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Abstract—The performance of schedules released to a shop floor 

may greatly be affected by unexpected disruptions. Thus, this paper 
considers the flexible job shop scheduling problem when processing 
times of some operations are represented by a uniform distribution 
with given lower and upper bounds. The objective is to find a 
predictive schedule that can deal with this uncertainty. The paper 
compares two genetic approaches to obtain predictive schedule. To 
determine the performance of the predictive schedules obtained by 
both approaches, an experimental study is conducted on a number of 
benchmark problems. 
 

Keywords—Genetic algorithm, met-heuristic, robust scheduling, 
uncertainty of processing times 

I. INTRODUCTION 

LEXIBLE job shop scheduling problem (FJSP) is 
computationally difficult problem to solve. However, in 

real manufacturing systems unforeseen incidents happen. For 
this, classical models that assume deterministic data about 
processing times of operations, machines availability; etc; 
may; in theory; produce an optimal or near optimal schedule, 
but its performance may deteriorate when implemented in 
practice; i.e.; released to the shop floor; due to unexpected 
disruptions. Nevertheless, when incorporating the data 
uncertainty in the formulation of the already NP-hard FJSP, 
the problem becomes even more difficult and complicated to 
solve. A number of methods are suggested in literature to deal 
with stochastic parameters of a certain scheduling problem. 
However, based on the desire of the decision maker these 
methods can be classified and accordingly choose a method 
that fulfils his need. For example, some decision makers favor 
a solution that can hedge against the worst possible scenario; 
others prefer a solution that has a high quality on average; 
whereas some look for a solution that minimizes the risk of 
ending with a bad solution. Reference [1] presented a GA that 
uses sampling technique to estimate the robustness of a single 
machine schedule subjected to small variation in release dates. 
They stated that, in a similar way, other types of stochastic 
problem data can be easily incorporated. In this paper we 
modified a hybridized genetic algorithm (hGA) proposed by 
[2] to deal with FJSP when some operations are represented 
by or subjected to variations characterized by a uniform 
processing time. The study compares two methods, a method 
based on sampling technique similar to [1] and a method that 
optimizes the objective function based on the expected 
processing time of the operations (i.e. simple method similar 
to deterministic approach).  
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The remainder of this paper is structured as follows: after 

the literature review in Section II, Section III describes the 
FJSP. Section IV discusses the modified hGA architecture. 
Analysis of the computational results is presented and 
discussed in Section V. Finally, the research summary is 
covered in Section VI. 

II. LITERATURE REVIEW 

For decades the emphasis of literature that discusses 
scheduling problems is put towards deterministic scheduling 
problems where the data parameters are assumed to be fixed 
and known beforehand. Nevertheless, recently more attention 
is given to schedule systems where some data parameters are 
unknown or are represented by some probabilistic 
distributions. Since most scheduling problems are classified as 
NP-hard, heuristic and meta-heuristic approaches received 
much attention to deal with the presence of uncertainty in the 
problem’s data parameters.  This section gives a brief survey 
of stochastic scheduling approaches found in literature. 

References [3]-[9] addressed stochastic single machine with 
uncertain jobs processing times. Single machine environment 
subjected to machine breakdowns was considered by others 
like [10]-[12]. Similarly, [1] used a modified GA to find 
robust solution in single machine environment subjected to 
stochastic release dates of jobs.   

Also, [13] analysed effects of machine breakdowns and 
processing time variability on the quality of job shop 
schedules using slack-time based robustness measure. The 
performance of simple dispatching heuristics versus 
algorithmic solution techniques in job shops subjected to 
uncertain processing times were studied by [14] and [15] 
showed that dispatching rules are more robust to interruptions 
than the optimum seeking off-line scheduling algorithms. 
Reference [16] proposed a two step algorithm based on 
disjunctive graph representation to minimize maximum 
lateness and absorb the impact of random machine 
breakdowns on the predictive schedule of a job shop by 
inserting idle time. Furthermore, [17] and [18] used GA 
(proposed in [19]) to improve the robustness and flexibility of 
the job shop schedules when minimizing maximum tardiness, 
summed tardiness and total flow-time measures using two 
robustness measures, a neighbourhood-based robustness 
measure and a lateness-based robustness measure. 

