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Abstract—In this paper we are interested in Moufang-Klingenberg
planes M(A) defined over a local alternative ring A of dual numbers.
We show that some collineations of M(A) preserve cross-ratio.
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I. INTRODUCTION

The number of collineations of any projective plane is huge.
For example; the Fano plane has 168 collineations, the non-
Desarguesian projective Veblen-Wedderburn plane of order
9 (which is denoted by πN (9)) has 311,040 collineations
[14, p. 366]. It is easy to see that the composite of any
two collineations is a collineation, as the invers of any
collineation. Function composition is always associative; thus
the collineations of any projective or affine plane form a group.
For more detailed information about these groups, the reader
is referred to the books of [11], [14].

In the Euclidean plane, Desargues established the funde-
mantal fact that cross-ratio (a concept originally introduced by
Pappus of Alexandria c.300 B.C) is invariant under projection
[3, p. 133]. For this reason, cross-ratio is one of the most
important concepts of projective geometry.

In this paper we deal with the class (which we will denote by
M(A)) of Moufang-Klingenberg (MK) planes coordinatized
by a local alternative ring

A := A (ε) = A + Aε

(an alternative field A, ε /∈ A and ε2 = 0) introduced
by Blunck in [7]. We will show that some collineations of
M(A) from [8] preserve cross-ratio. For more information
about some well-known properties of cross-ratio in the case
of Moufang planes or MK-planes M(A), respectively, it can
be seen the papers of [10], [4], [9] or [7], [1].

Section 2 includes some basic definitions and results from
the literature.

In Section 3 we will give some collineations of M(A) from
[8] and we show that the collineations preserve cross-ratio, the
main result of the paper.

II. PRELIMINARIES

Let M = (P,L,∈,∼) consist of an incidence structure
(P,L,∈) (points, lines, incidence) and an equivalence relation
‘∼’ (neighbour relation) on P and on L, respectively. Then
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M is called a projective Klingenberg plane (PK-plane), if it
satisfies the following axioms:

(PK1) If P,Q are non-neighbour points, then there is a
unique line PQ through P and Q.

(PK2) If g, h are non-neighbour lines, then there is a unique
point g ∩ h on both g and h.

(PK3) There is a projective plane M∗ = (P∗,L∗,∈) and
an incidence structure epimorphism Ψ : M → M∗, such that
the conditions

Ψ(P ) = Ψ(Q) ⇔ P ∼ Q, Ψ(g) = Ψ(h) ⇐⇒ g ∼ h

hold for all P,Q ∈ P, g, h ∈ L.
A point P ∈ P is called near a line g ∈ L iff there exists

a line h ∼ g such that P ∈ h.
Let h, k ∈ L, C ∈ P, C is not near to h, k. Then the

well-defined bijection

σ := σC (k, h) :
{

h → k
X → XC ∩ k

mapping h to k is called a perspectivity from h to k with
center C. A product of a finite number of perspectivities is
called a projectivity.

An incidence structure automorphism preserving and re-
flecting the neighbour relation is called a collineation of M.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane
M that generalizes a Moufang plane, and for which M∗ is a
Moufang plane (for the exact definition see [2]).

An alternative ring (field) R is a not necessarily associative
ring (field) that satisfies the alternative laws

a (ab) = a2b, (ba) a = ba2,∀a, b ∈ R.

An alternative ring R with identity element 1 is called local
if the set I of its non-unit elements is an ideal.

We are now ready to give consecutively two important
lemmas related to alternative rings.

Lemma 2.1: The subring generated by any two elements of
an alternative ring is associative (cf. [13, Theorem 3.1]).

Lemma 2.2: The identities

x (y (xz)) = (xyx) z

((yx) z) x = y (xzx)
(xy) (zx) = x (yz)x

which are known as Moufang identities are satisfied in every
alternative ring (cf. [12, p. 160]).
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We summarize some basic concepts about the coordinatiza-
tion of MK-planes from [2].

