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Abstract—This paper presents a hybrid algorithm for solving a 

timetabling problem, which is commonly encountered in many 
universities. The problem combines both teacher assignment and 
course scheduling problems simultaneously, and is presented as a 
mathematical programming model. However, this problem becomes 
intractable and it is unlikely that a proven optimal solution can be 
obtained by an integer programming approach, especially for large 
problem instances. A hybrid algorithm that combines an integer 
programming approach, a greedy heuristic and a modified simulated 
annealing algorithm collaboratively is proposed to solve the problem. 
Several randomly generated data sets of sizes comparable to that of 
an institution in Indonesia are solved using the proposed algorithm. 
Computational results indicate that the algorithm can overcome 
difficulties of large problem sizes encountered in previous related 
works. 
 

Keywords—Timetabling problem, mathematical programming 
model, hybrid algorithm, simulated annealing.  

I. INTRODUCTION 
IMETABLING problems arise in a wide variety of fields 
including education, transportation, sports, and healthcare 

institutions. It is well known that the timetabling problem is 
NP-complete [1]. Here, we focus on a special class of 
timetabling problems, known as the university course 
timetabling problem. This problem is commonly encountered 
in many universities throughout the world. It can be further 
classified into five different sub-problems: teacher assignment, 
course scheduling, class-teacher timetabling, student 
scheduling, and classroom assignment [2].  

This paper deals with the first two sub-problems 
simultaneously. The problem faced in teacher assignment is 
how to assign and schedule the teachers to the courses and 
course sections by taking some factors, such as teachers’ 
preferences and the number of courses offered, into 
consideration. The timetabling process will then be continued 
with scheduling course sections to time periods, which is  
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known as the course scheduling problem. From the literature, 
we notice that most of the papers only focus on one of the sub-
problems. For example, papers about the course scheduling 
problem often assume that the teacher assignment problem has 
been solved earlier before solving the course scheduling 
problem. 

Many approaches have been proposed for solving 
timetabling problems, such as exact algorithms and heuristics. 
The emphasis of this paper is to develop a hybrid algorithm to 
solve the problem. Another contribution of this paper is to 
consider both the teacher assignment and course scheduling 
problems simultaneously. This problem becomes more 
complex than if teaching assignment and course scheduling 
problems are considered separately. 

The rest of the paper is organized as follows: Section II 
gives related works of the timetabling problem. A detailed 
description of the timetabling problem is presented in Section 
III. Section IV briefly describes a proposed mathematical 
programming model for the problem. A proposed hybrid 
algorithm is then described in Section V, and the results of the 
computational experiments are reported and discussed in 
Section VI. Finally, an overall conclusion and suggestions for 
further research work are given in Section VII.   

II. RELATED WORKS 
The timetabling problem is one of the scheduling problems 

that has been extensively studied and published in Operations 
Research literature over the last 25 years [3]. The solution 
approaches range from graph coloring to heuristic algorithms, 
including mathematical programming models and 
metaheuristics as well.  

For many years, the main focus of research in the 
timetabling problem was on the application of a single 
solution approach. A large variety of such approaches have 
been tried out, such as an integer programming approach [4], 
tabu search [3], and simulated annealing [5]. Recently, some 
researchers have attempted to combine several approaches, 
such as hybridization of exact algorithms and metaheuristics. 
Hybrid algorithms exploit the strength of different methods by 
applying them to problems that can be solved efficiently. 

The hybridization of exact algorithms and metaheuristics 
can be categorized into two classes, commonly known as 
collaborative and integrative combinations [6]. Collaborative 
combination refers to the algorithms that are executed 
sequentially, intertwined or in parallel. These algorithms 
exchange information, but are not part of each other. In 
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integrative combinations, one algorithm is a subordinate 
embedded component of another algorithm. 

One of the earlier related papers in the university course 
timetabling problem that has applied the idea of hybrid 
algorithms was presented by Weare et al. [7]. This paper 
proposed a hybrid genetic algorithm that combines a direct 
representation of the timetable and heuristic crossover 
operators. Petrovic and Yang [8] presented a combination of 
case-based reasoning system and the Great Deluge Algorithm 
for solving examination timetabling problems. Some other 
applications of the hybrid algorithm in timetabling problems 
were also presented by Chiarandini and Stützle [9], Duong and 
Lam [10] and Merlot et al. [11]. 

