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Abstract—This paper proposes a genetic algorithm based on a 

new replacement strategy to solve the quadratic assignment problems, 
which are NP-hard. The new replacement strategy aims to improve the 
performance of the genetic algorithm through well balancing the 
convergence of the searching process and the diversity of the 
population. In order to test the performance of the algorithm, the 
instances in QAPLIB, a quadratic assignment problem library, are 
tried and the results are compared with those reported in the literature. 
The performance of the genetic algorithm is promising. The 
significance is that this genetic algorithm is generic. It does not rely on 
problem-specific genetic operators, and may be easily applied to 
various types of combinatorial problems. 
 

Keywords—Quadratic assignment problem, Genetic algorithm, 
Replacement strategy, QAPLIB. 

 

I.  INTRODUCTION 
HE Quadratic Assignment Problem (QAP) was introduced 
by Koopmans and Beckmann [1] in 1957 as a mathematical 

model for the location of indivisible economical activities. 
QAP is often used to describe a location problem. Let us assign 
n facilities to n locations with the cost being proportional to the 
flow between the facilities multiplied with their distances. The 
objective is to allocate each facility at a location such that the 
total cost is minimized. Thus we are given two n × n matrices, 
the flow matrix A = (aij), and the distance matrix B = (bkl). The 
QAP in Koopmans-Beckmann form can now be written as 
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where Sn is the set of permutation of {1, 2, …, n}. Each 
individual product aπ(i)π(i)bij is the cost caused by assigning 
facility π(i) to location i and facility π(j) to location j. A QAP 
instance with input matrices A and B is denoted by QAP(A, B) 
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sometimes. If any of the coefficient matrices A, B is symmetric, 
QAP(A, B) is termed as a symmetric QAP. Otherwise, QAP(A, 
B) is said to be asymmetric.  

In addition to location theory, QAP has other applications 
such as layout problems, backboard wiring, computer 
manufacturing, scheduling, process communications, turbine 
balancing, ranking of archeological data, ranking of a team in a 
relay race, scheduling parallel production lines. A survey [2] 
gives extensive references on applications and solution 
methods for QAP. 

It is well known that QAP is NP-hard [3]. Although some 
“easy” cases are known [4], QAPs in general have been proven 
to be extremely difficult to be solved to optimality. Most QAP 
types and instances are collected in the QAPLIB, a well-known 
library of QAP instances compiled by Burkard et al. [5]. 
Several famous instances in the QAPLIB, including the 
problems of size n = 36 posed by Steinberg [6], and problems 
of size n = 30 posed by Nugent et al. [7], have only been solved 
to optimality for the first time in 1990s. 

 

II. LITERATURE REVIEW 
There are three main exact methods used to find the global 

optimal solution for a given QAP: dynamic programming, 
cutting plane techniques, and branch and bound procedures. 
Research has shown that the latter is the most successful among 
exact algorithms for solving QAP. Even still, due to the 
overwhelming complexity of QAP, most problems with their 
sizes greater than n = 30 remain nearly intractable by exact 
algorithms. 

The extreme difficulty of QAP has made it an ideal problem 
for the development of heuristic search methods. Local search 
methods, simulated annealing [8], tabu search [9, 10], genetic 
algorithms [11]-[14], GRASP [15], ant systems [16] and other 
specialized methods have all been applied to QAP. The 
performance of different heuristics also tends to vary with 
certain problem characteristics [17]. Among these heuristics, 
the tabu search methods, the GRASP[15] and the GA approach 
[14] are currently the most promising heuristic algorithms to 
solve QAP. 

Conventional genetic algorithms did not find the best known 
solution for the Nugent’s problems of sizes 20 and 30. For 
larger problems of size up to 100, they seldom really compete 
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with tabu search procedures. In 2000, Ahuja, Orlin and Tiwari 
[13] obtained very promising results on large scale QAPs in 
QAPLIB by applying a version of GA called a greedy genetic 
algorithm. Recently, Drezner [14] designed a new GA with a 
problem-specific crossover rule and a tabu search, and obtained 
even better results than those obtained by Ahuja et al. 
Currently, this new genetic algorithm seems to be the best 
heuristics to solve QAPs in terms of accuracy [14]. 