Let R be a local alternative ring. Then MR = (P,L,∈,∼)
is the incidence structure with neighbour relation defined as
follows:

P = {(x, y, 1)|x, y ∈ R}∪{(1, y, z)|y ∈ Rz ∈ I}
∪{(w, 1, z)|w, z ∈ I},

L = {[m, 1, p]|m, p ∈ R}∪{[1, n, p]|p ∈ Rn ∈ I}
∪{[q, n, 1]|q, n ∈ I},

[m, 1, p] = {(x, xm + p, 1) |x ∈ R}
∪ {(1, zp + m, z) |z ∈ I} ,

[1, n, p] = {(yn + p, y, 1) |y ∈ R}
∪ {(zp + n, 1, z) |z ∈ I} ,

[q, n, 1] = {(1, y, yn + q) |y ∈ R}
∪ {(w, 1, wq + n) |w ∈ I} ,

P = (x1, x2, x3) ∼ (y1, y2, y3) = Q

⇔ xi − yi ∈ I (i = 1, 2, 3)),∀P,Q ∈ P,

g = [x1, x2, x3] ∼ [y1, y2, y3] = h

⇔ xi − yi ∈ I (i = 1, 2, 3)),∀g, h ∈ L.

Now it is time to give the following theorem from [2].

Theorem 2.1: M(R) is an MK-plane, and each MK-plane
is isomorphic to some M(R).

Let A be an alternative field and ε �∈ A. Consider

A := A (ε) = A + Aε

with componentwise addition and multiplication as follows:

(a1 + a2ε) (b1 + b2ε) = a1b1 + (a1b2 + a2b1) ε,

where ai, bi ∈ A for i = 1, 2. Then A is a local alternative
ring with ideal I = Aε of non-units. The set of formal inverses
of the non-units of A is denoted as I−1. Calculations with the
elements of I−1 are defined as follows [6]:

(aε)−1 + t := (aε)−1 := t + (aε)−1

q (aε)−1 :=
(
aq−1ε

)−1

(aε)−1
q :=

(
q−1aε

)−1

(
(aε)−1

)−1

:= aε,

where (aε)−1 ∈ I−1, t ∈ A, q ∈ A \ I. (Other terms are not
defined.). For more information about A and its relation to
MK-planes, the reader is referred to the papers of Blunck [6],
[7]. In [7], the centre Z (A) is defined to be the (commutative,
associative) subring of A which is commuting and associating
with all elements of A. It is Z (A) := Z (ε) = Z+Zε, where
Z = {z ∈ A|za = az, ∀a ∈ A} is the centre of A. If A is
not associative, then A is a Cayley division algebra over its
centre Z.

Throughout this paper we assume charA �= 2 and we
restrict ourselves to the MK-planes M(A).

Blunck [7] gives the following algebraic definition of the
cross-ratio for the points on the line g := [1, 0, 0] in M(A).

(A, B; C, D) := (a, b; c, d)

=<
(
(a − d)−1 (b − d)

) (
(b − c)−1 (a − c)

)
>

(Z, B;C, D) :=
(
z−1, b; c, d

)
=<

(
(1 − dz)−1 (b − d)

) (
(b − c)−1 (1 − cz)

)
>

(A, Z;C, D) :=
(
a, z−1; c, d

)
=<

(
(a − d)−1 (1 − dz)

) (
(1 − cz)−1 (a − c)

)
>

(A, B;Z, D) :=
(
a, b; z−1, d

)
=<

(
(a − d)−1 (b − d)

) (
(1 − zb)−1 (1 − za)

)
>

(A, B;C, Z) :=
(
a, b; c, z−1

)
=<

(
(1 − za)−1 (1 − zb)

) (
(b − c)−1 (a − c)

)
>,

where A = (0, a, 1), B = (0, b, 1), C = (0, c, 1), D =
(0, d, 1), Z = (0, 1, z) are pairwise non-neighbour points of g
and < x >=

