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 
Abstract—For a given a simple connected graph, we present 

some new bounds via a new approach for a special topological index 
given by the sum of the real number power of the non-zero 
normalized Laplacian eigenvalues. To use this approach presents an 
advantage not only to derive old and new bounds on this topic but 
also gives an idea how some previous results in similar area can be 
developed. 
 

Keywords—Degree Kirchhoff index, normalized Laplacian 
eigenvalue, spanning tree. 

I. INTRODUCTION 

HROUGHOUT this paper G will denote a simple 
connected graph with n vertices (labelled by 1 2, ,..., nv v v ) 

and m  edges. Moreover, for 1 i n  , the degree of each vertex 

iv  will be denoted by .id  

Among various indices in mathematical chemistry, the 
Kirchhoff index  fK G  and a relative of it, the close degree 

Kirchhoff index  '
fK G , have received a great deal of 

attention, recently. For a connected undirected graph G , the 
Kirchhoff index was defined by Klein and Randic ([16]) as 

 

  ,f ij
i i

K G r


   

 
where ijr  is the effective resistance of the edge i jv v . We refer 

the reader to [1], [16], [17], [21], and their bibliographies, to 
get a taste of the variety of approaches used to study this 
descriptor. In [28], Zhou et al. studied the extremal graphs 
with given matching number, connectivity and the minimal 
Kirchhoff index. Also in [23], [25] and [26] the authors 
determined independently the extremality on the unicyclic 
graphs with respect to the Kirchhoff index. Moreover, in [27], 
Zhou et al. presented some lower bounds for the Kirchhoff 
index of a connected (molecular) graph via the number of 
vertices (atoms), the number of edges (bands), valency 
(maximum vertex degree), connectivity and chromatic 
number.   

The degree Kirchhoff index was proposed by Chen and 
Zhang in [7], defined as 
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The degree Kirchhoff index has been taken attention as 

much as the Kirchhoff index. For instance, in [12], the authors 
have been recently characterized unicyclic graphs having 
maximum, second-maximum, minimum and second-minimum 
degree Kirchhoff index. One can depict [7] for some bounds 
over the degree Kirchhoff index and for some relations 
between degree Kirchhoff and Kirchhoff indices. We finally 
refer [19] for further studies over degree Kirchhoff index. 

For the adjacency matrix  A G and the diagonal matrix 

 D G  of the vertex degrees of G , let us consider the 

Laplacian matrix      L G D G A G  . It is known that the 

eigenvalues of  L G are named as the Laplacian eigenvalues 

of G . Suppose 1 2 1... 0n n         are the Laplacian 

eigenvalues of G . By [13], we know that the multiplicity of 
0n  is equal to the number of connected components of G . 

We refer [6], [18] for more and some other details on 
Laplacian eigenvalues. We just want to remind the expression 
of Kirchhoff index in terms of the Laplacian eigenvalues (see 
[15], [22], [29] ) as in the equality 

 

 
1

1

1
.

n

f
i i

K G n






                    (1) 

 
Other than Laplacian matrix, there also exists the 

normalized Laplacian matrix        
1 1

2 2l G D G L G D G
  of 

G , where  
1

2D G
 is the matrix obtained by taking 1

2
  
 

-

power of the each entry of  D G . Similarly as Laplacian 

eigenvalues, the normalized Laplacian eigenvalues of G  are 
the eigenvalues of  l G . So let 1 2 1... 0n n        be the 

normalized Laplacian eigenvalues matrix of G . By [8], the 
multiplicity of 0n  is actually equal to the number of 

connected components of G . We may refer [8], [11] for 
whole detailed information on normalized Laplacian 
eigenvalues. In [7], by considering normalized Laplacian 
eigenvalues, the degree Kirchhoff index is defined as 

 

 
1

'

1

1
2 .

n

f
i i

K G m






                   (2) 
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Hence, by taking into account (1) and (2), we can easily 
conclude that the degree Kirchhoff index is the normalized 
Laplacian analogue of the ordinary Kirchhoff index. 

This latter expression was the source of inspration for a 
whole new family of descriptors, in terms of the sum of the α-
th powers of normalized Laplacian eigenvalues as in the form 

 

 ' '

1

h

i
i

s s G 
  



   ,                   (3) 

 
defined in [5]. These authors found a number of bounds for 
arbitrary α and particularly for 1   , which is the case of the 
degree Kirchhoff index. We note that 1  implies the trivial 
case '

1s n , and for 2  , we obtain 
 

  
' 2
2 ( )s trace l .                                 (4) 

 

There exists a closed relation between 's  and the general 

Randic index of G  defined by 
 

   i j
i j

R R G d d


  


, 

 
where the summation is over all (unordered) edges i jv v  in G  

and 0   is a fixed real number (see [4]). By (4), it is shown 
that 

 

'
2 1

1
2 2

i j i j

s n n R
d d    


 

 
(cf. [30]). We may refer [2], [9], [24] for the detailed 
knowledge of the parameter 1R and the useage of this into the 

normalized Laplacian eigenvalues. 
For a non-zero real number  , one can think about the sum 

of the   th powers of non-zero Laplacian eigenvalues. In 
fact this sum has been defined by Zhou in [27] as in the form 

 

 
1

h

i
i

s G 
 



  , 

 
where h  is the number of non-zero Laplacian eigenvalues of 
G . 