Authors in [20] presented a fuzzy mathematical model of 
scheduling parallel machines with sequence-dependent cost 
while considering uncertainties in processing times. [21] 
proposed a two-stage scheduling decision framework to 
execute schedules of a two-machine flow shop with interval 
processing times. Also, [22] proposed a probabilistic 
generalization to design robust a priori scheduling that 
assumes the number of jobs to be processed on parallel 
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machines as a random variable with respect to the total 
weighted flow time. Furthermore, [23] presented a real-time 
simulation-based decision support system to control the 
production of a stochastic flexible job shop subjected to 
stochastic processing times. Readers are referred to [24]-[27] 
who gave detailed review of literature related to scheduling 
under uncertainty.  

In light of the literature, scheduling under uncertainty can 
be classified into number of categories depending on the 
adopted strategy by the decision maker on how to react to 
uncertainties. Hence, methods compared in this paper falls 
under the category proactive (robust) scheduling which is 
defined as a schedule with relatively insensitive quality to a 
changing environment ([25] and [26]). Furthermore, the 
choice of the optimization method depends on the level of 
uncertainty. Therefore; in our opinion; if the expected level of 
uncertainty is low enough decision makers and/or schedulers 
might consider using two possible optimization-based 
algorithms. The first is to adopt an algorithm that optimizes a 
schedule based on the average values of parameters with 
uncertainties (such as processing time). The second is to 
implement an algorithm based on sampling technique from the 
random distributions of these parameters. The later approach 
subjects different schedules’ sequences to different sets of 
uncertainties and then selects the one that performs well on 
average. To the best of our knowledge, there is not a previous 
study that addresses a comparison of the two former 
algorithms for obtaining predictive schedules of the FJSP 
when some operations are represented by or subjected to low-
to-medium processing time variations. Hence, the goal of this 
work is to evaluate and compare the quality and the solution 
robustness of predictive schedules obtained using these two 
choices in flexible job shop environment where the processing 
times of some operations are represented by or subjected to 
low-to-medium uncertainty. Specifically, processing times of 
these operations are represented by an interval of equally 
possible real value between given lower and upper bounds. 
For clarity and ease of referencing, the algorithm that 
optimizes expected average data will be referred to as MSexp 
and the algorithm that is based on sampling will be be referred 
to as MS%Rob. 

III.  PROBLEM DESCRIPTION 

This work considers a non-preemptive flexible job shop 
scheduling problem (FJSP) with the objective of minimizing 
the makespan. There is a set of J = {J1, J2, …, Jn} jobs and 

each job i has a set of O = {Oi1, Oi2, …, ����} operations 
where qi denotes the total number of operations of job Ji. Each 

operation Oij is to be processed in a subset of machines Mij ∈ 

M = {M1, M2, …, Mm}. An operation Oij cannot start 
processing until its precedence operation Oi(j-1) has finished its 
processing. All n jobs are available at time t = 0 and the 
processing time ����of some operations Oij of job Ji in 
machine Mk may equally take any real value between given 
lower ���� and upper ����� bounds. This processing time 

variation of operation is due to, e.g., incomplete or unreliable 
information or unavoidable stochastic variability related to 
machine’s tools and/or workers skills, etc. The processing 
time uncertainty can be described by a set of all possible 
scenarios (infinite) ζ. Each unique set of processing times ξ is 
obtained by equally selecting a value from the associated 
interval of each operation: 

 

 ����	 
 �����, ����� ∀ i ∈ {1, 2, …, n},  

                      j ∈ {1, 2, …, qi}, k ∈ {1, 2, …, m}  (1)  
 
In practice the actual operations’ processing time of some 

operations may not be known or difficult to verify until the 
operation has finished processing. In such case, assuming an 
expected value helps the scheduler or decision maker in 
obtaining a schedule that satisfies a certain performance 
measure. In this work, the expected processing times ������� 
of operations that are represented by or subjected to variations 
according to a uniform time intervals are given by: 

 

 ������� � ������ � ������ 2⁄ � (2) 

IV.  HYBRIDIZED GENETIC ALGORITHM FOR THE FJSP 

Reference [2] proposed hybridized genetic algorithm (hGA) 
architecture for the deterministic FJSP and results illustrated 
that the approach is very effective in minimizing the makespan 
of this problem. Recently, authors ([28]) showed that this hGA 
can be modified to deal with FJSP subjected to random 
machine breakdowns by replacing its fitness function. In the 
following subsections, we describe the original deterministic 
hGA and then show how it can be modified to minimize the 
makespan of schedules according to average expected 
processing times data or according to the sampling technique 
method. 