{
y−1xy| y ∈ A}

.
In [6, Theorem 2], it is shown that the transformations

tu (x) = x + u; u ∈ A
ru (x) = xu; u ∈ A \ I

i (x) = x−1

lu (x) = ux =
(
ir−1

u i
)
(x) ; u ∈ A \ I

which are defined on the line g preserve cross-ratios. In [5,
Corollary (iii)], it is also shown that the group generated
by these transformations, which is denoted by Λ, equals to
the group of projectivities of a line in M(A). The elements
preserving cross-ratio of the group Λ defined on g will act a
very important role in the proof of Theorem 3.1.

We give the following result from [1, Theorem 8]. This
result states a simple way for calculation of the cross-ratio of
the points on any line in M(A).

Theorem 2.2: Let {O,U, V,E} be the basis of M(A)
where O = (0, 0, 1) , U = (1, 0, 0) , V = (0, 1, 0) , E =
(1, 1, 1) (see [2, Section 4]). Then, according to types of lines,
the cross-ratio of the points on the line l can be calculated as
follows:

If A, B,C, D and Z are the pairwise non-neighbour points

(a) of the line l = [m, 1, k], where A = (a, am + k, 1), B =
(b, bm + k, 1), C = (c, cm + k, 1), D = (d, dm + k, 1)
are not near to the line UV = [0, 0, 1] and Z =
(1, m + zp, z) is near to UV ,

(b) of the line l = [1, n, p], where A = (an + p, a, 1), B =
(bn + p, b, 1), C = (cn + p, c, 1), D = (dn + p, d, 1)
are not neighbour to V and Z = (n + zp, 1, z) ∼ V ,

(c) of the line l = [q, n, 1], where A = (1, a, q + an), B =
(1, b, q + bn), C = (1, c, q + cn), D = (1, d, q + dn)
are not neighbour to V and Z = (z, 1, zq + n) ∼ V ,
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then

(A, B;C, D) = (a, b; c, d)
(Z, B;C, D) =

(
z−1, b; c, d

)
(A, Z;C, D) =

(
a, z−1; c, d

)
(A, B;Z, D) =

(
a, b; z−1, d

)
(A, B;C, Z) =

(
a, b; c, z−1

)
.

We can give an important theorem, from [1, Theorem 9],
about cross-ratio.

Theorem 2.3: In M(A), perspectivities preserve cross-
ratios.

In the next section, we deal with some collineations pre-
serving cross-ratio in M(A).

III. SOME COLLINEATIONS PRESERVING CROSS-RATIO.

In this section we would like to show that the following
collineations we will introduce from [8] preserve cross-ratios.
Now we start with giving the collineations, where w, z, q, n ∈
A:

For any u /∈ I, the map Lu transforms points and lines as
follows:

(x, y, 1) → (ux, uyu, 1)
(1, y, zε) → (

1, yu, (zu−1)ε
)

(wε, 1, zε) → (
(u−1w)ε, 1, (u−1zu−1)ε

)

[m, 1, k] → [mu, 1, uku]
[1, nε, p] → [

1, (u−1n)ε, up
]

[qε, nε, 1] → [
(qu−1)ε, (u−1nu−1)ε, 1

]
.

For any u /∈ I, the map Fu transforms points and lines as
follows:

(x, y, 1) → (uxu, uy, 1)
(1, y, zε) → (

1, u−1y, (u−1zu−1)ε
)

(wε, 1, zε) → (
(wu)ε, 1, (zu−1)ε

)

[m, 1, k] → [
u−1m, 1, uk

]
[1, nε, p] → [1, (nu)ε, upu]

[qε, nε, 1] → [
(u−1qu−1)ε, (nu−1)ε, 1

]
.

