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Solving Stochastic Eigenvalue Problem of Wick
Type

Hassan Manouzi, Taous-Meriem Laleg-Kirati

Abstract—In this paper we study mathematically the eigenvalue
problem for stochastic elliptic partial differential equation of Wick
type. Using the Wick-product and the Wiener-Ité chaos expansion,
the stochastic eigenvalue problem is reformulated as a system of an
eigenvalue problem for a deterministic partial differential equation
and elliptic partial differential equations by using the Fredholm
alternative. To reduce the computational complexity of this system,
we shall use a decomposition method using the Wiener-Itd chaos
expansion. Once the approximation of the solution is performed using
the finite element method for example, the statistics of the numerical
solution can be easily evaluated.

Keywords—Eigenvalue problem, Wick product, SPDEs, finite
element, Wiener-1td chaos expansion.

[. INTRODUCTION

HIS paper is devoted to the study of the eigenvalue

problem for a stochastic partial differential equation
(SPDE) of Wick type under the framework of the
white noise analysis. We study the following problem:
Find (u(z,w),A\(w)) solution of the linear SPDE

{ —Au(z,w) + k(z,w) ou(z,w) = AMw) o u(z,w)

u(z,w)jopxa =0

ey

where w is a scalar or vectorial field, x is a stochastic
coefficient, A is the eigenvalue associated to the eigenfunction
u, 0 is the set of random events, D C R? (d = 2 or 3) an
open bounded domain with a smooth boundary 0D.

Equation (1), is an eigenvalue problem for the evolution of
a scalar field in a random medium. It arises in several physical
and mathematical problems like:

e In random variations of the optical fiber guides
where u(z,w) denotes the electric field for example,
K is the refractive index of the medium with small
imperfections which include the material constituting
the fiber core or the extrinsic variations such as
microscopic random bends and others fiber core
defects and A represents the stochastic propagation
constant [2].

e In structural mechanics where eigenvalues are
important properties. These eigenvalues represent
resonance frequencies of the systems, e.g. vibrations
and buckling [4].

We shall reformulate this stochastic problem as an infinite
set of deterministic variational problems, using the properties
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of the Wick product. Each of these variational problems
will give one of the coefficients in the Wiener-Itd chaos
expansion of the solution of (1). The method we shall use
is based on the ideas of Fourier analysis on Wiener space. In
fact, Wiener Chaos expansion represents a stochastic function
u(z,w)x as a Fourier series with respect to an orthonormal
basis Hq, ie., u(z,w) = Z Uq () Ho(w) where Z denotes

acl
the set of multi -indices o = (o) where all a; € N

and only finitely many «; # 0, the u,’s are deterministic
coefficients and the #,,’s are the stochastic variables H, (w) =
152 ha,y ((w,nj(2))) , w € S'(R?) where h,, denotes the
Hermite polynomial and the family {n;}32, C S (R%) forms
an orthonormal basis for L?(R?).

An outline of the paper is as follows. In Section II we
review notation and introduce some elements of white noise. In
Section III, using the Winer-Ifo chaos expansion of the solution,
we give the deterministic partial differential equations that
must satisfy these chaos coefficients. Finally, in Section IV we
give a finite element approximation of our problem.

II. ELEMENTS OF WHITE NOISE ANALYSIS
A. White noise space

Let R? the set of spatial parameters equipped with the
Lebesgue measure. We shall construct a Wiener process
indexed by R%, ie. a Gaussian white noise and describe
the associated Hilbert space of quadratic integrable random
variables w.r.t. this process.

Let S = S(RY) be the Schwartz space of smooth, rapidly
decreasing functions on R%, and let S’ = S'( R?) be the
dual space of tempered distributions. By the Bochner-Minlos
theorem, cf. [3], [6], there exists a unique probability measure
1, called the white noise porbability measure, on the Borel
o-algebra on S’ with characteristic functional

E[ei«,m} ::/ ei(w,rz)du(w) _ e*%HnHiz(Rd) )

The random variable (-,7)g, defined on the probability
space (S’, B(S’), p1) thus follows a Gaussian distribution with
mean zero and variance HnHzLQ(Rd), and can be interpreted as
the stochastic integral w.r.t a Brownian sheet B; , defined on
RY ie. (w,n)g = [pan(®)dBi2(w), w e S ,neS.

