
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3919

Abstract—There are two major variants of the Simplex

Algorithm: the revised method and the standard, or tableau method.
Today, all serious implementations are based on the revised method
because it is more efficient for sparse linear programming problems.
Moreover, there are a number of applications that lead to dense linear
problems so our aim in this paper is to present some computational
results on parallel implementation of dense Simplex Method. Our
implementation is implemented on a SMP cluster using C
programming language and the Message Passing Interface MPI.
Preliminary computational results on randomly generated dense
linear programs support our results.

Keywords—Linear Programming, MPI, Parallel Implementation,
Simplex Algorithm.

I. INTRODUCTION
INEAR programming (LP) is the most important and well
studied optimization problem. The simplex algorithm

which developed by Dantzig [1] had fascinated researchers for
many years because its performance on real world problems is
usually better than the theoretical worst case. It is well-known
that the simplex algorithm is not polynomial. Despite this,
Borgwardt [2] proved that the expected number of iterations
of the simplex algorithm is polynomial when it is applied for
practical problems solving. The main computational
disadvantage of the simplex algorithm is that the total number
of iterations can not be predicted. As dimension n increases,
the computational time rise up exponentially. The simplex
algorithm searches for an optimal solution by moving from
one feasible solution to another, along the edges of the
feasible set, always in a cost reducing direction. This
computational behavior makes parallel solution of linear
optimization problems an attractive and promising research
area.

Parallel implementations of linear programming algorithms
have been studied extensively in the recent years [3]–[5].

Manuscript received September 29, 2006.
El-Said Badr is with the Department of Applied Informatics, University of

Macedonia, Thessaloniki, 54006 Greece (e-mail: it02185@uom.gr).
Mahmoud Moussa is with the Department of Computer Science, Benha

University, Benha, EGYPT.
K. Paparrizos is with the Department of Applied Informatics, University of

Macedonia, Thessaloniki, 54006 Greece (e-mail: paparriz@uom.gr).
N. Samaras (corresponding author), is with the Department of Applied

Informatics, University of Macedonia, Thessaloniki, 54006 Greece (phone:
+302310891866; fax: +302310891879; e-mail: samaras@uom.gr).

A. Sifaleras is with the Department of Applied Informatics, University of
Macedonia, Thessaloniki, 54006 Greece (e-mail: sifalera@uom.gr).

Most of the real world linear programming problems are
extremely sparse. Nevertheless, dense linear programming
problems have important applications. Specifically, some
kinds of decomposition (for example Benders, Dantzig–
Wolfe) generate full dense linear problems. More applications
leading to dense linear programming problems can be found
in [6].

In this paper we examine the computational performance of
a parallel version of the simplex algorithm on dense linear
programming problems. We perform experiments using the
communication package Message Passing Interface (MPI)
[7]–[8]. Parallel implementations of the simplex algorithm
vary in the way that the simplex tableau is distributed among
the processors. Specifically, our preliminary results reveal that
if the parallel version of the simplex algorithm run in 8
processors then we can achieve a speed-up factor of about 5
times faster comparing with the sequential version of the
simplex algorithm.

The paper is organized as follows: A sequential version of
the simplex algorithm is presented in Section 2. In Section 3
we give a brief description of a parallel version of the simplex
algorithm. To continue with, some preliminary computational
results on randomly generated test instances are reported in
Section 4. Finally, conclusions and future research directions
are discussed in Section 5.