One of the latest applications of the hybrid algorithm for 
timetabling problem was presented by Chiarandini et al. [12]. 
It describes a hybrid metaheuristic algorithm for solving the 
university course timetabling problem. The entire framework 
that consists of the successive application of several heuristics 
is promising in achieving good results. 

III. PROBLEM DESCRIPTION 
The timetabling problem that we address has arisen in the 

context of a university in Indonesia. In every new semester, 
several courses are offered to students. Each course can be 
divided into different sections due to the classroom capacity 
constraint and the number of students registered. Teachers are 
allowed to choose the courses that they are willing to teach 
based on their preferences, along with their preferred days and 
time periods.   

As mentioned earlier, the primary problem discussed in this 
paper is the combination of two sub-problems: teacher 
assignment and course scheduling problems. Instead of 
solving these sub-problems separately, we focus on how to 
solve them simultaneously by taking the requirements of both 
sub-problems into consideration.  

Some efforts in this area of research have already been 
started by using the mathematical programming approach [13, 
14], in which it is shown that timetabling problems with data 
sizes comparable to that of an institution can be solved with 
the help of the models. However, it is found that mathematical 
programming models were not an effective way for finding the 
existence of an optimal solution, especially for large-scale 
timetabling problems. Thus, the design of heuristic approaches 
was proposed. 

Although each university has some unique combination of 
requirements, the most common forms of requirements that 
might also be encountered in other universities would be 
accommodated in the model. The requirements imposed are as 
follows: 
a) For each course, only one section can be conducted in every 

time period. 
b) Each teacher has to teach at least one course and cannot 

teach more than a certain number of courses. 
c) The number of teachers who can teach each course is 

limited. 
d) All course sections have to be spread evenly throughout a 

week, so that for a particular course, only one section can be 

conducted every day.  
e) Each teacher can only teach at most one course section in a 

particular time period.  
f) The number of course sections taught cannot exceed the 

number of classrooms available during each time period. 
g) All sections for a particular course must be scheduled. 
h) Each course section can only be taught by one teacher. 
i) Each teacher will not be assigned courses that he/she is 

unable to teach.  
j) All the course sections taught by a teacher will be spread out 

evenly during a week.  
k) Each course section has to be scheduled in a certain number 

of time periods consecutively.  
The above requirements would be accommodated in the 

proposed mathematical programming model and regarded as 
hard constraints that cannot be violated. 

IV. MATHEMATICAL PROGRAMMING MODEL 
In order to compare the solutions obtained by an integer 

programming approach and proposed hybrid algorithms, the 
problem is formulated as a mathematical programming model 
(model [A]). Let I, J, and K be the set of teachers, courses, and 
course sections, respectively. Every teacher i will teach some 
course sections based on their course preference list Ji, 
where JJ i ⊂ and he/she must not teach more than Ni courses. 
PCij is the value given by teacher i on the preference to be 
assigned to teach course j. The number of teachers teaching 
course j is also bounded by the minimum and maximum 
values, LTj and UTj. The set of sections of course j is denoted 
by Kj, while Sj is the number of sections of course j.  

The timetable is in the form of a weekly schedule with the 
set of days in a week being denoted by L, and the set of time 
periods being denoted by M. In this paper, each time period 
has the same duration. Each course section has to be scheduled 
into time periods based on the number of time periods 
required. The number of classrooms available per time period 
is limited by Clm. We assume that Clm = C for all l∈L and 
m∈M.  The value given by teacher i on the preference to be 
assigned to teach in day l and time period m is denoted as 
PTilm. 

