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Abstract—There are two major variants of the Simplex 

Algorithm: the revised method and the standard, or tableau method. 
Today, all serious implementations are based on the revised method 
because it is more efficient for sparse linear programming problems. 
Moreover, there are a number of applications that lead to dense linear 
problems so our aim in this paper is to present some computational 
results on parallel implementation of dense Simplex Method. Our 
implementation is implemented on a SMP cluster using C 
programming language and the Message Passing Interface MPI. 
Preliminary computational results on randomly generated dense 
linear programs support our results. 
 

Keywords—Linear Programming, MPI, Parallel Implementation, 
Simplex Algorithm.  

I. INTRODUCTION 
INEAR programming (LP) is the most important and well 
studied optimization problem. The simplex algorithm 

which developed by Dantzig [1] had fascinated researchers for 
many years because its performance on real world problems is 
usually better than the theoretical worst case. It is well-known 
that the simplex algorithm is not polynomial. Despite this, 
Borgwardt [2] proved that the expected number of iterations 
of the simplex algorithm is polynomial when it is applied for 
practical problems solving. The main computational 
disadvantage of the simplex algorithm is that the total number 
of iterations can not be predicted. As dimension n increases, 
the computational time rise up exponentially. The simplex 
algorithm searches for an optimal solution by moving from 
one feasible solution to another, along the edges of the 
feasible set, always in a cost reducing direction. This 
computational behavior makes parallel solution of linear 
optimization problems an attractive and promising research 
area. 

Parallel implementations of linear programming algorithms 
have been studied extensively in the recent years [3]–[5]. 
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Most of the real world linear programming problems are 
extremely sparse. Nevertheless, dense linear programming 
problems have important applications. Specifically, some 
kinds of decomposition (for example Benders, Dantzig–
Wolfe) generate full dense linear problems. More applications 
leading to dense linear programming problems can be found 
in [6]. 

In this paper we examine the computational performance of 
a parallel version of the simplex algorithm on dense linear 
programming problems. We perform experiments using the 
communication package Message Passing Interface (MPI) 
[7]–[8]. Parallel implementations of the simplex algorithm 
vary in the way that the simplex tableau is distributed among 
the processors. Specifically, our preliminary results reveal that 
if the parallel version of the simplex algorithm run in 8 
processors then we can achieve a speed-up factor of about 5 
times faster comparing with the sequential version of the 
simplex algorithm.  

The paper is organized as follows: A sequential version of 
the simplex algorithm is presented in Section 2. In Section 3 
we give a brief description of a parallel version of the simplex 
algorithm. To continue with, some preliminary computational 
results on randomly generated test instances are reported in 
Section 4. Finally, conclusions and future research directions 
are discussed in Section 5. 

II. SEQUENTIAL VERSION OF THE SIMPLEX ALGORITHM 
In linear programming problems, we minimize or maximize 

a linear function of real variables over a region defined by 
linear constraints. The mathematical formulation of the linear 
programming problem, in standard form, is shown in LP.1:  

 
Minimize z=cTx    

s.t. Ax = b (LP.1) 
 x ≥ 0  

 
where c, x∈ℜn, b∈ℜm, A∈ℜmxn and T denotes transposition. 
We assume that the set of basis vector (columns of A) is 
linearly independent. The simplex algorithm consists of two 
steps: (a) a way of finding out whether a current basic feasible 
solution is an optimal solution and (b) a procedure of 
obtaining an adjacent basic feasible solution with the same or 
better value for the objective function. We shall describe the 
simplex algorithm using the tableau format. This description 
has many advantages. It is more efficient for full dense linear 
problems and it can be easily convert to a distributed version 
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with a loosely coupled system. A tableau is an 
(m+1)x(m+n+1) matrix of the following form: 
 

 x1 x2 … xn xn+1 … xn+m z  
 -c1 -c2 … -cn 0 … 0 1 0 

xn+1 a11 a12 … a1n 1 … 0 0 b1 
xn+2 a21 a22 … a2n 0 … 0 0 b2 
… … … … … … … … … … 

xn+m am1 am2 … amn 0 … 1 0 bm 
 
Notice that the entries in the second row are the coefficients of 
the objective function z and the rightmost column is the value 
of the objective function for the initial basic feasible solution.  
Now we can proceed with a formal description of the 
sequential simplex algorithm: 
 
Sequential Simplex Algorithm 

Step 0: (Initialization) 
             Start with a feasible basic solution and construct the 

corresponding simplex tableau. 