II. SEQUENTIAL VERSION OF THE SIMPLEX ALGORITHM
In linear programming problems, we minimize or maximize

a linear function of real variables over a region defined by
linear constraints. The mathematical formulation of the linear
programming problem, in standard form, is shown in LP.1:

Minimize z=cTx

s.t. Ax = b (LP.1)
 x ≥ 0

where c, x∈ℜn, b∈ℜm, A∈ℜmxn and T denotes transposition.
We assume that the set of basis vector (columns of A) is
linearly independent. The simplex algorithm consists of two
steps: (a) a way of finding out whether a current basic feasible
solution is an optimal solution and (b) a procedure of
obtaining an adjacent basic feasible solution with the same or
better value for the objective function. We shall describe the
simplex algorithm using the tableau format. This description
has many advantages. It is more efficient for full dense linear
problems and it can be easily convert to a distributed version

Some Computational Results on MPI Parallel
Implementation of Dense Simplex Method

El-Said Badr, Mahmoud Moussa, Konstantinos Paparrizos, Nikolaos Samaras, and Angelo Sifaleras

L

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3920

with a loosely coupled system. A tableau is an
(m+1)x(m+n+1) matrix of the following form:

 x1 x2 … xn xn+1 … xn+m z
 -c1 -c2 … -cn 0 … 0 1 0

xn+1 a11 a12 … a1n 1 … 0 0 b1
xn+2 a21 a22 … a2n 0 … 0 0 b2
… … … … … … … … … …

xn+m am1 am2 … amn 0 … 1 0 bm

Notice that the entries in the second row are the coefficients of
the objective function z and the rightmost column is the value
of the objective function for the initial basic feasible solution.
Now we can proceed with a formal description of the
sequential simplex algorithm:

Sequential Simplex Algorithm

Step 0: (Initialization)
 Start with a feasible basic solution and construct the

corresponding simplex tableau.

Step 1: (Choice of entering variable)
 If a0j ≥ 0, j=1, 2, …, n, STOP. The current solution is

optimal. Otherwise, choose the entering variable
using the following pivoting rule:

a0s = min{a0j : a0j < 0, j = 1,2, …, n}

Step 2: (Choice of leaving variable)
 Let I = {i : ais> 0}. If I=∅, STOP. The problem

(LP.1) is unbounded. Otherwise, choose the leaving
variable using the minimum ratio test:

r i

rs is

b b
min : i I

a a
⎧ ⎫

= ∈⎨ ⎬
⎩ ⎭

Step 3: (Pivoting)
 The pivoting element is the variable ars. Construct the

next simplex tableau as follows:

Let rj
rj

rs

a
a

a
← , j=1, 2, … ,n, n+1

and
rj

ij ij is
rs

a
a a a

a
← − , i= 0, 1, 2, . . . m (i ≠ r),

j = 1, 2, … , n, n+1
Go to Step1.

The simplex algorithm uses the Gauss-Jordan

transformation of the tableau to move from one basic feasible
solution to another. Each iteration of the simplex algorithm is
relatively expensive. This can be seen by examining the
previous formal description of the simplex algorithm. More
precisely, the number of multiplications and additions at each
iteration is approximately equal to m(m-n)+n+1 and m(n-
m+1) respectively, where m is the number of constraints and n
is the number of variables. This happens whenever n and m
are large, in which case nearly 100% of the cpu-time is spent
in Step 3 (Pivoting). In this third Step, a multiple of row r is
added to row I, (this is the only double nested loop executed at

each iteration).

III. MPI PARALLEL VERSION OF THE SIMPLEX ALGORITHM
We implemented the simplex method using a

straightforward application of the C language tools and the
Message Passing Interface (MPI). The storage of the simplex
tableau was carried out using a (0:m)×(0:m+n) dimensioned
array. Also, in order to allocate the work across multiple
processors, MPI was used. The coefficients of the objective
function are represented using the q vector, the number of
processors is denoted by NPRS, the current tableau is denoted
by TABL and finally the rank of processor is denoted by
ITSK.

