
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

842

Abstract—Homemade HPC clusters are widely used in many

small labs, because they are easy to build and cost-effective. Even
though incremental growth is an advantage of clusters, it results in
heterogeneous systems anyhow. Instead of adding new nodes to the
cluster, we can extend clusters to include some other Internet servers
working independently on the same LAN, so that we can make use of
their idle times, especially during the night. However extension across
a firewall raises some security problems with NFS. In this paper, we
propose a method to solve such a problem using SSH tunneling, and
suggest a modified structure of the cluster that implements it.

Keywords—Extension of HPC clusters, Security, NFS, SSH
tunneling.

I. INTRODUCTION
HE desire to get better computing power and reliability by
combining a number of low cost off-the-shelf computers

has given rise to an architecture called a computer cluster, and it
is widely used as a low-cost alternative, typically being much
cost-effective than a single computer of comparable speed or
availability [1].

Incremental growth is another benefit of a computer cluster.
Many small labs first build their own homemade Linux cluster,
and add more dedicated nodes later. However, instead of
adding dedicated nodes to the cluster, if there are some other
nodes that are being used for other purposes on the same local
area network (LAN), we may try to utilize their idle times by
extending the cluster to include them, as long as they are not
always busy enough, especially during the night.

Incremental growth results in a heterogeneous cluster with
nodes running possibly different Linux versions. On the other
hand, a computer cluster normally consists of the dedicated
nodes that reside on an isolated private network behind a
firewall. To extend the cluster to include the non-dedicated
nodes outside of the firewall, we will be confronted with some
security problem in communication and data sharing between
nodes.

In this paper, we deal with such issues arising when we
extend an old homemade Linux cluster across a local area
network, and propose a solution using SSH (Secure Shell)
tunneling. It is not a state-of-the-art method adopting up-to-date
technologies, assuming that we do not upgrade hardwares and
softwares of old nodes.

II. BACKGROUND

A. HPC Clusters
A computer cluster consists of a set of loosely connected

Pil Seong Park is with the University of Suwon, Hwasung, Gyeonggi-do

445-743, Korea (phone: +82-31-220-2163; fax: +82-31-229-8281; e-mail:
pspark@suwon.ac.kr).

computers that work together so that they can be viewed as a
single system in many respects. The components of a cluster are
usually connected to each other through a fast LAN, with each
node running its own instance of an operating system.

Computer clusters may be configured for different purposes.
Load-balancing clusters are configurations in which nodes
share computational workload like a web server cluster. High-
performance computing (HPC) clusters are used for
computation-intensive purposes, rather than handling
IO-oriented operations. High-availability (HA) clusters
improve the availability of the cluster, by having redundant
nodes, which are then used to provide service when system
components fail. The activities of all compute nodes are
orchestrated by "clustering middleware", a software layer that
allows treating the cluster via a single system image concept.

Well-known HPC middlewares based on message passing
are the Message Passing Interface (MPI) [11] and the Parallel
Virtual Machine (PVM) [6], the former being the de facto
standard. LAM/MPI [15], FT-MPI, and LA-MPI are some of
widely used non-commercial MPI implementation libraries,
and their technologies and resources have been combined into
the on-going Open MPI project [18].

In this paper, we are concerned about extension of a small
tightly-coupled asymmetric HPC cluster only, in which a
master/login node (or master, for short) sits in front of compute
nodes (or slaves, for short), administering the whole function of
the cluster. In many cases, the master node can also have
attached storage that is exported to the compute nodes using
insecure NFS (Network File System) over UDP. All the nodes
sit on a secure private LAN protected by a firewall.

The Berkeley NOW (Network of Workstations) project is
one of early attempts to harness the power of clustered
machines connected via high-speed switched networks on a
building-wide scale [13]. However such an extension gives rise
to difficulties in security, administering the cluster, and load
forecasting for optimal performance.