Step 1: (Choice of entering variable) 
              If a0j ≥ 0, j=1, 2, …, n, STOP. The current solution is 

optimal. Otherwise, choose the entering variable 
using the following pivoting rule: 

a0s  =  min{a0j :   a0j < 0,  j = 1,2, …, n} 

Step 2: (Choice of leaving variable) 
           Let I = {i : ais> 0}. If I=∅, STOP. The problem 

(LP.1) is unbounded. Otherwise, choose the leaving 
variable using the minimum ratio test: 

r i

rs is

b b
min : i I

a a
⎧ ⎫

= ∈⎨ ⎬
⎩ ⎭

 

Step 3: (Pivoting) 
             The pivoting element is the variable ars. Construct the 

next simplex tableau as follows: 

Let    rj
rj

rs

a
a

a
←  ,  j=1, 2, … ,n, n+1 

and 
rj

ij ij is
rs

a
a a a

a
← − , i= 0, 1, 2, . . . m (i ≠ r), 

j = 1, 2, … , n, n+1 
Go to Step1. 

 
The simplex algorithm uses the Gauss-Jordan 

transformation of the tableau to move from one basic feasible 
solution to another. Each iteration of the simplex algorithm is 
relatively expensive. This can be seen by examining the 
previous formal description of the simplex algorithm. More 
precisely, the number of multiplications and additions at each 
iteration is approximately equal to m(m-n)+n+1 and m(n-
m+1) respectively, where m is the number of constraints and n 
is the number of variables. This happens whenever n and m 
are large, in which case nearly 100% of the cpu-time is spent 
in Step 3 (Pivoting). In this third Step, a multiple of row r is 
added to row I, (this is the only double nested loop executed at 

each iteration).  

III. MPI PARALLEL VERSION OF THE SIMPLEX ALGORITHM 
We implemented the simplex method using a 

straightforward application of the C language tools and the 
Message Passing Interface (MPI). The storage of the simplex 
tableau was carried out using a (0:m)×(0:m+n) dimensioned 
array. Also, in order to allocate the work across multiple 
processors, MPI was used. The coefficients of the objective 
function are represented using the q vector, the number of 
processors is denoted by NPRS, the current tableau is denoted 
by TABL and finally the rank of processor is denoted by 
ITSK. 
 
Parallel Simplex Algorithm 
Begin 
1- for  0 i m n≤ < +  do 
  In processor 0 :  Set  q[i]:=TABL[0][i]    
  for 0 k NPRS≤ <  pardo             

 {for 0 /i m NPRS≤ <  do 
  for 0 j m n≤ < +  do 
   Set C[i][j]:=TABL[k*m/ NPRS+i] 
     for 0 /j m NPRS≤ < do   

Set b[j] := TABL[j][M+N] 
              } 

2- In processor 0 
  for  0 i n≤ <  do 
   search i ( where q[i]<0 )  Set column := i  
  if failure Goto (10). 
3- for 0 k NPRS≤ <  pardo 

X:=min(b[j]/C[j][column], 0 /j m NPRS≤ < ) 
Set row_no:=j 

4- for 0 k NPRS≤ <  pardo 
 Send (X,ITSK) to processor 0 

In processor 0 
   Search ITSK  which corresponds to min (X) 
  min_L:=ITSK 
5- From processor min_L  

Send row g:=C[row_no][:] to all processor 
Send variable h:=b[[row_no] to all processor 

6- for 0 k NPRS≤ <  pardo 
  for 0 /i m NPRS≤ <  do{ 

Set a:=C[i][column]/g[column] 
      for 0 j m n≤ < +  do 

Set C[i][j]:=C[i][j]-a*g[j] 
          Set  b[i]:=b[i]-a*h 

 } 
7- In processor min_L 
  for 0 j m n≤ < +    do{ 
   set C[row_no][j] := g[j]/g[column] 
   set b[row_no] := h / g[column] 

} 
8- In processor 0 
  a:=q[column]/g[column] 
  For 0 i m n≤ < +  do { 
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   Set q[i] := q[i]-a*g[i] 
   Set q[n+m] := q[m+n] - a*h 
     } 
9-  Goto (2) 
10- For 0 i m n≤ < + do 
  In processor 0 
   Set TABL[0][i] := q[i] 
 for 0 k NPRS≤ <    pardo{ 

     for 0 /i m NPRS≤ <  do 
   For 0 j m n≤ < + do 
    Set  TABL[k*m/NPRS+i][j] := C[i][j] 
       for 0 /j n NPRS≤ <  do 
   Set TABL[j][m+n] := b[j] 
               } 
End.  