Some of the decision variables defined are as follows: 
Xijklm = 1 if teacher i teaches course j section k on day l and at 

time period m, 0 otherwise (all i∈ I, all j∈ J, all 
k∈Kj, all l∈L, all m∈M) 

Pij = 1 if teacher i teaches course j, 0 otherwise (all i∈I, all 
j∈J) 

In our problem, the objective function (1) below reflects a 
preference function that needs to be maximized. It refers to the 
preferences of assigning course j to teacher i and the 
preference of scheduling course j and section k to time period 
m and day l. It is assumed that these preferences are equally 
important. 

[Model A] 
∑ ∑ ∑ ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈ ∈ ∈ ∈

×+×
Ii Jj Ii Jj Kk Ll Mm

ijklmilmijij
j

XPTPPCMax  (1) 

Some of the main constraints encountered in our 
timetabling problem are depicted next and the full details of 
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this mathematical programming model (model [A]) can be 
found in [14]. 

Requirement a: 
∑ ∑
∈ ∈

≤
Ii Kk

ijklm
j

X 1   (all j∈J, all l∈L, all m∈M)     (2) 

Requirement b: 
∑
∈

≤≤
Jj

iij NP1   (all i∈I)                (3) 

Requirement c: 
∑
∈

≤≤
Ii

jijj UTPLT (all j∈J)                (4) 

Requirement f: 
∑ ∑ ∑
∈ ∈ ∈

≤
Ii Jj Kk

ijklm
j

CX (all l∈L, all m∈M)          (5) 

{ }1,0∈ijklmX  

     (all i∈I, all j∈J, all k∈Kj, all l∈L, all m∈M)     (6) 
 

{ }1,0∈ijP           (all i∈I, all j∈J)            (7) 

V. PROPOSED HYBRID ALGORITHM 
In this section, we describe the proposed hybrid algorithm 

for solving the problem. It combines an integer programming 
approach, a greedy heuristic and a simulated annealing 
algorithm sequentially. The proposed algorithm consists of 
three phases: (1) pre-processing, (2) construction, and (3) 
improvement.  

The first phase deals with pre-processing data. Each course 
j has a list of teachers, Ij, who are sorted in non-increasing 
order of the given preferences for each teacher i being 
allocated to course j. The given time period preferences (day l 
and time period m) for each teacher i are also sorted in non-
increasing order, with the list being called LMi. The time 
complexity for these processes is O(|I|2|J|) and O(|I||L|2|M|2), 
respectively. The details are described in Algorithm 1 as 
shown in Fig. 1 below. 

 

Fig. 1 Pseudocode of the pre-processing phase 
 
The primary purpose of the construction phase is to build an 

initial feasible solution. The problem is divided into two sub-
problems. The first sub-problem, which deals with the teacher 
assignment problem, is considered as an easy problem that can 
be solved optimally by an integer programming approach. The 
constraints related to the teacher assignment problem are taken 
into consideration.  

The resulting mathematical programming model (Model 
[B]), which is a part of model [A], is proposed. We define 
some additional decision variables: 

ijkX ′  = 1 if teacher i teaches course j section k, 0 otherwise 
 (all i∈I, all j∈J, all k∈Kj) 

ijP′  = 1 if teacher i teaches course j, 0 otherwise  
  (all i∈I, all j∈J) 

Model [B] is then formulated as follows: 
∑ ∑
∈ ∈

′×
Ii Jj

ijij PPCMax                   (8) 

subject to 

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ′
=′ ∑

∈ jKk j

ijk
ij S

X
P  (all i∈I, all j∈J)             (9) 

∑
∈

≤′≤
Jj

iij NP1  (all i∈I)               (10) 

∑
∈

≤′≤
Ii

jijj UTPLT  (all j∈J)               (11) 

0=′ijkX   (all i∈I, all j∉Ji, all k∈Kj) (12) 

∑
∈

=′
Ii

ijkX 1  (all j∈J, all k∈Kj)          (13) 

{ }10,X ijk ∈′  (all i∈I, all j∈J, all k∈Kj)  (14) 

{ }1,0∈′ijP  (all i∈I, all j∈J)           (15) 

The objective function (8) reflects a course preference 
function that needs to be maximized. Equation (9) indicates 
that if teacher i teaches at least one section of course j, the 
value of ijP′  will be 1, meaning that teacher i teaches course j. 