Data partitioning and load balancing are important
components in parallel computation. Since earlier works (e.g.,
see [12]), many authors have studied load balancing using
different strategies on dedicated/non-dedicated heterogeneous
systems [3]-[5], [9] but it is nearly impossible to find works on
the security problems arising in cluster expansion, which is
rather technical than academic.

Our cluster “Hydra” we want to extend has 10 nodes with
Pentium 3 Xeon processors running Fedora Core 4, with
LAM/MPI v.7.1.2 installed. The nodes are interconnected via a
Gigabit LAN, and NFS is used for file sharing. For detailed
information about LAM/MPI, see [10].

B. NFS and SSH Tunneling
NFS is a protocol created by Sun Microsystems in 1984.

Pil Seong Park

Some Issues with Extension of an HPC Cluster

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

843

NFS was developed to allow file sharing between systems
residing on a LAN. The Linux NFS client supports three
versions of the NFS protocol: NFSv2(1989), NFSv3(1995), and
NFSv4(2000). However NFS as is has many problems to use in
extending the cluster, since its packets are not encrypted and
due to other shortcomings which will be discussed later.

Other alternatives to NFS include AFS (Andrew File
System), DFS (Distributed File System), RFS (Remote File
System), Netware, etc. [16]. There are also various clustered
file systems shared by multiple servers [14]. However we do
not adopt these new technologies since they may not supported
old Linux versions and hardwares.

To securely extend the HPC cluster across a firewall,
encryption of NFS traffic is required. One of the techniques that
is ordinarily used is known as cryptographically protected
tunneling. In this case, an IP-level or TCP-level stream of
packets is used to tunnel application-layer segments [2]. A TCP
tunnel is a technology that aggregates and transfers packets
between two hosts as a single TCP connection. By using a TCP
tunnel, several protocols can be transparently transmitted
through a firewall. Under certain conditions, it is known that
the use of a TCP tunnel severely degrades the end-to-end TCP
performance, which is called TCP meltdown problem [7].

The SSH protocol allows any client and server programs to
communicate securely over an insecure network. Furthermore,
it allows the tunneling (port forwarding) of any TCP connection
on top of SSH, so as to cryptographically protect any
application that uses clear-text protocols.

III. EXTENSION OF AN HPC CLUSTER
NFS itself is not secure since NFS relies on the inherently

insecure UDP protocol (up to NFSv3), transactions between
host and client are not encrypted, and IP spoofing is possible.
Moreover, firewall configuration is difficult because of the way
NFS daemons work, i.e., some ports used are not fixed.

We would like to extend the HPC cluster to include
non-dedicated nodes Ex1 and Ex2 across the firewall, as shown
in Fig. 1.

Fig. 1 Extension of an HPC cluster to include nodes Ext1 and Ext2

across the firewall

A. Fixing NFS Ports for SSH Tunneling
SSH tunneling, which makes use of SSH port forwarding, is

widely used to encrypt some unencrypted packets or to bypass
firewalls, e.g., see [2], [19].

But NFS as is has the following problems in the use with
SSH tunnels.
1) NFS uses UDP protocols by default, and the ports of some

daemons essential for the operation of NFS are variable.
2) SSH tunnels support only TCP protocols of fixed ports.

TCP protocols are also supported from the Linux kernel 2.4
and later on the NFS client side, and from the kernel 2.4.19 on
the server side [17]. Since all the nodes satisfy this, all we need
to do is just use the option “-o tcp” in the mounting command.
The following is an example to specify the option when
mounting the NFS server’s directory.

mount –t nfs –o tcp server:/nfs_dir mount_pt

where server is the NFS server’s name or its IP, nfs_dir is the
NFS directory on the server, and mount_pt is the mount point
on the client.

The following are the daemons essential for NFS operation:
- fixed ports: portmapper (port 111), rpc.nfsd (port 2049)
- variable ports: rpc.mountd, rpc.lockd, rpc.statd,

rpc.rquotad
The ports of the latter four are randomly assigned by the

operating system, and the ports can be fixed by specifying port
numbers in the NFS configuration file (Fig. 2) and defining new
port numbers in /etc/services (Fig. 3) which contains all port
numbers used by Linux [21].