Parallel Simplex Algorithm
Begin
1- for 0 i m n≤ < + do
 In processor 0 : Set q[i]:=TABL[0][i]
 for 0 k NPRS≤ < pardo

 {for 0 /i m NPRS≤ < do
 for 0 j m n≤ < + do
 Set C[i][j]:=TABL[k*m/ NPRS+i]
 for 0 /j m NPRS≤ < do

Set b[j] := TABL[j][M+N]
 }

2- In processor 0
 for 0 i n≤ < do
 search i (where q[i]<0) Set column := i
 if failure Goto (10).
3- for 0 k NPRS≤ < pardo

X:=min(b[j]/C[j][column], 0 /j m NPRS≤ <)
Set row_no:=j

4- for 0 k NPRS≤ < pardo
 Send (X,ITSK) to processor 0

In processor 0
 Search ITSK which corresponds to min (X)
 min_L:=ITSK
5- From processor min_L

Send row g:=C[row_no][:] to all processor
Send variable h:=b[[row_no] to all processor

6- for 0 k NPRS≤ < pardo
 for 0 /i m NPRS≤ < do{

Set a:=C[i][column]/g[column]
 for 0 j m n≤ < + do

Set C[i][j]:=C[i][j]-a*g[j]
 Set b[i]:=b[i]-a*h

 }
7- In processor min_L
 for 0 j m n≤ < + do{
 set C[row_no][j] := g[j]/g[column]
 set b[row_no] := h / g[column]

}
8- In processor 0
 a:=q[column]/g[column]
 For 0 i m n≤ < + do {

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3921

 Set q[i] := q[i]-a*g[i]
 Set q[n+m] := q[m+n] - a*h
 }
9- Goto (2)
10- For 0 i m n≤ < + do
 In processor 0
 Set TABL[0][i] := q[i]
 for 0 k NPRS≤ < pardo{

 for 0 /i m NPRS≤ < do
 For 0 j m n≤ < + do
 Set TABL[k*m/NPRS+i][j] := C[i][j]
 for 0 /j n NPRS≤ < do
 Set TABL[j][m+n] := b[j]
 }
End.

IV. COMPUTATIONAL RESULTS
The algorithm described in Section 3 has been

experimentally implemented. In this Section, the numerical
experiments are presented. It must be mentioned that the
computational results demonstrate a speedup for traditional
simplex algorithm on dense linear programs.

All test runs were carried out on 16 uniprocessors Intel
Pentium III 500MHz with 512 KB L2 Cache. The processors
were interconnected using Fast Ethernet and Scalable
Coherent Interface (SCI). Furthermore, the machine precision
was 32 decimal digits. The reported CPU times were
measured in seconds. MPI implementation MPICH v.1.2.6
was used and appropriately configured for our cluster. Usage
of this machine was provided by the National Technical
University of Athens, School of Electrical and Computer
Engineering.

We run a total of 30 random dense linear problems. In our
computational study we use only square problems (nxn). This
dimension case includes three different classes of problems
corresponding to the values n = 200, 300, 400; each of these
classes contains ten random dense linear programs. The dense
linear optimization problems that have been solved are of the
general form

Minimize cTx
s.t. Ax ≤ b

 x ≥ 0

The planes of the constraints are tangent on a sphere, so
that its center is feasible. Also, these problems have a feasible
region that is a closed polyhedron. The ranges of values, being
used for randomly generated linear programs for all problems,
are c∈[1 500], A∈[-700 1800] , r = 7 and center = 35. The
feasibility tolerance used is 10-8 and the tolerance on a pivot
row and column is 10-10.

For each problem size we bring together some statistics on
the test instances used in our computational study. All the
results are summarized using a table and a figure. In Tables I-
III we present our computational results. The first column
shows the number of processors, the second the average

number of iteration, the third the average cpu-time, the fourth
the cpu-time per iteration and the last one shows the speed-up
factor among different number of processors.

TABLE I

PROBLEM SIZE (200X200)
No.

processor
s

niter Time(secs.) Secs./nite
r

Speed up

1 382.1 1.9571 0.0051 1
2 382.1 1.0086 0.0026 1.9404
4 382.1 0.9658 0.0025 2.0263

Speed up Curve

0
0,5

1
1,5

2
2,5

1 2 4

No.processors
Sp

ee
d

up

Fig. 1 Speed up Curve for Problem Size (200x200)

In Fig. 1 one can see that as the number of processors

increases (and less than 4 processors) the speed up also
increases. Our experiments show that if we use more than 4
processors, then we have not speeded up. This fact can be
justified because the communication time is more than the
computational time for problem size (200x200).