B. Chaos decomposition

A chaos decomposition is an orthonormal expansion in
the Hilbert space L%(S’) of quadratic integrable functions
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defined on (S, B(S’),
Hermite polynomial h,(z) = (—1)

u). For n € Ng,z € R define the
s d?
n612/27(6_12/2)7 and

.rL‘TL
for n € N define the Hermite functions &,(z) = 7~ */4((n

2

1)!)_1/2e_z /Qh,,,,l(\/ia:).. It is well-known that &, € S(R),
l€nlloo < 1 (n € N), and that {&,, : n € N} constitutes an
orthonormal basis in L?(R,dz). We let {n;}jen C S(RY)
denote the orthonormal basis for L?(R?, dx) constructed by
taking tensor-products of Hermite functions [3]:

(@) = &5 (21)E50) (w2) -+ &5 (2a) s G =1,2,

where 60/ (5§j),6§7)7~~~ ,6§j>) is the jth multi-index
number in some fixed ordering of all d-dimensional
multi-indices 6 = (61, -, dq).

Let Z denote the set of al multi-indices o = (a;) with
a; € Ny (j € N) with finite length [(a) = max{j;a; # 0},
and as usual we define o + 8 = (a; + §;), a! = Hj a;l,
and |a| := >, a;. For each v € 7 we define the stochastic
variable

Hh (w,n)), we S8’ 3

The family {H, : o € I} constitutes an orthogonal basis
for L2(S8',B(S'), 1) and it holds E[H,Hg] = aldaps [3].
Thus, any f in L%(p) = L2(S’,B(S’),u) has a unique
representation

F=Y faHa )

acl
where f, € R and ||fHL2(“ =Y ez coal. The expansion
in (4) is often referred to as the Wiener-It6 chaos expansion.
We will in the following adopt the notation f, to denote the
ath chaos coefficient of a random variable f.

C. Wiener chaos expansion of a log normal process
In this work we focus on equation (1) with random

coefficient x wich satisfy the following condition : there exist
two positive constants C7,Cy > 0 such that

0 < Cy < k(z,w) < Cy < oo, ae and as

We assume also that « has the following Karhunen-Loeve
(K-L) expansion

W) =DV AkBr(w) () 5)
k=0

where (), (w) are the uncorrelated zero mean and unite variance
random variables, ()\;,¢;) is the pair of eigenvalues and
eigenfunctions of the covariance function. Since each 3; €
L?(u), it my be expanded in its Wiener chaos expansion

W)= BraHaw) 6)

a€el
By substituting (7) in (6) we obtain
wa,w) =Y <Z mﬂk,aask(m)) Ha(w)
a€T \k=0 @)

= Z Ka(z)H,

a€l

D. Ordinary and Wick products
Definition 1: The Wick product f ¢ g of two formal series

f= ZfaHa, 9=, 9aHq is defined as

f<>g = Z fagBHa+ﬁ- (®

a,BET

From [5] we have the following result:
Theorem 1: Suppose u = ZuaHa,v = ngHg. If

a€l a€Z
E,, | uv |?) < oo, then the product uv has the Wiener chaos

expansion

UU:Z Z Z C(0, B,p)ug—p+pvs+p | Ho

0T \peZ 0<B<0

where (0B +p)(B+D)
+ +
0(9757 )7 | p p
Bip!(6 — B)!
Since
[TRX) :ZZuangaH;
€T BET
:Z Z u€_5ngg
6eT 0<B<0
we have
Theorem 2:

uv :u<>U+Z Z Z C(0, B, p)uo—p+pVs+p | Ho

0€T \ peZ,p#£00<B<0

By approaching uv ~ u ¢ v, we can view equation (1) as
an approximation or a regularization of the general stochastic
eigenvalue problem

w) = Mw)u(z,w)

{ —Au(z,w) + Kz, w)u(z, ©)

u(z,w)japxa =0

ITI. DETERMINISTIC EQUATIONS FOR THE CHAOS
COEFFICIENTS

We give now a reformulation of (1) as an infinite set of
deterministic PDEs, using the properties of the Wick product.
Theorem 3: Let Z Ky (x)Hy(w)

'yEI
Zuv Z)\ H,(

be a solution of (1) Then the 7-th chaos coefﬁments Uy of u
and A, of A are given by the following triangular system of
deterministic equations:

e If v = 0, then (ug, \g) is solution of the eigenvalue
problem

k(z,w) =

Let u(x,w) Hy(w) and A(w

(10)