The genetic algorithm proposed by Drezner exploited the 
problem-specific characteristics in designing the crossover 
operator, which increased the complexity of the algorithm and 
made it difficult to be used to solve other problems.  

In this paper, a genetic algorithm based on a new 
replacement strategy is devised to solve the QAPs. The purpose 
is to examine the probability of devising a heuristic for solving 
QAPs efficiently without using any problem-specific 
characteristics. The general-purpose GA may have the potential 
to solve other types of NP-hard problems.  

 

III. THE PROPOSED GENETIC ALGORITHM 
A.  The New Replacement Strategy 
The replacement strategy refers to a selection strategy 

defining how to select the next generation members from the 
offspring and the last generation members. It is very important 
particularly for highly-constraint problems because it guides 
the searching of the algorithm throughout the searching space 
and thus influences the performance of the algorithm.  

The most commonly used replacement strategy in the 
literature is the steady-state replacement strategy. In every 
generation, individuals are selected for conducting the genetic 
operators. Every new offspring will be compared with the 
worst member in the population. If the offspring is better than 
the worst member, then the offspring will replace it.  

A new replacement strategy is proposed in this paper. It aims 
to improve the global searching ability of the algorithm. It 
incorporates two different replacement policies, i.e., the 
replace-worst policy and the replace-parent policy. The 
replace-parent policy is taken once every generation, i.e., every 
new offspring only compares with its parent (the chromosome 
before mutation). If the fitness of the offspring is better than its 
parent, then the new offspring will replace it. In comparison, 
the replace-worst policy is taken once in every certain amount 
of generations, i.e., each new offspring will compare with the 
worst chromosome in the current population. If the new 
offspring is better, then it will replace this worst member. By 
adjusting the frequency of the replace-worst policy, the 
convergence of the searching process and the diversity of the 
population can be well balanced, and the potential of each 
chromosome can be well exploited before it is removed out of 
the population. 

The scheme of the genetic algorithms based on this new 
replacement strategy can be described as follows. In the 
scheme, the replace-worst policy is applied once in every Tc 
generations (Tc is called the period for the replace-worst 

policy). 
 

begin 
create initial population; 
for every generation, repeat 

randomly select individuals into the mating pool; 
apply genetic operators to generate offspring; 
(maybe) apply post-crossover heuristic on offspring; 
if not in i×Tc generations  

compare every offspring with its similar parent and 
remove the worse one; 

else 
compare every offspring with the worst member in 
the current population and remove the worse one 

until some stopping criterion is met 
end; 

 
B.  Description of the Proposed GA for the QAP 
In the following, the proposed GA for the QAP is described 

according to the chromosome representation, the fitness 
function, the crossover, and the post crossover heuristic.  

 
Chromosome Representation 
In the genetic algorithm for the QAP, permutation 

representation is employed, which is illustrated in Fig. 1. The 
illustration takes the facility location problem as an example.  

Fig. 1 Representation scheme of the genetic algorithm 
 
In the above representation, the value of every gene 

represents the facility that is assigned to corresponding 
location. In the chromosome shown in Fig. 1, there are 10 
facilities to be placed at 10 locations. For example, the second 
gene in the chromosome means that facility 5 is placed at 
location 2.  

 
Objective and Fitness Functions 
The objective of the genetic algorithm is to minimize the 

total cost C as described in the objective function (1). The 
fitness function for the chromosome in the genetic algorithm is 
defined as:  

ii Cf /1=                                (2) 
where fi is the fitness of chromosome i, and Ci is the objective 
value of chromosome i.   