A. Deterministic hGA for the FJSP 

Reference [2] used permutation-based representation 
chromosome representation; where each operation is 
represented by triples (k,i,j) such that k is machine assigned to 
the operation, i is current job number, and j is the progressive 
number of that operation within job i. A schedule for FJSP 
with three jobs and three machines can be represented by 
(221-131-111-212-322-223-332). In this architecture, the 
initial population is created by two ways. The first way is to 
generate half of the population randomly. The second half of 
the population is generated using a schedule construction 
heuristic called Ini-PopGen. Ini-PopGen starts by randomly 
assigning priority to jobs. Then, based on this priority an 
operation is scheduled on the machine (from the set of 
appropriate machines) that can finish it sooner. This procedure 
considers the processing time and the work load on the 
machine while assigning operations.  

Chromosomes decoding follow an active decoding 
procedure, wherein no operation can be started earlier without 
delaying at least one other operation or violating the 
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technological constraints. After the active decoding, the 
schedule is improved by a local search procedure that results 
in a local optimal schedule (Lamarckian learning). However, 
this local search procedure is only applied every dth generation 
and number of moves is limited to a maximum loc_iter moves 
without improvements.  

Two chromosomes are selected from the population. At 
first, roulette wheel technique is used to form donors’ mating-
pool based on a selection probability given by: 
 

���� � ����
���� ,  !" � 1, … , % (3) 

 
Where, Psel: is the probability of choosing the indth individual; 
N: is the population size; Find: is the indth individual fitness; 
and Ftot: is the total fitness of all individuals in the current 
generation. 

Then, if the individual in the donors’ mating-pool passes a 
crossover probability Pc, an n-Size tournament method is used 
to select n chromosomes from the population to form the 
receivers’ mating-sub-pool. Then, the best individual (one 
with lowest fitness value, makespan) in the sub-pool is chosen 
for reproduction. 

The crossover operator is based on the Precedence 
Preserving Order-based Crossover (POX) ([29]) and was 
modified not to treat the parents symmetrically. Mutation of 
individuals is implemented through using two operators. The 
first operator is a Machine Based Mutation (MBM), where a 
random number of operations (denoted as nrand) are selected 
and reassigned to another machine. After that, modified 
Position Based Mutation (PBM) is applied. PBM was 
originally designed for JSP using single triple permutation-
based chromosomes representation. Thus, the PBM is 
modified so that no infeasible chromosomes are produced and 
it starts by randomly selecting an operation within the 
chromosome and then reinserting it at another position. 

B. Modified hGA for the FJSP 

In this section, we describe how the original deterministic 
hGA can be modified to solve the FJSP to find schedules 
using the two methods, MSexp and MS%Rob. 

Historical records of a certain shop floor can provide 
approximated distribution uncertainties that can affect it; such 
as machine breakdowns, processing times variations, 
cancelations or arrivals of new jobs, etc. In FJSP, [28] showed 
that such distributions can be used as a guide when generating 
the predictive schedule. This can be achieved by integrating 
the probability distribution of that specific uncertainty with the 
machine routing and sequencing of operations so that overall 
performance, measured by makespan, of the schedule is not 
affected to a high degree in case such disruption occurs.  

Previous studies like [1], [13], [17], [18], [28], etc, showed 
that such objective can be achieved by replacing the fitness 
function of the GA by a fitness function that satisfies the new 
objective, usually referred to as robust fitness function. The 
main purpose of such robust fitness evaluation functions is to 
guide the evolution of solutions towards solutions that are not 
or slightly affected by perturbed data parameters.  

For the suggested comparison between the two methods in 
this work, the ordinary objective function of the deterministic 
FJSP with minimum makespan is given by: 

 &'(�) � * ! ,*-./0�1234� � ,J5, J6, … , J)2 (4) 
 

where, MSmin is the minimum makespan, and Ci is the 
completion time of job Ji; can be applied and/or modified as 
follows. First, the same ordinary objective function (4) is used 
for optimizing the MSexp method. The only difference is when 
using the processing times of operations represented by or 
subjected to uncertainty. In this case, the expected processing 
operations’ times replaces the uniform interval processing 
times and then these expected processing time values are used 
to generate the sequence of the predictive schedule. However, 
for the second method MS%Rob the procedure is not straight 
forward. Here, according to [30], the solution of such 
objective fitness function has to be implemented on a 
randomly modified sample set of characteristics (or data 
parameters) and then combining a number of evaluations of 
the same schedule s sequence solution in the objective fitness 
function. A possible sampling objective fitness for uncertain 
processing times can be represented by a weighted average of 
m derived evaluations such that: 