For any α, β ∈ Z(A), α, β /∈ I, the map Sα,β transforms
points and lines as follows:

(x, y, 1) → (xβ, yα, 1)
(1, y, zε) → (

1, β−1yα, (β−1z)ε
)

(wε, 1, zε) → (
(α−1wβ)ε, 1, (α−1z)ε

)

[m, 1, k] → [
β−1mα, 1, kα

]
[1, nε, p] → [

1, (α−1nβ)ε, pβ
]

[qε, nε, 1] → [
(β−1q)ε, (α−1n)ε, 1

]
.

The map I2 transforms points and lines as follows:

(x, y, 1) → (
y−1x, y−1, 1

)
if y /∈ I

(x, y, 1) → (
1, x−1, x−1y

)
if y ∈ I ∧ x /∈ I

(x, y, 1) → (x, 1, y) if y ∈ I ∧ x ∈ I

(1, y, zε) → (
y−1,

(
y−1z

)
ε, 1

)
if y /∈ I

(1, y, zε) → (1, zε, y) if y ∈ I

(wε, 1, zε) → (wε, zε, 1)

[m, 1, k] → [−mk−1, 1, k−1
]

if k /∈ I

[m, 1, k] → [
1,−km−1, m−1

]
if k ∈ I ∧ m /∈ I

[m, 1, k] → [m, k, 1] if k ∈ I ∧ m ∈ I

[1, nε, p] → [
p−1, 1,− (

np−1
)
ε
]

if p /∈ I

[1, nε, p] → [1, p, nε] if p ∈ I

[qε, nε, 1] → [qε, 1, nε] .

Now we are ready to give the main result of the paper.

Theorem 3.1: The collineations Lu, Fu, Sα,β and I2 pre-
serve cross-ratio.

Proof: Let A, B,C, D and Z be the points with the
property given in the statement of Theorem 2.2. Then, it is
obvious that

(A, B;C, D) = (a, b; c, d) (1)
(Z, B;C, D) =

(
z−1, b; c, d

)
(A, Z;C, D) =

(
a, z−1; c, d

)
(A, B;Z, D) =

(
a, b; z−1, d

)
(A, B;C, Z) =

(
a, b; c, z−1

)
,

where z ∈ I. In this case we must find the effect of ϕ to the
points of any line where ϕ is any one of collineations Lu, Fu,
Sα,β ,and I2.

i) Let ϕ =Lu. If l = [m, 1, k] , then

ϕ (X) = ϕ (x, xm + k, 1) = (ux, u (xm + k) u, 1)
ϕ (Z) = ϕ (1, m + zk, z) =

(
1, (m + zk) u, zu−1

)
and ϕ (l) = [mu, 1, uku]. From (a) of Theorem 2.2, we obtain

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D)) = (ua, ub; uc, ud)
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D)) =
(
uz−1, ub; uc, ud

)
=σ

(
z−1, b; c, d

)
,

where σ = lu−1 ∈ Λ.
If l = [1, n, p] , then

ϕ (X) = ϕ (xn + p, x, 1) = (u (xn + p) , uxu, 1)
ϕ (Z) = ϕ (n + zp, 1, z) =

(
u−1 (n + zp) , 1, u−1zu−1

)
and ϕ (l) =

[
1, u−1n, up

]
. From (b) of Theorem 2.2, we have

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D)) = (uau, ubu;ucu, udu)
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D)) =
(
uz−1u, ubu;ucu, udu

)
=σ

(
z−1, b; c, d

)
,
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where σ = lu−1 ◦ ru−1 ∈ Λ.
If l = [q, n, 1] , then

ϕ (X) = ϕ (1, x, q + xn) =
(
1, xu, (q + xn) u−1

)
ϕ (Z) = ϕ (z, 1, zq + n) =

(
u−1z, 1, u−1 (zq + n) u−1

)
and ϕ (l) =

[
qu−1, u−1nu−1, 1

]
. From (c) of Theorem 2.2,

we obtain

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D)) = (au, bu; cu, du)
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D)) =
(
z−1u, bu; cu, du