Here, ⎡ ⎤a  denotes the smallest integer greater than or equal 
to a. This equation involves nonlinear functions of the 
decision variables and these can always be linearized by 
adding some additional constraints. Equation (10) ensures that 
teachers have to teach at least one course and cannot exceed 
their maximum number of courses allowed. Equation (11) 
limits the number of teachers for each course. Equation (12) 
ensures that teachers will not be assigned courses that they are 
unable to teach. Equation (13) assumes that each course 
section can only be taught by one teacher. Finally, equations 
(14) and (15) impose the 0-1 restrictions on the decision 
variables ijkX ′  and ijP′ . 

The solution obtained from this sub-problem is then treated 
as the initial solution for the next sub-problem. The second 
sub-problem, which deals with the course scheduling problem, 
is difficult to solve especially when the problem size is large. 
Therefore, it would be solved by a simple greedy heuristic 
instead. The ideas of a simple greedy heuristic as well as the 
parameter values used are similar to that of the heuristic 
proposed by Gunawan et al. [14]. The time complexity of this 
phase is O(|I||J||K||L||M|). The entire process in the construction 
phase is briefly outlined in Algorithm 2 as shown in Fig. 2. 

 

 
Fig. 2 Pseudocode of the construction phase 

Algorithm 2: CONSTRUCTION PHASE ( ) 
(1)  Solve Model [B], determining ijkX ′ and ijP′   

(2) For j = 1 to |J| 
(3)  For k = 1 to Sj 
(4)   Allocate course j section k to time periods 
(5) Calculate the objective function value 
(6) Set the solution obtained as the initial solution, 
 initial 

Algorithm 1: PRE-PROCESSING PHASE ( ) 
(1)  For j = 1 to |J| 
(2)  construct Ij 
(3) For i = 1 to |I| 
(4)  construct LMi 
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In the improvement phase, we propose a modified simulated 
annealing (SA) algorithm. SA was originally developed by 
Kirkpatrick et al. [15] for finding good solutions to a wide 
variety of combinatorial optimization problems, such as the 
traveling salesman problem, machine scheduling problem and 
timetabling problem. The SA algorithm is a type of local-
search heuristic algorithm that avoids getting trapped at a local 
maximum by accepting “downhill” moves which decrease the 
objective function value using a probabilistic acceptance 
criterion.  

The acceptance or rejection of a downhill move is 
determined by a random acceptance function that is equal to 
exp (-Δ/T). T is the control parameter, called temperature in 
analogy with the physical annealing process and Δ is the 
difference of objective function values between two 
successive moves.  

The most commonly used cooling schedule, geometric 
cooling schedule, together with a specific type of 
neighborhood structure, is applied to our problem. An 
additional modification is also introduced in order to further 
improve the quality of the solutions. We apply the 
intensification strategy that is originally from the tabu search 
(TS) algorithm. Suppose there is no improvement of the 
solution obtained within a certain number of iterations 
(LIMIT), the solution search is focused and started from the 
best solution obtained so far. The following figures represent 
the details of the improvement phase. 

 

 
Fig. 3 Pseudocode of the improvement phase 

 
 After an initial solution is obtained from the previous 

phase, two operations are performed in order to seek better 
improvements by exploring the neighborhoods of the current 
solution. These two operations are re-allocation of teachers to 
courses and course sections, followed by re-scheduling of 
these changes into days and time periods.  The details of the 
neighborhood improvement are described in Algorithm 4.  

 

 
Fig. 4 Pseudocode of the improvement phase 

 
The first operation is started by choosing course j randomly, 

followed by finding another teacher without violating the 
maximum load constraint. Two possible neighborhood 
structures are considered: the new teacher will be added to the 
list of teachers who teach course j or the new teacher will 
replace the teacher who has been allocated to course j. Both 
alternatives are selected randomly. 