In this paper, for the graph G , we present some lower and 
upper bounds on  's G  (where 0,1  ) in terms of mainly 

, ,n m t  (the number of spanning trees),   (see Lemma 1) and 

1R . 

II.  PRELIMINARY RESULTS 

We seperate this section to express some assistant results 
which will be needed to construct our main theories. 

Lemma 1 ([10]): The number of spanning trees of G  is 
given by 

1

12

n

i
i

t
m







  , 

where 
1

n

i
i

d


  . 

Lemma 2 ([8]): Suppose that the normalized Laplacian 
eigenvalues of G are given by 1 2 ... 0n      . Then 

 

1 .
1

n

n
 

                                 (5) 

 
Moreover the equality holds in (5) if and only if nG K . 

Under the same assumptions on G  as in Lemma 2, Chung 
also presented the following lemma about the normalized 
Laplacian eigenvalues. 

Lemma 3 ([8]): Let the normalized Laplacian eigenvalues 
of G  be given as 1 2 ... 0n      . Then 

 
0 2.i   

 
Moreover 1 2  if and only if G  has a connected bipartite 

and nontrivial component. 
Lemma 4 ([11]): Let us consider again the normalized 

Laplacian eigenvalues in Lemma 2, and let 
 

1

2
1

( 1)
P R

n n  
 . 

 
We then have 

              1 .P                                        (6) 

 
Moreover the equality holds in (6) if and only if nG K . 

We note that Lemma 4 implies the lower bound expressed 
in (6) is always better than the bound in (5). 

Again, by according to the [11], we have the following two 
lemmas. 

Lemma 5([11]): For a connected graph G  of order 2n  , it 
is true that 2 3 1... n      if and only if nG K or , .p qG K  

Lemma 6([11]): Let G  be a graph of order n without 
isolated vertices. Then 1 2 3 1... n         if and only if 

nG K . 

Let 1 2, ,..., ra a a be positive real numbers. For a positive 

number k  among the values 1 ,k r   let us suppose that each 

kP  is defined as in the following: 
 

1 2
1

... ra a a
P

r

  
 , 

 
1 2 1 3 1 2 3 1

2

... ...
1

1
2

r r ra a a a a a a a a a
P

r r

     



, 

 
1 2 1 1 2 2 2 3 1

1

... ... ... ...r r r r r
r

a a a a a a a a a a a
P

r
  



  
 , 

1 2...r rP a a a . 
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Hence the arithmetic mean is simply 1P  while the 

geometric mean is 1/ r
rP . In fact the following famous lemma 

(see [3],[14],[20]) gives a relationship among them. 
 Lemma 7: (Maclaurin's Symmetric Mean Inequality) For

1 2, ,..., ra a a  , it is true that 
 

1/ 2 1/ 3 1/
1 2 3 ... r

rP P P P    . 
 

Equality among them holds if and only if 1 2 ... .ra a a    

We purpose to obtain some better bounds by using this 
fruitful inequality (in Lemma 7) technique on this new family 
of descriptors (given before this lemma). 

After all above material, we are ready to present our results 
on the bounds of the sum of the α-th power of normalized 
Laplacian eigenvalues  's G as defined in (3). 

III. MAIN RESULTS 

We recall that 
 

 1

1
.

i j i j

R G
d d 


 

 
The first result of this paper is the following. 
Theorem 1: Let   be a real number with 0,1  , and let 

G  be a connected graph with 3n  vertices, m  edges and 
having t  spanning trees. Thus we have a lower bound 

 

   
/( 2)

' 2
2 , (7)

n
mt

s G P n
P







      

 

 
where P  is defined as in Lemma 4. Moreover equality in (7) 
holds if and only if nG K . 

Proof: By Lemma 1, we have 
 

1 1
1 1

1
2

, 2,3,..., 1,
2

n n

i
i i

as i n
mt

   


 




     

 
that is, 

1
1

2
. (8)n mt  


 

 

Setting 2r n  and i ia   in Lemma 7, we obtain 
 

1/( 3) 1/( 2)
3 2
n n

n nP P 
   

 

such that 
1

2
2

n

n j
j

P 







 and 

 

11 1
1

1
2 2, 1 2 '

3 1
2

1 2
.

2 2 2

nn n

jj n
i j j n i j

n
i j

mt
P s

n n n












 



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 


 
 
     

  

  
  

 
 

From this, we then get 
 

 
1

' 1
1

2
.

2 2
mt

s
n mt











 
          

 

 
In other words, 

 
/( 2)

'
1

1

2
2

n
mt

s n




 




 

     
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Let us now consider a function 
 

   
/( 2)

2
2

n
mt

g x x n
x





      

 

 

such that x P and 1 2
.n mt

x  


It is clear that 

 

 
/( 2)2

' 1 2

( 1)2
1 12 2
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2
0 ,

nn

n
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nn n

mt
g x x x
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x x x as x











 
 

 
  

        
 

      

 

 

and so  g x  is an increasing function on x P and 1 2
.n mt

x  


Hence we have 
 

   
/( 2)

2
2

n
mt

g x P n





      
 

 
which gives the required lower bound in (7). 