 

&'%Rob/81 � 5
( ∑ :�; <&'(�)/81, =������	 �>(�?5  

     ∀   ∈ ,1, 2, … , !2, @ ∈ ,1, 2, … , A�2, B ∈ ,1, 2, … , *2  (5) 
 

where, wl is the weight related to the derived schedule s 

sequence evaluation, =������	 � is sampling function that takes a 

random sample of a certain processing time scenario ����	 , and 

m is the number of samples used to evaluate the schedule s.  
Therefore, the previously described hGA in subsection IV-A 

is modified to first use (4) with the expected processing times 
for MSexp method, and then modified by replacing its fitness 
function by (5) for MS%Rob method. The hGA used for each 
method will be referred to as MSexp-hGA and MS%Rob-hGA, 
respectively. Using different objective fitness function in the 
hGA will lead to obtaining different schedule sequences. 
Thus, each schedule’s sequence may respond differently to 
disruptions as some may be able to absorb their effects more 
than others. Furthermore, since GA utilizes a population of 
solutions in its search, this gives higher chances to explore a 
diverse set of solutions. Hence, GA will have higher chances 
of finding schedule sequences that are less sensitive to data 
uncertainties. 

V. ANALYSIS AND RESULTS 

Numbers of FJSP benchmarks with a wide range of sizes, 
from 5 x 3 to 20 x 15 found in literature are used for the 
experiments. These benchmarks are Ex1 taken from [31], and 
examples MK01, MK03, MK07 and MK10 proposed by [32]. 
For this work, the expected processing time ������� of an 
operation is to be equal to processing time of that operation in 
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the original problem. Hence, the upper and lower processing 
time bounds of an operation affected by uniform variation in 
its processing time is calculated by: 

 

����� , ����� � � �� @B  C D/1 E F1, /1 � F1G  (6) 

 
where, β is the percentage difference from the original 
expected processing time.  

Parameter β represents the level of variability of the 
operation’s processing time. In order to control the number of 
operations that are affected by the processing time variability, 
the parameter α has been used. Table I shows different 
combinations of the two parameters, α and β, that are used to 
generate the different test cases of the experiments. 

 
TABLE I 

 DIFFERENT PROCESSING TIME VARIATION ’S COMBINATIONS 

Disturbance type 
% of affected operations & disturbance 

level α β 

DT1 Low, low 0.20 0.15 

DT2 Low, medium 0.20 0.40 

DT3 Medium, low 0.40 0.15 

DT4 Medium, medium 0.40 0.40 

A. Hybridized genetic algorithm parameters 

The number of function evaluations m, i.e. the number of 
samples used to evaluate the schedule s, in (5) requires being 
sufficient.  This is due to the fact that using a smaller m value 
may lead to selecting a non-robust solution, whilst using a 
larger value leads to unacceptable increase in the 
computational time.  Hence, the selected value of m is related 
to the total number of operations of each instance. The m 
value is set to 50% of the total number of operations, and 
hence, the corresponding MS%Rob-hGA is referred to as 
MS50Rob-hGA. All sequence evaluations are given the same 
importance and hence the weight wl in (5) is set to 1. 

All test codes are implemented and executed using C++ on 
an Intel® Core™ 2 Quad CPU @ 2.4 GHz with 3.24 GB 
RAM. For comparability and ease of implementation, all hGA 
are closely related and the parameters are experimentally 
tuned according to the performance of MSexp-hGA 
(minimizing MSexp). The parameter values that are chosen for 
the two-stage hGA algorithm are as follows: population size 
200, crossover probability 0.7, mutation probability 0.3, 
number of generations 200, number of parents in the 
receivers’ mating sub-pool 4, number of generations to 
perform local search d = 10, maximum number of moves 
without improvement in the local search loc_iter = min 
[tot_noper, 150], and the worst chromosome is replace every k 
= 3 generations. 