TABLE II

PROBLEM SIZE (300X300)
No.

processor
s

niter Time(secs.) Secs./nite
r

Speed up

1 636.4 8.9318 0.0140 1
2 636.4 4.8551 0.0076 1.8397
4 636.4 2.9004 0.0045 3.0795
6 636.4 2.4307 0.0038 3.6746

Speed up Curve

0

1

2

3

4

1 2 4 6

No.Processors

Sp
ee

d
up

Fig. 2 Speed up Curve for Problem Size (300x300)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3922

Moreover, in Fig. 2 one can see that as the number of
processor increases (and less than 6 processors) the speed up
also increases. Our experiments show that if we use more than
6 processors, then we have not speeded up. This happens,
because the communication time is more than the
computational time for problem size (300x300). It can be seen
that, when we increase the problem size from (200x200) to
(300x300), we have speed up as long as we use less than 6
processors.

TABLE III

PROBLEM SIZE (400X400)
No.

processor
s

niter Time(secs.) Secs./nite
r

Speed up

1 897 22.3404 0.0249 1
2 897 12.4163 0.0138 1.7992
4 897 7.3259 0.0082 3.0495
8 897 4.5529 0.0051 4.9067

Speed up Curve

0

2

4

6

1 2 4 8

No.Processors

Sp
ee

d
up

Fig. 3 Speed up Curve for Problem Size (400x400)

In Fig. 3 one can observe that, as the number of processor

increases (and less than 8 processors), the speed up also
increases. Our experiments show that if we use more than 8
processors, then we have not speeded up. This happens again,
because the communication time is more than the
computational time for problem size (400x400). We can also
see that when we increase the problem size from (300x300) to
(400x400) we have speed up, as long as we use less than 8
processors.

V. CONCLUSION
We have presented a parallel implementation of the simplex

algorithm using the Message Passing Interface. The proposed
implementation has an advantage. It leads to important
reduction in the total solution time of a linear programming
problem. The performance analysis also, shows that the speed-
up obtained is highly sensitive to communication among the
processors.

ACKNOWLEDGMENT
El-Said Badr was supported by Grant from the Greek

Scholarship Foundation, (I.K.Y).

REFERENCES
[1] G. B. Dantzig, Linear Programming and Extensions. NJ: Princeton,

Princeton University Press, 1963.
[2] K. H. Borgwardt, “Some distribution independent results about the

asymptotic order of the average number of pivot steps in the simplex
method”, Mathematics of Operations Research, vol. 7, no. 3, pp. 441-
462, 1982.

[3] I. Maros, and G. Mitra, “Investigating the sparse simplex method on a
distributed memory multiprocessor”, Parallel Computing, vol. 26, pp.
151-170, 2000.

[4] D. Klabjan, L. E. Johnson, and L. G. Nemhauser, “A parallel primal-dual
simplex algorithm”, Operations Research Letters, vol. 27, no. 2, pp. 47-
55, 2000.

[5] J. Eckstein, I. Bodurglu, L. Polymenakos, and D. Goldfarb, “Data-
Parallel Implementations of Dense Simplex Methods on the Connection
Machine CM-2”, ORSA Journal on Computing, vol. 7, no. 4, pp. 402-
416, 1995.

[6] S. P. Bradley, U. M. Fayyad, and O. L. Mangasarian, “Mathematical
Programming for Data Mining: Formulations and Challenges”,
INFORMS Journal on Computing, vol. 11, no. 3, pp. 217-238, 1999.

[7] I. Foster, Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering. Addison-Wesley, 1995.

[8] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message Passing-Interface. MIT Press, 1994.