STATD_PORT=4001
LOCKD_TCPPORT=4002
LOCKD_UDPPORT=4002
MOUNTD_PORT=4003

Fig. 2 The configuration file /etc/sysconfig/nfs to be created to fix the
port of the 4 daemons

rquotad 4004/tcp # rpc.rquotad tcp port
rquotad 4004/udp # rpc.rquotad udp port

Fig. 3 Defining the new port 4004 in the configuration file
/etc/services

B. Setting up an SSH Tunnel
On the server side, the configuration file /etc/exports has to

be modified so that its NFS directory to be exported to clients
can be mounted by itself. The following is an example to export
the NFS directory /home to itself.

/home localhost (sync,rw,insecure,root_squash)

where “insecure” means it allows connection from ports higher
than 1023.

Then we need to set up an SSH tunnel from the client’s side.
For example, to forward the ports 11000 and 12000 on the
client’s side to the fixed ports 2049 (rpc.nfsd) and 4003
(rpc.mountd), respectively, we can use the command

ssh nfssvr -L 11000:localhost:2049 \ (1)

-L 12000:localhost:4003 -f sleep 600m

where “nfssvr” is the IP or the name of the server registered in
the configuration file /etc/hosts, and “-f sleep 600m” means that
port forwarding is to last for 600 minutes in the background.

Once connected to the NFS server, an SSH tunnel will be

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

844

open if the correct password is entered. Then manually mount
the NFS server’s export directory. The following command is
an example to mount the /home directory of the NFS server on
the /mynfs directory of the client.

mount -t nfs -o tcp,hard,intr,port=11000, \
 mountport=12000 localhost:/mynfs

C. The Suggested Structure of an Extended Cluster
Even though the NFS connection through an SSH tunnel is

encrypted, it has a serious drawback if we cannot utterly and
completely trust the local users on the NFS server [17]. For
example, if some local user on the NFS server can login on the
server and create an SSH tunnel, any ordinary user on the server
can mount the file systems with the same rights as root on the
client.

One possible solution might be prohibiting local users’ direct
login to the NFS server to prevent creating an SSH tunnel. One
simple way is changing all local users’ login shells from
/bin/bash to /sbin/nologin in the file /etc/passwd.

Then it causes another problem. In general, the master server
normally works as the NFS server too in small homemade HPC
clusters, as shown in Fig. 1. However local users should be
allowed to login the master server to use the cluster, which is
dangerous when using NFS through an SSH tunnel, as was
pointed out previously.

Fig. 4 is an alternative of the structure of an extended HPC
cluster that takes everything into account. The structure has a
separate NFS server which does not allow local users’ login. An
SSH tunnel can be created by the superuser on Ext1 or Ext2,
and local users just login on the master node to use the cluster.

Fig. 4 The suggested structure of an extended HPC cluster

D. Some More Remarks
The firewall setting of the master node does not need any

modification. However, since the NFS service is provided
through SSH tunneling, it is required for the NFS server to open
the port 22 only to the computation nodes outside of its firewall
that participate in parallel computation.

The NFS server should be configured so that it releases as
little information about itself as possible. For example, services
like portmapper should be protected from outside. And it is
suggested to specify explicitly the hosts that are allowed to
access all the services on the NFS server. This can be done by
setting ALL:ALL in the configuration file /etc/hosts.deny, and
listing explicitly the hosts (or their IPs) together with the
services which are allowed to access, in /etc/hosts.allow file.

The use “rsh” command, which is not encrypted, is common
on old HPC clusters with old middlewares in parallel

computation. Fortunately LAM/MPI v.7.1.2 allows SSH login
with an authentication key but without a password, e.g., see
[20].