 
Crossover 
A special type of uniform crossover with constant 

percentage of exchanging genes. This percentage of 
exchanging genes is set to be small value like 20%, so each of 
the two children will be much similar to one of their parents. 
This crossover process is illustrated in Fig. 2. After the 

2 105 7 38 1 64 9

        This gene means that facility 5 is placed at location 2 
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crossover, individuals A and B produce C and D. We define A 
as the direct parent of C since they are similar to each other, and 
likewise, we define B as the direct parent of D.  

 
Fig. 2 Crossover scheme in the new genetic algorithm 

 
In every generation, every chromosome is paired up with 

another chromosome randomly. Crossover operator will be 
applied to all pairs of chromosomes. That means the crossover 
rate is 1. 

Through preliminary tests, it was found that the mutation 
operator did not have much impact on the performance of the 
GA for solving the problem, so there is no mutation operator 
used in the proposed GA. 

 
The Post-Crossover Heuristic 
To help improve the evolution of all the chromosomes, a 

post-crossover heuristic is applied to the newborn offspring. 
The combined heuristic used in our genetic algorithm is the 
descent local search heuristic, which is defined as follows: 

Step 1 Examine the change in the fitness value for all the 
pairwise exchanges of nearby alleles. 

Step 2 The best improving exchange is executed and go back 
to Step 1 again. 

Step 3 If no improving exchange is found, the heuristic 
terminates. 

 

IV. COMPUTATIONAL EXPERIMENTS 
In this section, instances in the QAPLIB [5] were used to test 

the new genetic algorithm. The results were compared with 
those obtained by Ahuja et al. [13] and those obtained by 
Drezner [14]. The effect of the new replacement strategy will 
also be evaluated.  

The population size in the genetic algorithm was set to be 
100. The period for the replace-worst policy Tc was set to be 
equal to the problem size n, i.e., the replace-worst policy will 
apply once every n generations. The percentage of exchanging 
genes in the crossover operator was set to be 0.2. The algorithm 
was set to be run until there was no improvement during n 
generations. 

 
A.  Computation Results 
In this section, the new genetic algorithm was tested on all 

instances of size n ranging from 30 to 100, most of which still 
can not be solved to optimality. The program was coded in 
Microsoft Visual C++ 6.0, and ran on a desktop computer with 
Pentium III 866 CPU and 256 RAM, which was similar to the 

computer used by Ahuja et al. [13]. Ahuja et al. ran the 
algorithm only once for each problem. Drezner ran his 
algorithm 200 times for each problem, and we ran our genetic 
algorithm 20 times for each problem. The results shown in 
Table I are the averages. The numeric digits in a problem name 
state the problem size. The percentage deviations from the best 
known solutions are given in the “Gap” columns. 

 
TABLE I  

COMPARISON OF OUR GA AND AND THE OTHER TWO GAS 
Our GA Ahuja et al Drezner 

Problem 
* 

Gap 
(%) 

Time 
(min) 

Gap 
(%) 

Time 
(min) 

Gap 
(%) 

Time 
(min) 

