we can’t

apply Theorem 1, 2 and 3 here. By Theorem 4, we have
[A(MN) <2077,
By Theorem 5, we have
[4(MN)[<11.01.
So
[A(MN) <2077,

Remark: Example 1 shows that Theorem 5 is better than
Theorem 4; however, Example 2 shows that Theorem 4 is
better than Theorem 5. That is Theorem 5 is better than
Theorem 4 sometimes and Theorem 4 is better than Theorem 5
sometimes.
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