Note that the original HPC cluster may be homogeneous, i.e.,
the performances of all slave nodes may be the same, until
some new nodes with different performance are added.
However, the extended HPC cluster may be heterogeneous or
may act like a heterogeneous one even if all the nodes have the
same power, since the communication speeds between nodes
are variable here and there depending on various factors: the
types of network, the existence of firewall, and necessity of
encryption. Moreover the workload of the non-dedicated
servers outside of the firewall may change continually. Hence
we need to use a dynamic run-time load balancing strategy [8],
while assigning equal amount of work to the original slaves of
the cluster.

IV. PERFORMANCE TESTS
The performance of the NFS through an SSH tunnel will

inevitably drop due to encryption overhead. We compare the
performances of NFS with or without SSH tunneling. The
separate NFS server and the non-dedicated servers Ext1 and
Ext2 are all 1.6 GHz Pentium 4 machines with 1GB memory,
equipped with Intel Pro/100 fast Ethernet card. They all run
Fedora Core 4.

Tests were performed between the NFS server and Ext1
machine, using UDP or TCP, and with or without an SSH
tunnel across the firewall. The times it took to read or write a
file of size 1GB from Ext1 were measured, at varying NFS
block sizes. Since NFSSVC_MAXBLKSIZE (maximum block
size) of the NFS in Fedora Core 4 is 32*1024 (see /usr/src
/kernels/2.6.11-1.1369_FC4-i686/include/linux/nfsd/const.h),
tests were performed at 4k, 8k, 16k, and 32k, respectively, 3
times for each and they are averaged. In addition, to delete any
remaining data in cache, NFS file system was manually
unmounted and mounted again between tests.

The following shows example commands that measure the
time taken to create the file /home/testfile of size 1GB on the
NFS server and read it using block size 16KB.

time dd if=/dev/zero of=/home/testfile bs=16k \

count=65536
time dd if=/home/testfile of=/dev/null bs=16k

The results of the NFS performance test using the above

commands, with or without SSH tunneling are given in Table I.
For the common NFS without tunneling, the figures in
parentheses are the times it took when TCP is used, and others
are when UDP is used.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

845

TABLE I
PERFORMANCE OF NFS, WITH OR WITHOUT SSH TUNNELING (SEC)
Block
size

Common NFS SSH tunneled

Write Read Write Read

4K 118.07
(122.69)

96.20
(95.22) 132.79 101.37

8K 117.57
(120.47)

95.10
(94.52) 123.59 98.86

16K 114.96
(117.29)

93.96
(92.58) 125.22 95.09

32K 112.46
(115.44)

92.74
(91.85) 117.46 94.03

As we see, the larger the NFS block size, the faster in all

cases. For the common NFS without SSH tunneling, write
operation using UDP is slightly faster than TCP, but it is not the
case for read operation. Moreover the NFS with SSH tunneling
takes 4.5%-12.5% more time for write and 1.4-5.4% more for
read, than the common NFS using UDP

As long as the NFS block size is taken as large as possible,
the tunneling overhead may not be large even though NFS
service is done through SSH tunneling, since the non-dedicated
nodes outside of the firewall need not read or write so often
through NFS, which is common in high performance parallel
computing.

V. CONCLUSION
HPC clusters are widely used in many small labs, because

they are easy to build, cost-effective, and easy to grow. Instead
of adding new nodes, we can extend clusters to include some
other servers on the same LAN, so that we can make use of their
idle times. However, unlike a tightly-coupled HPC cluster
behind a firewall, the resulting system suffers a security
problem with NFS which is vital for HPC clusters.

Of course there are many new good solutions using recent
technologies. However we do adopt such solutions, because
they require upgrades of hardwares and/or softwares including
an operating system. Instead we devise a solution using SSH
tunneling, which can be applied to the old system as is.
Probably this approach may be helpful to many of small
homemade cluster systems.

We were concerned only about the NFS security, but not the
security in the communication between the non-dedicated
nodes outside of a firewall and the master node, because we
configured LAM/MPI to use the secure SSH protocol.