esc32a 20 0 0.37 0 6.36 0 0.35 
esc32b 20 0 0.24 0 6.67 0 0.30 
esc32c 20 0 0.20 0 6.49 0 0.27 
esc32d 20 0 0.15 0 5.88 0 0.28 
esc32e 20 0 0.23 0 6.16 / / 
esc32f 20 0 0.17 0 6.14 / / 
esc32g 20 0 0.33 0 6.18 / / 
esc32h 20 0 0.26 0 5.82 0 0.29 
esc64a 20 0 4.13 0 43.85 / / 
kra30a 20 0 0.29 0 5.02 0 0.33 
kra30b 20 0 0.34 0 5.51 0 0.33 
lipa30a 20 0 0.16 0 5.74 / / 
lipa30b 20 0 0.16 0 5.62 / / 
lipa40a 20 0 1.02 0.960 17.03 / / 
lipa40b 20 0 0.90 0 17.10 / / 
lipa50a 20 0 3.31 0.950 24.77 / / 
lipa50b 20 0 2.98 0 25.14 / / 
lipa60a 20 0 10.35 0.770 50.95 / / 
lipa60b 20 0 9.97 0 50.79 / / 
lipa70a 6 0.127 30.08 0.710 102.47 / / 
lipa70b 20 0 28.23 0 102.05 / / 
lipa80a 2 0.242 47.82 0.610 158.55 / / 
lipa80b 20 0 45.25 0 158.31 / / 
lipa90a 1 0.187 61.88 0.580 205.97 / / 
lipa90b 20 0 60.08 0 205.32 / / 
nug30 20 0 0.36 0.070 5.9033 0 0.37 
sko42 20 0 1.57 0.250 16.77 0 1.15 
sko49 10 0.038 3.78 0.210 20.87 0.009 2.13 
sko56 20 0 7.36 0.020 49.6 0.001 3.24 
sko64 20 0 12.11 0.220 63.14 0 5.85 
sko72 3 0.042 35.39 0.290 84.63 0.014 8.36 
sko81 2 0.067 57.28 0.200 182.74 0.014 13.30 
sko90 1 0.073 102.50 0.270 211.63 0.011 22.35 

sko100a 2 0.051 174.13 0.210 276.80 0.018 33.55 
sko100b 7 0.039 165.50 0.140 245.49 0.011 34.05 
sko100c 16 0.015 158.54 0.200 338.57 0.003 33.80 
sko100d 11 0.022 184.41 0.170 338.37 0.049 33.90 
sko100e 10 0.030 167.31 0.240 352.12 0.002 30.67 
sko100f 5 0.017 170.88 0.290 357.98 0.032 35.74 
ste36a 18 0.025 0.84 0.270 11.827 0.005 0.55 
tho30 20 0 0.31 0 6.59 0 0.35 
tho40 9 0.041 1.98 0.32 15.97 0.010 0.98 
wil50 4 0.028 5.06 0.070 35.25 0.002 1.99 
wil100 2 0.041 176.28 0.200 342.40 0.002 33.11 

Randomly selected  
crossover points 

D 

B  

C 

A 

2 5 10 7 8 3 1 6 9 4

5 2 10 7 6 3 1 8 4 9

1 2 5 9 6 8 3 7 4 10

1 5 2 4 8 6 3 7 9 10
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Notes: 
*:Number of times out of 20 runs that the best known solutions obtained.  
Gap (%) : Percentage deviations over  the best known solutions 
Time(min): The average running time for a single run of the algorithm. 
The results by Ahuja et al (2000) were obtained by GA-3, which was their best 
algorithm 
 
 There are totally 44 instances for the comparison. It can be 

seen that our genetic algorithm performed much better than the 
greedy genetic algorithm designed by Ahuja et al. [13], in terms 
of both objective value and computation time. The average 
percentage deviation from the best known solution for our 
genetic algorithm was 0.025%, while that for Ahuja's GA is 
0.187%. And the computation time for our genetic algorithm 
was much less than Ahuja's GA (GA-3). For all these 44 
problems, our genetic algorithm found the best known solution 
at least once in 20 runs. 

We can also see that our genetic algorithm performed as 
good as the genetic algorithm designed by Drezner [14] when 
the problem size is not so large. But Drezner’s algorithm seems 
to perform slightly better and faster when the problem size is 
larger than 50. This is partly because Drezner’s algorithm was 
designed only for symmetric problems. As stated by Drezner 
[14], this may significantly reduce the computation time of the 
fitness function. But the main reason was that it incorporated a 
problem-specific which exploit the characteristics of QAPs and 
a highly efficient tabu search into the genetic algorithm. In 
contrast, there are only two main differences between our 
genetic algorithm and conventional genetic algorithms: the new 
replacement strategy and the descent local search heuristic to 
improve the offspring, both of which are not problem-specific. 
So the our GA can be easily used for solving other types of 
problems.  