)
=σ

(
z−1, b; c, d

)
,

where σ = ru−1 ∈ Λ.

ii) Let ϕ =Fu. If l = [m, 1, k] , then

ϕ (X) = ϕ (x, xm + k, 1) = (uxu, u (xm + k) , 1)
ϕ (Z) = ϕ (1, m + zk, z) =

(
1, u−1 (m + zk) , u−1zu−1

)
and ϕ (l) =

[
u−1m, 1, uk

]
. From (a) of Theorem 2.2, we have

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D)) = (uau, ubu;ucu, udu)
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D)) =
(
uz−1u, ubu; ucu, udu

)
=σ

(
z−1, b; c, d

)
,

where σ = lu−1 ◦ ru−1 ∈ Λ.
If l = [1, n, p] , then

ϕ (X) = ϕ (xn + p, x, 1) = (u (xn + p) u, ux, 1)
ϕ (Z) = ϕ (n + zp, 1, z) =

(
(n + zp) u, 1, zu−1

)
and ϕ (l) = [1, nu, upu]. From (b) of Theorem 2.2, we obtain

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D)) = (ua, ub;uc, ud)
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D)) =
(
uz−1, ub;uc, ud

)
=σ

(
z−1, b; c, d

)
,

where σ = lu−1 ∈ Λ.
If l = [q, n, 1] , then

ϕ (X) = ϕ (1, x, q + xn) =
(
1, u−1x, u−1 (q + xn) u−1

)
ϕ (Z) = ϕ (z, 1, zq + n) =

(
zu, 1, (zq + n) u−1

)
and ϕ (l) =

[
u−1qu−1, nu−1, 1

]
. From (c) of Theorem 2.2,

we have

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D))
=

(
u−1a, u−1b; u−1c, u−1d

)
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D))
=

(
u−1z−1, u−1b; u−1c, u−1d

)
=σ

(
z−1, b; c, d

)
,

where σ = lu ∈ Λ.

iii) Let ϕ =Sα,β . If l = [m, 1, k] , , then

ϕ (X) = ϕ (x, xm + k, 1) = (xβ, (xm + k) α, 1)
ϕ (Z) = ϕ (1, m + zk, z) =

(
1, β−1 (m + zk) α, β−1z

)

and ϕ (l) =
[
β−1mα, 1, kα

]
. From (a) of Theorem 2.2, we

obtain

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D)) = (aβ, bβ; cβ, dβ)
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D)) =
(
z−1β, bβ; cβ, dβ

)
=σ

(
z−1, b; c, d

)
,

where σ = rβ−1 ∈ Λ.
If l = [1, n, p] , then

ϕ (X) = ϕ (xn + p, x, 1) = ((xn + p) β, xα, 1)
ϕ (Z) = ϕ (n + zp, 1, z) =

(
α−1 (n + zp)β, 1, α−1z

)

and ϕ (l) =
[
1, α−1nβ, pβ

]
. From (b) of Theorem 2.2, we

have

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D)) = (aα, bα; cα, dα)
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D)) =
(
z−1α, bα; cα, dα

)
=σ

(
z−1, b; c, d

)
,

where σ = rα−1 ∈ Λ.
If l = [q, n, 1] , then

ϕ (X) = ϕ (1, x, q + xn) =
(
1, β−1xα, β−1 (q + xn)

)
ϕ (Z) = ϕ (z, 1, zq + n) =

(
α−1zβ, 1, α−1 (zq + n)

)

and ϕ (l) =
[
β−1q, α−1n, 1

]
. From (c) of Theorem 2.2, we

obtain

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D))
=

(
β−1aα, β−1bα;β−1cα, β−1dα

)
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D))
=

(
β−1z−1α, β−1bα; β−1cα, β−1dα

)
=σ

(
z−1, b; c, d

)
,

where σ = lβ ◦ rα−1 ∈ Λ.