B. Analysis of robustness measures 

To compare the performance of both methods, MSexp-hGA 
and MS%50-hGA, a simulation procedure is applied. 
Consequently, a standard MSexp-hGA using the ordinary 

evaluation function (described in subsection IV-B) minimizing 
MSexp is first run to obtain schedules with sequence referred to 
as expected sequence. Then, MS%50-hGA, with the systematic 
application of sampling function evaluation (5), is used to 
obtain schedule with sequence referred to as sampling 
sequence. In order to draw more accurate responses, five 
schedules for each of the hGA different settings of each test 
case is used. After the sequences are obtained, 400 replications 
of each problem instance with randomly modified processing 
times according to the disturbances are evaluated. This results 
in 5 (number of obtained schedules’ sequences) x 4 
(disturbances levels) x 400 (replications) = 8000 test runs per 
test instance.  

Since this comparative study is done to compare the 
performance of the predictive schedules’ sequence obtained 
using MSexp method and predictive schedules’ sequence 
obtained using the MS%Rob method, all obtained sequences are 
subjected to the same processing time variation disturbances 
and their performance is compared in terms of: 
1) The relative error (RE) predictive makespan deviation 

with respect to the best-known lower bound value defined 
as: 
  
H� � �I&'JK(L E MNO MN⁄ � C 100    (7)  

 
where, MScomp is the initial predicted makespan obtained 
using either method, and LB is the best-known lower 
bound. It is worth pointing out that since for every 
replication the processing times are randomly modified, 
estimating its LB value is not possible. Therefore, the 
used LB is the same LB reported in literature for the same 
test case group. The relative error measures the robustness 
in the objective function space, i.e. quality robustness. 

2) The average absolute relative makespan deviation 
between the initial predicted schedule makespan and the 
actual realized makespan after the 400 disturbances’ 
replications according to the following equation: 
  QRS. QU8 H&'∆ �
 5
W ∑ XY�&'/A1ZL E &'/A1[�6 D&'/A1[G6\ ]^__L?5 C 100 (8) 

 
where, q is the replication predictive schedule, and the 
subscripts P, R and p : refer to predictive (or the original 
released schedule to the shop floor), realized (or the actual 
schedule after disturbance simulation), and the processing 
time disturbance number, respectively. 

The performance measures addressed above examine the 
average values related to the obtained replications’ schedules 
at each combination before or after the disruptions. One of the 
essential concerns associated with any proposed method, a 
heuristic or a meta-heuristic method, to solve a problem is 
arbitrating the quality of its obtained solutions (predictive 
schedules in this study). Therefore, the first measure RE seeks 
to answer that concern by measuring how far are the obtained 
schedules from the optimal or near optimal schedules? This 
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ensures that only methods that are capable of obtaining 
predictive schedules of high quality, minimum makespan, as 
well as proving their repeatability, or robustness in obtaining 
such schedules, are given the credit. For this reason, RE 
measure is designed to work on the objective function space 
by comparing the quality of obtained solution of any method 
to a standard benchmark solution.  

While RE measure quantifies the quality robustness of 
obtained predictive schedules, and QRS. QU8 H&'∆ measures, 
on the other hand, assist evaluating the solution robustness of 
these schedules and their sustainability in the face of 
uncertainties. To achieve this evaluation it is required to find a 
way of comparing the original solution, i.e. predictive 
schedule released to the floor shop, to the final solution, i.e. 
the realized schedule after the disruptions.  

This is achieved by using the edit distance concept 
introduced by [33]. This concept is generalized to measure the 
distance between two schedules by considering the difference 
in the main performance measure between the predictive 
schedule and the realized schedule, i.e. makespan deviation. 
For this reason, QRS. QU8 H&'∆ measure is used and is 
interpreted as the relative mean of the deviations between the 
realized schedules after disruptions and the originally released 
predictive schedules. Moreover, it is considered as a quantity 
that measures how close, in average, the realized schedules are 
to the predictive schedules.  