 
B.  Evaluation of the Effect of the New Replacement Strategy 
In this section, in order to examine the effect of the new 

replacement mechanism, the post-crossover heuristic was 
removed. The results were compared with those obtained by the 
conventional genetic algorithm devised by Tate and Smith [12].  

The population size of our GA was set to be 100, the same as 
that in the GA proposed by Tate and Smith. We ran our genetic 
algorithm for 2000 generations.  Other parameters were set to 
be the same as those in Section 4A.  

The comparison of these two algorithms is shown in Table II. 
Because Tate and Smith only tested two instances of sizes 
larger than 30, we compared the results of these two instances. 
From the results, it can be seen that even without the 
post-crossover heuristic, our genetic algorithm obtained much 
better results than the genetic algorithm proposed by Tate and 
Smith.  

 
TABLE II  

COMPARISON BETWEEN THE STANDARD GA USED BY TATE AND SMITH (1995) 
AND OUR GA WITHOUT POST-CROSSOVER HEURISTIC 

GA by Tate and Smith Our GA 
Problem 

Best 
Known Best Average gap (%) Best Average gap (%)

nug30 6124 6184 6305.4 2.96 6124 6176.1 0.85 
ste36c 8239.11 8592 8946.2 8.58 8239.11 8354.46 1.4 

In order to evaluate the effect of the value of Tc, the period 
for the replace-worst policy, on the performance of the 
proposed genetic algorithm, we further varied the values of Tc, 
and compared the results obtained by the genetic algorithm 
with different Tc. In this test, the post-crossover heuristic was 
also removed. The instance nug30 was used as the testing 
instance.  

Tc  was set to be different values of 10, 20, 30, 40, 50, and 60. 
The genetic algorithm ran 20 times for each Tc value. In each 
run, the genetic algorithm was running for 1000 generations. 
Other parameters were set to be the same as those in Section 
4A. Table III shows the average results obtained by the genetic 
algorithm with different Tc values.  

 
TABLE III 

AVERAGE RESULTS OBTAINED BY THE GENETIC ALGORITHM WITH DIFFERENT 
TC 

  
From Table III, it can be seen that the period for the 

replace-worst policy Tc has significant effect on the 
performance of the genetic algorithm. It should be noted that 
the optimal solution to nug30 is 6124. The genetic algorithm 
could obtain very good result when Tc =60. Fig. 3 illustrates the 
convergence process of the genetic algorithm with Tc =10 and 
Tc =60. From the figure, we can see that when Tc is small, the 
genetic algorithm tends to converge in the early stage. When Tc 
is large, better solution may be found. However, the 
computation effort will be increased.  The CPU time for the 
genetic algorithm with Tc =60 was about 7 seconds. When the 
problem size increases, the computation effort of the algorithm 
will increase exponentially. Fine tuning of the Tc value is 
important to the overall performance of the genetic algorithm.  

6000

6500

7000

7500

8000

1 301 601 901

Generation

O
bj

ec
tiv

e 
va

lu
e

Tc = 10
Tc = 60

  
Fig. 3 Convergence process for Tc =10 and Tc =60 

 

V. DISCUSSION AND CONCLUSION 
This paper proposed a new genetic algorithm for the 

quadratic assignment problems, which are NP-hard. The new 
genetic algorithm is based on a new replacement strategy, 
which aims to balance the exploitation and exploration of the 
searching space. The test on the QAP instances obtained 

Tc  Value 10 20 30 40 50 60 
Average value 6312 6293 6258 6237 6190 6176 
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promising results. The significance is that the new genetic 
algorithm is not problem specific, which means the algorithm 
does not rely on a problem-specific characteristics and can be 
easily applied to various optimization problems.  

However, it would be quite difficult to judge about the 
performance of an algorithm based on a single type of 
optimization problems. Other types of problems shall be tested 
in the future to evaluate the proposed genetic algorithm and the 
new replacement strategy.  
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