ACKNOWLEDGMENT
This work was supported by the GRRC program of

Gyeonggi province [GRRC SUWON2013-B1, Cooperative
CCTV Image Based Context-Aware Process Technology].

REFERENCES
[1] M. Baker and R. Buyya, “Cluster Computing: the commodity

supercomputer”, Software-Practice and Experience, vol.29(6), 1999,
pp.551-576.

[2] M. Dusi, F. Gringoli, and L. Salgarelli, “A Preliminary Look at the
Privacy of SSH Tunnels”, in Proc. 17th International Conference on
Computer Communications and Networks(ICCCN '08), 2008.

[3] M. Eggen, N. Franklin, and R. Eggen, “Load Balancing on a
Non-dedicated Heterogeneous Network of Workstations.” in
International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2002), June 2002.

[4] J. Faik, L. G. Gervasio, J. E. Flaherty, J. Chang, J. D. Teresco, E.G.
Boman, and K. D. Devine, “A model for resource-aware load balancing
on heterogeneous clusters”, Tech. Rep. CS-03-03, Williams College Dept.
of Computer Science, http://www.cs.williams.edu/drum/, 2003.

[5] I. Galindo, F. Almeida, and J. M. Badia-Contelles, “Dynamic Load
Balancing on Dedicated Heterogeneous Systems”, Recent Advances in
Parallel Virtual Machine and Message Passing Interface, Lecture Notes
in Computer Science, vol.5205, 2008, pp 64-74

[6] G. A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang, R. Manchek, and V. S.
Sunderam, PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial
for Networked Parallel Computing. MIT Press, Cambridge, MA, USA
1994.

[7] O. Honda, H. Ohsaki, M. Imase, M. Ishizuka, and J. Murayama,
"Understanding TCP over TCP: Effects of TCP tunneling on end-to-end
throughput and latency," in Proc. 2005 OpticsEast/ITCom, Oct. 2005.

[8] L. V. Kale, M. Bhandarkar, and R. Brunner, “Run-time Support for
Adaptive Load Balancing”, in Lecture Notes in Computer Science, Proc.
4th Workshop on Runtime Systems for Parallel Programming (RTSPP)
Cancun – Mexico, Vol. 1800, 2000, pp.1152-1159.

[9] K. Lu, R. Subrata, and A. Y. Zomaya, “On the performance-driven load
distribution for heterogeneous computational grids”, J. of Computer and
System Sciences vol.73, 2007, pp.1191-1206.

[10] A. I. Margaris, “Local Area Multicomputer (LAM-MPI)”, J. Computer
and Information Science, Vol.6(2), 2013, pp.1-8.

[11] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. J. Dongarra, MPI:
The Complete Reference. MIT Press, Cambridge, MA, USA, 1996.

[12] M. Zaki, W. Li, and S. Parthasarathy, “Customized Dynamic Load
Balancing in a Heterogeneous Network of Workstations”, in 1996 Proc.
5th IEEE Int. Symposium on High Performance Distributed Computing.

[13] Berkeley NOW Project, http://now.cs.berkeley.edu/
[14] Clustered file system, http://en.wikipedia.org/wiki/Clustered_file_system
[15] LAM/MPI Parallel Computing, http://www.lam-mpi.org/
[16] Linux NFS-HOWTO, http://nfs.sourceforge.net/nfs-howto/
[17] Linux NFS Overview, FAQ and HOWTO, http://nfs.sourceforge.net/
[18] Open MPI, http://www.open-mpi.org
[19] Port Forwarding Using SSH Tunnel,

http://www.fclose.com/b/linux/818/port-forwarding-using-ssh-tunnel/
[20] ssh-keygen: password-less SSH login

http://rcsg-gsir.imsb-dsgi.nrc-cnrc.gc.ca/documents/internet/node31.html
[21] http://www.linuxquestions.org/questions/linux

-security-4/firewall-blocking-nfs-even-though-ports-are-open-294069/