C. Computational results 

Table II shows the detailed results obtained using MSexp-
hGA and MS%50-hGA. Due to space limitations, Table II is 
divided into two parts. It consists of 10 columns. The first 
column represents the instance name and size. The second 
column refers to used method to obtain the corresponding 
schedule. The remaining columns are labelled according to the 
performance measures given above and give the results of the 
400 replications of specific disturbance type for the modified 
instances, i.e. test case groups. For each column, the best 
performance; lowest average deviation percentage; is printed 
in bold-face. When considering RE results in Table II, it can 
be noted that including variations of the processing times in 
the objective function (MS%50-hGA) to obtain a schedule has a 
negligible effect on increasing the makespan of the predictive 
schedule. Therefore, the maximum increase in RE when using 
the robust sampling objective function, MS%50-hGA, compared 
to the expected ordinary fitness function evaluation, MSexp-
hGA, is 6.09% (for the Ex1 test case group) and on average 
0.61% for all modified instances. Furthermore, in most 
considered cases the sampled solutions obtained by MS%50-
hGA were sometimes slightly better than the expected 
solutions obtained by MSexp-hGA like for the test cases MK01, 
MK07, and MK10. This may be explained by the change in 
how the population is handled when using the sampling 
function evaluation, (5), which may allow escaping from local 
optima. In addition, in terms of QRS. QU8 H&'∆, the robust 
solutions results acquired by MS%50-hGA are outperforming 
those obtained by MSexp-hGA. Thus, using a schedule 
sequence obtained by MS%50-hGA performs mostly better after 

disturbance occurrence compared to a schedule obtained by 
MSexp-hGA. These findings highlight the capability of MS%50-
hGA to find solutions that are both quality robust and solution 
robust. 

TABLE II  
COMPUTATIONAL RESULTS – DEVIATION OF SCHEDULES WHEN SUBJECTED 

TO RANDOM UNIFORM PROCESSING TIME VARIATIONS 

Inst. & Size Method 

DT1 DT2 

RE QRS. QU8 &'∆ 
RE QRS. QU8 &'∆ 

Ex1 
(5 x 3) 

MSexp-hGA 52.17 1.47 52.17 4.09 

MS50R-hGA 56.52 1.37 58.26 3.56 

MK01 
(10 x 6) 

MSexp-hGA 13.89 1.14 13.89 2.77 

MS50R-hGA 13.33 1.16 11.11 2.43 

MK03 
(15 x 8) 

MSexp-hGA 0.00 0.88 0.00 2.29 

MS50R-hGA 0.00 0.90 0.00 2.44 

MK07 
(20 x 5) 

MSexp-hGA 10.53 0.83 10.53 2.49 

MS50R-hGA 10.98 0.80 9.32 2.38 

MK10 
(20 x 15) 

MSexp-hGA 39.64 0.80 39.64 2.34 

MS50R-hGA 39.39 0.62 40.36 2.23 

 
TABLE II (CONTINUE) 

COMPUTATIONAL RESULTS – DEVIATION OF SCHEDULES WHEN SUBJECTED 

TO RANDOM UNIFORM PROCESSING TIME VARIATIONS 

Inst. & Size Method 

DT3 DT4 

RE QRS. QU8 &'∆ 
RE QRS. QU8 &'∆ 

Ex1 
(5 x 3) 

MSexp-hGA 52.17 1.97 52.17 5.48 

MS50R-hGA 53.91 1.91 54.78 4.91 

MK01 
(10 x 6) 

MSexp-hGA 13.89 1.49 13.89 3.81 

MS50R-hGA 12.22 1.41 16.67 3.68 

MK03 
(15 x 8) 

MSexp-hGA 0.00 1.17 0.00 3.24 

MS50R-hGA 0.00 1.19 0.00 3.12 

MK07 
(20 x 5) 

MSexp-hGA 10.53 1.37 10.53 4.11 

MS50R-hGA 9.92 1.17 11.28 3.92 

MK10 
(20 x 15) 

MSexp-hGA 39.64 1.17 39.64 3.80 

MS50R-hGA 38.67 0.90 40.48 3.41 

Values written in  bold are the best values 

VI.  CONCLUSION 

This paper presented how a hybridized genetic algorithm 
for a flexible job shop problem can be modified to find robust 
solutions when it is subjected to low-to-medium random 
variations in the operations' processing times. For this, two 
methods were compared. Our computational results showed 
that obtained solutions are both solution robust and quality 
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robust. Furthermore, computational results revealed an 
interesting finding showing if an FJSP is subjected to a low-
to-medium level of processing time uncertainty, then an 
optimization-based method working with expected processing 
times value may obtain schedules that are as good as 
schedules obtained using a sampling technique method and 
hence saving the computational efforts.   

As a future research direction, the current research can be 
extended to study the impact of other kinds of processing time 
distributions on the conclusions found in this study. Currently, 
authors are exploring extending this study by developing a 
multi-objective approach that returns the Pareto frontier 
solutions so that a decision maker can select a preferable 
robust and/or stable schedule. 
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