IV. COMPUTATIONAL RESULTS 
The algorithm described in Section 3 has been 

experimentally implemented. In this Section, the numerical 
experiments are presented. It must be mentioned that the 
computational results demonstrate a speedup for traditional 
simplex algorithm on dense linear programs. 

All test runs were carried out on 16 uniprocessors Intel 
Pentium III 500MHz with 512 KB L2 Cache. The processors 
were interconnected using Fast Ethernet and Scalable 
Coherent Interface (SCI). Furthermore, the machine precision 
was 32 decimal digits. The reported CPU times were 
measured in seconds. MPI implementation MPICH v.1.2.6 
was used and appropriately configured for our cluster. Usage 
of this machine was provided by the National Technical 
University of Athens, School of Electrical and Computer 
Engineering. 

We run a total of 30 random dense linear problems. In our 
computational study we use only square problems (nxn). This 
dimension case includes three different classes of problems 
corresponding to the values n = 200, 300, 400; each of these 
classes contains ten random dense linear programs. The dense 
linear optimization problems that have been solved are of the 
general form 
 

Minimize cTx    
s.t. Ax ≤ b  

 x ≥ 0  
 

The planes of the constraints are tangent on a sphere, so 
that its center is feasible. Also, these problems have a feasible 
region that is a closed polyhedron. The ranges of values, being 
used for randomly generated linear programs for all problems, 
are c∈[1 500], A∈[-700 1800] , r = 7 and center = 35. The 
feasibility tolerance used is 10-8 and the tolerance on a pivot 
row and column is 10-10.  

For each problem size we bring together some statistics on 
the test instances used in our computational study. All the 
results are summarized using a table and a figure. In Tables I-
III we present our computational results. The first column 
shows the number of processors, the second the average 

number of iteration, the third the average cpu-time, the fourth 
the cpu-time per iteration and the last one shows the speed-up 
factor among different number of processors. 

 
TABLE I 

PROBLEM SIZE (200X200) 
No. 

processor
s 

niter Time(secs.) Secs./nite
r 

Speed up 

1 382.1 1.9571 0.0051 1 
2 382.1 1.0086 0.0026 1.9404 
4 382.1 0.9658 0.0025 2.0263 
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Fig. 1 Speed up Curve for Problem Size (200x200) 

 
In Fig. 1 one can see that as the number of processors 

increases (and less than 4 processors) the speed up also 
increases. Our experiments show that if we use more than 4 
processors, then we have not speeded up. This fact can be 
justified because the communication time is more than the 
computational time for problem size (200x200). 

 
TABLE II 

PROBLEM SIZE (300X300) 
No. 

processor
s 

niter Time(secs.) Secs./nite
r 

Speed up 

1 636.4 8.9318 0.0140 1 
2 636.4 4.8551 0.0076 1.8397 
4 636.4 2.9004 0.0045 3.0795 
6 636.4 2.4307 0.0038 3.6746 
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Fig. 2 Speed up Curve for Problem Size (300x300) 
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Moreover, in Fig. 2 one can see that as the number of 
processor increases (and less than 6 processors) the speed up 
also increases. Our experiments show that if we use more than 
6 processors, then we have not speeded up. This happens, 
because the communication time is more than the 
computational time for problem size (300x300). It can be seen 
that, when we increase the problem size from (200x200) to 
(300x300), we have speed up as long as we use less than 6 
processors. 

 
TABLE III 

PROBLEM SIZE (400X400) 
No. 

processor
s 

niter Time(secs.) Secs./nite
r 

Speed up 

1 897 22.3404 0.0249 1 
2 897 12.4163 0.0138 1.7992 
4 897 7.3259 0.0082 3.0495 
8 897 4.5529 0.0051 4.9067 
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Fig. 3 Speed up Curve for Problem Size (400x400) 

 
In Fig. 3 one can observe that, as the number of processor 

increases (and less than 8 processors), the speed up also 
increases. Our experiments show that if we use more than 8 
processors, then we have not speeded up. This happens again, 
because the communication time is more than the 
computational time for problem size (400x400). We can also 
see that when we increase the problem size from (300x300) to 
(400x400) we have speed up, as long as we use less than 8 
processors. 

V. CONCLUSION 
We have presented a parallel implementation of the simplex 

algorithm using the Message Passing Interface. The proposed 
implementation has an advantage. It leads to important 
reduction in the total solution time of a linear programming 
problem. The performance analysis also, shows that the speed-
up obtained is highly sensitive to communication among the 
processors.  
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