The second operation is to schedule the changes in teacher 
assignment. The new teacher is allocated to the previous day 

Algorithm 3: MODIFIED SIMULATED ANNEALING ( ) 
(1)  Set the temperature T = T0 
(2) Set the current solution, current = initial 
(3) Set the temporary solution, temp = initial 
(4) Set the best solution, best = initial 
(5) Set the total number of iterations without improvement, 

numb_iter_no_improv = 0 
(6) Set limit = 0  
(7) While the total number of iterations, numb_iter is less 

than the preset maximum number of iterations, max_count 
do: 

(8)  Repeat neighbor_moves times: 
(9)  Apply NEIGHBORHOOD IMPROVEMENT ( ) 
(10)  Update temperature iter_numbiter_numb TT ×=+ α1  

(11)  If (numb_iter_no_improv > limit)  
  /* intensification strategy */ 
(12)   Set the current solution, current = best 
(13)   Set the temporary solution, temp = best 
(14) Return to the best solution, best 

Algorithm 4: NEIGHBORHOOD IMPROVEMENT ( ) 
(1) Choose course j∈J randomly 
(2) Set old_teacher = the teacher who teaches course j, if 

there is more than one teacher, choose one randomly    
(3) Find another teacher i∈ Ij (new_teacher) for being 

allocated to course j  
(4) If new_teacher does exist:  
 /* teacher replacement is feasible */ 
(5)  Choose a random number r1 uniformly from [0, 1] 
(6)  If (r1 < 0.5) AND (the number of sections of course j 

 taught by old_teacher > 1) AND (the number of 
 teachers allocated to course j < the maximum allowed): 

(7)  Choose the number of sections replaced by 
 new_teacher randomly, numb 

(8)  Replace old_teacher with new_teacher for 
 selected sections  

(9)  Else /* replacement process */ 
(10)     set numb = the total number of sections of course j 

 taught by old_teacher  
(11)  Replace old_teacher with new_teacher for 

 numb sections 
(12)  For a = 1 to numb 
(13)   Set old_period = the current time (day and time 

  periods) of course j section a 
(14)   Check feasibility if new_teacher is allocated to 

  old_period 
(15)   If feasible 
(16)    Allocate new_teacher to old_period 
(17)   Else 
(18)    Find the new time randomly for course j section a, 

   new_period 
(19)    If new_period is feasible 
(20)      Update the current solution, current  
(21)    Else 
(22)     Set the current solution, current = temp 
(23)     Break 
(24) If teacher replacement and course scheduling does exist 
(25)  Calculate the change of the objective function value Δ 
(26)  If Δ ≤ 0 
(27)   Accept the new allocation 
(28)  Else   
(29)   Choose a random number r2 uniformly from [0, 1] 
(30)   If r2 < e – Δ/T then accept the new allocation 
(31)  If new allocation is accepted 
(32)   Set temp = current 
(33)   If current is better than best 
(34)    Set best = current 
(35)   Else 
(36)    Set the current solution, current = temp 
(37) Else 
(38)  Set the current solution, current = temp  
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and time periods scheduled for the previous teacher without 
violating the constraints. Otherwise, a new set of day and time 
periods has to be found. The time complexity of exploring the 
neighborhood of both operations is O(|I||J||K||L||M|). 

VI. COMPUTATIONAL EXPERIMENTS 
The proposed algorithm was coded in C++ and tested on an 

Intel Pentium IV 2.6 GHz CPU with 512 MB RAM under the 
Microsoft Windows XP Operating System. Experiments were 
performed using the data sets from [14]. The characteristics of 
the data sets are summarized in Table I. Each data set consists 
of five randomly generated data instances. 

As mentioned earlier, the initial solution is generated in the 
construction phase by using an integer programming approach 
and a simple greedy heuristic. In the improvement phase, 
experiments to verify the best parameter configuration for the 
proposed algorithm were performed. The parameters of the 
proposed algorithms are chosen to ensure a compromise 
between the computational time and the solution quality. The 
values of the parameters used in the computational study are 
summarized as follows: initial temperature (T) = 10,000, the 
cooling factor (α) = 0.95, the number of neighbor moves = 
|I||L|, the number of iterations = |I||L||M|, and LIMIT = 
0.05|I||L||M|. 