iv) Let ϕ =I2. If l = [m, 1, k] , then

ϕ (X) = ϕ (x, xm + k, 1)

=
(
(xm + k)−1

x, (xm + k)−1
, 1

)
,

where xm + k /∈ I

ϕ (X) = ϕ (x, xm + k, 1)
=

(
1, x−1, x−1 (xm + k)

)
,

where xm + k ∈ I and x /∈ I

ϕ (X) = ϕ (x, xm + k, 1)
= (x, 1, xm + k) , where xm + k ∈ I and x ∈ I

ϕ (Z) = ϕ (1, m + zk, z)

=
(
(m + zk)−1

, (m + zk)−1
z, 1

)
,

where m + zk /∈ I

ϕ (Z) = ϕ (1, m + zk, z)
= (1, z,m + zk) , where m + zk ∈ I
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and

ϕ (l) =
[−mk−1, 1, k−1

]
, where k /∈ I

ϕ (l) =
[
1,−km−1, m−1

]
, where k ∈ I and m /∈ I

ϕ (l) = [m, k, 1] , where k ∈ I and m ∈ I.

In this case, from (a) of Theorem 2.2, the cross-ratio of the
points of

[−mk−1, 1, k−1
]

is as follows:

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D))
= ((am + k)−1

a, (bm + k)−1
b;

(cm + k)−1
c, (dm + k)−1

d)
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D))
= ((m + zk)−1

, (bm + k)−1
b;

(cm + k)−1
c, (dm + k)−1

d)
=σ

(
z−1, b; c, d

)
,

where σ = i◦rk−1 ◦t−m◦i ∈ Λ. From (b) of Theorem 2.2, the
cross-ratio of the points of

[
1,−km−1, m−1

]
is as follows:

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D))
= ((am + k)−1

, (bm + k)−1 ;
(cm + k)−1

, (dm + k)−1)
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D))
= ((m + zk)−1

z, (bm + k)−1 ;
(cm + k)−1

, (dm + k)−1)
=σ

(
z−1, b; c, d

)
,

where σ = rm−1 ◦ t−k ◦ i ∈ Λ. From (c) of Theorem 2.2, the
cross-ratio of the points of [m, k, 1] is as follows:

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D)) =
(
a−1, b−1; c−1, d−1

)
= σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D)) =
(
z, b−1; c−1, d−1

)
= σ

(
z−1, b; c, d

)
,

where σ = i ∈ Λ.
If l = [1, n, p] , then

ϕ (X) = ϕ (xn + p, x, 1)
=

(
x−1 (xn + p) , x−1, 1

)
, where x /∈ I

ϕ (X) = ϕ (xn + p, x, 1)

=
(
1, (xn + p)−1

, (xn + p)−1
x
)

,

where x ∈ I and xn + p /∈ I

ϕ (X) = ϕ (xn + p, x, 1)
= (xn + p, 1, x) , where x ∈ I and xn + p ∈ I

ϕ (Z) = ϕ (n + zp, 1, z) = (n + zp, z, 1)

and

ϕ (l) =
[
p−1, 1,−np−1

]
, where p /∈ I

ϕ (l) = [1, p, n] , where p ∈ I.

In this case, from (a) of Theorem 2.2, the cross-ratio of the
points of

[
p−1, 1,−np−1

]
is as follows:

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D)) = (a−1 (an + p) , b−1 (bn + p) ;
c−1 (cn + p) , d−1 (dn + p))
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D)) = (n + zp, b−1 (bn + p) ;
c−1 (cn + p) , d−1 (dn + p))
=σ

(
z−1, b; c, d

)
,

where σ = i ◦ rp−1 ◦ t−n ∈ Λ. From (b) of Theorem 2.2, the
cross-ratio of the points of [1, p, n] is as follows:

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D)) =
(
a−1, b−1; c−1, d−1

)
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D)) =
(
z, b−1; c−1, d−1

)
=σ

(
z−1, b; c, d

)
,

where σ = i ∈ Λ.
If l = [q, n, 1] , then

ϕ (X) = ϕ (1, x, q + xn)
=

(
x−1, x−1 (q + xn) , 1

)
, where x /∈ I

ϕ (X) = ϕ (1, x, q + xn)
= (1, q + xn, x) , where x ∈ I

ϕ (Z) = ϕ (z, 1, zq + n) = (z, zq + n, 1)

and ϕ (l) = [q, 1, n]. In this case, from (a) of Theorem 2.2,
the cross-ratio of the points of [q, 1, n] is as follows:

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D)) =
(
a−1, b−1; c−1, d−1

)
=σ (a, b; c, d)

(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D)) =
(
z, b−1; c−1, d−1

)
=σ

(
z−1, b; c, d

)
,

where σ = i ∈ Λ.
Consequently, by considering other all cases we get

(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (D)) = (a, b; c, d)
(ϕ (Z) , ϕ (B) ;ϕ (C) , ϕ (D)) =

(
z−1, b; c, d

)
(ϕ (A) , ϕ (Z) ;ϕ (C) , ϕ (D)) =

(
a, z−1; c, d

)
(ϕ (A) , ϕ (B) ;ϕ (Z) , ϕ (D)) =

(
a, b; z−1, d

)
(ϕ (A) , ϕ (B) ;ϕ (C) , ϕ (Z)) =

(
a, b; c, z−1

)
for every collineation ϕ. Combining the last result and the
result of (1), the proof is completed.

Remark 3.2: In the present paper we show that the
collineations Lu, Fu, Sα,β ,and I2, given in [8], preserve cross-
ratio. A paper related to the result that the other collineations
of [8] (Tu,v , I1, F and Gu) preserve cross-ratio, is under review.

REFERENCES

[1] A. Akpinar, B. Celik and S. Ciftci, Cross–ratios and 6-figures in some
Moufang-Klingenberg planes. Bulletin of the Belgian Math. Soc.-Simon
Stevin 15(2008), 49–64.

[2] C.A. Baker, N.D. Lane and J.W. Lorimer. A coordinatization for
Moufang-Klingenberg planes. Simon Stevin 65(1991), 3–22.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

1051

[3] J.L. Bell. The art of the intelligible: An elementary survey of math-
ematics in its conceptual development. Kluwer Acad. Publishers, The
Netherland, 2001.

[4] A. Blunck. Cross-ratios in Moufang planes. J. Geometry 40(1991), 20–
25.

[5] A. Blunck. Projectivities in Moufang-Klingenberg planes. Geom. Ded-
icata 40(1991), 341–359.

[6] A. Blunck. Cross-ratios over local alternative rings. Res. Math. 19
(1991), 246–256.

[7] A. Blunck. Cross-ratios in Moufang-Klingenberg planes. Geom. Dedi-
cata 43(1992), 93–107.

[8] B. Celik, A. Akpinar and S. Ciftci. 4-Transitivity and 6-figures in some
Moufang-Klingenberg planes. Monatshefte für Mathematik 152(2007),
283–294.

[9] S. Ciftci and B. Celik. On the cross–ratios of points and lines in Moufang
planes. J. Geometry 71(2001), 34–41.

[10] J.C. Ferrar. Cross-ratios in projective and affine planes. in Plaumann, P.
and Strambach, K., Geometry - von Staudt’s Point of View (Proceedings
Bad Windsheim, 1980), Reidel, Dordrecht, (1981) 101–125.

[11] D.R. Hughes and F.C. Piper. Projective planes. Springer, New York,
1973.

[12] G. Pickert. Projektive Ebenen. Springer, Berlin, 1955.
[13] R.D. Schafer. An introduction to nonassociative algebras. Dover Publi-

cations, New York, 1995.
[14] F.W. Stevenson. Projective planes. W.H. Freeman Co., San Francisco,

1972.