Now let us suppose that the equalities in both sides of (7) 
hold. Then all inequalities in the above processes must 
become equalities. The lower bound equality will be implied 
that 1 P  and 2 3 1... n      by Lemma 7. In addition, by 

Lemmas 4 and 5, we have nG K , as required. The converse 

part is quite clear. 
For 1,2,3,..., 1i n  , by taking i ia   in Lemma 7, and 

using similar technique as in the proof of Theorem 1, we 
obtain the following result. 

Theorem 2: Let G  be a connected graph with 3n   
vertices, m  edges and t spanning trees. Also let P be 
assumed as in Theorem 1. Thus we have a lower bound 

 

   
1/( 2)

' 2
2 2

2

n

f

m P
K G n m

P mt

     
 

 

 
with equality if and only if nG K . 

The next two corollaries are the consequences of Theorem 1 
and 2. 

Corollary 1: Let T  be a tree of order n . Then 
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and 
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2 2 .

2

n

f

m P
K T n m

P m
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Proof: Since T is a tree, it is clear that 1t  . Thus, from 

Theorems 1 and 2, we get the result.  
Corollary 2: Let U  be a connected unicyclic graph of order 

n . Then 
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K U n m
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     
 

 

 
Equalities hold if and only if 3U K . 

Proof: For any unicyclic graph U of order n , we certainly 
have 3 t n  . Again by Theorems 1 and 2, we obtain the 
required lower bounds. On the other hand, the same theorems 
imply the necessary and sufficient equality condition on these 
lower bounds.  

Remark 1: Let us point out that in Theorems 1 and 2, we 
recover the same bounds as in Theorem 1 and Corollary 2 in 
the paper [5], throught a different approach. We actually 
improve them in the next theorem (see Theorem 3). 

Theorem 3: Let G  be a connected graph with 3n 
vertices, m  edges and t spanning trees. Hence we have the 
lower and upper bounds 
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respectively. 

Moreover, equality holds if and only if nG K . 

Proof: Setting 1r n  and i ia   (for 1,2,..., 1i n  ) in 

Lemma 7, we obtain 
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We hence obtain 
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On the other hand, by taking 1r n  and i ia  (for 

1,2,..., 1i n  ) in Lemma 7, we get 
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The equality holds in (9) if and only if 1 2 3 1... n         

from Lemma 7. Also, by Lemma 6, nG K . Conversely the 

equality follows easily. 
Remark 2: Although we managed to see that the equalities 

in (9) always hold on special examples (see Example 1), it is 
still remained to see it in the general case. 

Using similar arguments as in Theorem 3, one can see the 
truthness of the following result for  '

fK G . 

Theorem 4: Under the same assumptions with Theorem 3, 
we have 
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respectively, with equality holding if and only if nG K . 

Notice that bounds  ' '
12fK G ms can be also easily derived 

by taking into account the bounds for 's with 1   . 

Remark 3: As a first consequence of Theorems 3 and 4, we 
can easily express the results on a tree T  and an 
unicyclicgraphU . 

Remark 4: Note that if G  is a k-regular graph, then i
i k

 

for 1,2,...,i n  (see [8]). Hence we have 's k s
  for any k-

regular graph. Therefore, in the case of G  is regular, results 
obtained for 's can be immediately re-stated for s . 

In the following, we give a lower and an upper bound over 
's for connected bipartite graphs. 

Theorem 5: Let G  be a connected bipartite graphs with 
2n  vertices, m  edges and t  spanning trees. Then 

 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:9, 2014

1248

 

 

/( 2)
' 2 ( 2)

n
mt

s n






     

 

 
and 

3
' '

4

1 1
2

2 ( 2)

n

n

mt
s s

n




  



 

            
 

 
with equality if and only if ,p qG K . 

Proof:  
Lower Bound: Now, in Lemma 7, let us take 2r n   for 

both cases i ia  and i ia   such that 1,2,..., 1i n  , 

respectively. Therefore we write 
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Since G is connected bipartite graph, we have 1 2  and 

hence the result follows. All equalities hold if and only if 

2 3 1... .n       

Now we suppose that all equalities hold. Then, by Lemma 

5, we conclude that ,p qG K . 

Conversely, we can easily see that the equalities hold for 
the complete bipartite graph ,p qK . 

As a consequence of Theorem 5, we obtain the following 
corollary. 

Corollary 3: There exist the lower and upper bounds 
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         
 

 
with equality if and only if ,p qG K . 

Example 1: For the complete bipartite graph 1,3K , the 

normalized Laplacian spectrum is  0,1,1,2 . For 2  , while 

the lower bound in (7) gives '
2 5.98s  , the both lower and 

upper bounds in (9) gives a unique value '
2 6s  . Even this 

example itself enough to show that the bounds obtained in 

Theorem 3 would be better than the bounds in Theorem 1 and 
so [5]. 
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