The software used to solve the problems is ILOG OPL 
Studio 4.2. Table II summarizes the average objective function 
values obtained and the average CPU times required (in 
seconds). The results from the hybrid algorithm are also 
presented and compared against the solutions found by OPL 
Studio as well. 

However, the optimal solution for data instances in the data 
sets 20×40_1, 20×40_2, 30×60_1 and 30×60_2 could not be 
computed within the time limit of 24 hours. The OPL Studio 
can only provide the best known solutions for some instances 
and these solutions might not be optimal. For such cases, we 
report the best known solutions obtained for comparison 
purposes. 

In general, the performance of the hybrid algorithm has 
been encouraging. In terms of CPU time, it takes less time 
than the OPL Studio. It is noticed that the proposed algorithm 
is more effective than the integer programming approach in 
dealing with large problems as some of the problems that 
could not be solved by the integer programming solver of OPL 
Studio can be easily solved by the proposed hybrid algorithm. 

The percentage deviation of the objective value obtained by 
the proposed algorithm from the best known/optimal objective 
function value, which is defined by Pct = (best known/optimal 
objective function value – objective function value obtained by 
hybrid algorithm) / (best known/optimal objective function 
value) × 100, is calculated. We observe that the proposed 
heuristic is able to yield good solutions with the percentage 
deviation from the best known/optimal solutions being less 
than 18% (Table II). 

 

 
TABLE I 

DATA SETS 
Data set Number of 

teachers 
Number 

of 
courses 

Minimum 
number of 
sections 

Maximum 
number of 
sections 

Number 
of days 

Number of time 
periods per day 

Maximum 
load per 
teacher 

Number of 
classrooms 
available 

10×20_1 10 20 2 3 5 8 4 10 
10×20_2 10 20 2 4 5 8 4 10 
20×30_1 20 30 2 3 5 8 3 15 
20×30_2 20 30 2 4 5 8 3 15 
20×40_1 20 40 2 3 5 8 4 15 
20×40_2 20 40 2 4 5 8 4 15 
30×60_1 30 60 2 3 5 8 4 20 
30×60_2 30 60 2 4 5 8 4 20 

 
TABLE II  

COMPARISON OF BEST KNOWN/OPTIMAL SOLUTIONS AND THE HYBRID ALGORITHM’S SOLUTIONS 
Solution obtained by OPL Studio Solution by the Hybrid algorithm  

 
Data set 

Average 
objective 

function value 

Average CPU 
time 

(in seconds) 

Average 
objective 

function value 

Average CPU 
time 

(in seconds) 

Average Pct of 
objective 
function 

value 
10×20_1 7,766 1,183.11  6,612 0.42 14.87 
10×20_2 7,934 1,273.15  6,536 0.41 17.48 
20×30_1 10,875 9,746.36  9,554 7.14 12.46 
20×30_2 13,468 36,019.99  11,362 11.00 15.55 
20×40_1 13,742 86,400.00  11,884 10.31 13.55 
20×40_2 16,865 86,400.00  13,932 20.36 17.70 
30×60_1 20,900 86,400.00  18,610 78.00 10.17 
30×60_2 24,560 86,400.00  21,008 120.34 14.96 

 
 

 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:9, 2007

521

 

 

VII. CONCLUSION 
In this paper, we have addressed teacher assignment and 

course scheduling problems simultaneously and proposed a 
collaborative hybrid algorithm for solving this problem. The 
hybrid algorithm combines an integer programming approach, 
a greedy heuristic and a modified simulated annealing 
algorithm sequentially.  

The experiments conducted in this paper suggest that the 
proposed hybrid algorithm is capable of overcoming the 
limitations of an integer programming approach on large data 
sets. The results obtained are also compared against the best 
known/optimal solutions generated by commercial software. 
We conclude that the hybrid algorithm yields good solutions 
within reasonable amount of computation time. 

There are some possible areas of further research arising 
from our work. We can look into ways of improving the 
proposed hybrid algorithms. This would include using other 
types of hybrid algorithms and developing other neighborhood 
structures to solve the model more efficiently and yield better 
solutions. Finally, the mathematical programming model can 
always be extended to adapt to different characteristics and 
requirements of other universities. 
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