*A’U,O + Koug = )\0’[1,0
ugjpp =0

o If | v |= 1, then (uy,A,) is solution of the following
problem
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{ By + (ko = M)y = (g = w1

u,y‘aD =0

o If | v |> 1, then (u,,\y) is solution of the following
problem

—Auy + (kg — Ao)uy = (Ay —

Z (Aa = Ka)Uy—a

O<a<y
Uyjop =0

RW)UO +

(12)

Proof: By definition of the Wick product we have

=Y A H @)+ Y (e = Aa)uy—aHy (W) =0
YET yEZ 0<a<ly
Due to uniqueness of the Wiener-Itd chaos expansion, this
is equivalent to

—Au, + Z (Ka = Aa)Uuy—q =0,v €T
0<a<y

from which we deduce the equations (10), (11) and (12). ®

We note that we have decomposed problem (1) into a
cascade of deterministic partial differential equations where
the equation for the first coefficient (ug, \o) is an eigenvalue
problem and others coefficients involve non-eigenvalue
inhomogeneous problems.

Theorem 4: For each vy € Z and knowing (uq, Ay) for all
0 < a <y we have

o If |y |=1 then

1
A :7/ Kou2 da (13)
T ol Jp T

o If | v |> 1 then

1
A :7/ Koul dz—
71 lluoll? Jp, 7

2

O<a<y

(14)
(Aa — Ka)Uy—quo dz

[[uol? D

Proof: We multiply equation (12) by wuo and integrate
over D. Integrating the second derivatives term twice by parts
we find

/ (—Aug + (ko — Ao)uo) uy dx =

)\7/ uouodmf/ myugdm+
D D

(15)
Z (Aa = Ka)Uy—aquo dz
O<a<y D
By using equation (10), we find (14). [ ]

In order to solve the eigenvalue problem (10) we assume
for simplicity that ko € L*°(D) and ko > 0. In this case
the operator —Awug + Koug is symetric and uniformly elliptic
and we can apply the standard result of the spectrum of a
self-adjoint elliptic operator [1]:

Theorem 5: There exists an increasing sequence of real
eigenvalues of finite multiplicity

0< X1 <A< <A <--e

such that Ao, — oco. Moreover, there is an orthonormal
basis {ug, : n € N} of L?(D) consisting of eigenfunctions
ug,n € H3 (D) such that

—Aug p + Koo = Ao.nlo.n
{ 0, oo, 0,n 10, (16)

Ug,njop = 0
From this result, we see from (11),(12) that for v > 0 and
n € N and knowing (¢a. 5, Aa,n) for all 0 < a <y we have to

solve the following sequence of Fredholm alternative elliptic
problems

{ _Au'y,n + (HO - )\O,n)u’y,n = (A'y,n -

Uym|oD = 0

Ky)Uon (17)

where A, , is given by

1 2
)"Y,n = HUO.,nH2 /DK’YUO,n dx

a7

° If | Yy |: 1
—AUy p + (Ko — Aoyn)Uyn =

(Ayin = Fiy)uo.n + Z (Aan = Ka)ty—an (19)
O<a<y
Uynjap = 0

where A, , is given by

1
Ayn = m/;/ivuan dr — (20)

n
_— Z Aan — Ko )Ury—a nlo.n AT
[[v0,n112 0<asry D( o o) ty—cntio

Finally by the Fredholm alternative theorem [1], we may
state the following result:

Theorem 6: Let ko € L>°(D) with ko > 0. Then for each
n € N there exists a solution ., € Hg(D) of the problem
(17) or (19) whis is not unique.

Proof: Let

Fyn = ()‘%n - “v)uO,n + Z (/\a,n - “a)uv—a,n
O<a<y

By using (18), (20), we have the orthogonality relation

(F’y,'m u[),n)Lz(D) =0

And the result follows from the Fredholm alternative
theorem, since Ao, is an eigenvalue of the auto-adjoint
compact operator —A+ kol with the associated eigenfunction
Uo,n - u

IV. THE APPROXIMATED SOLUTION
From the previous section, we can see that our problem (1)
admit a sequence of eigenfunctions u,(z,w) and eigenvalues
An(w) given by

Up (2, w) = Z Uy () Hy (W) (18)
yeT
An(w) = Ay (w) (19)
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where w. ,, A, are given by (17)-(20).

Since equations (17), (19) are recast in a deterministic
manner, their numerical solution can be obtained using
numerical methods widely used for approximating partial
differential equations. Let us now introduce a discrete version
of this model problem using the finite element method.

Let My, a finite element sub-space of Hi (D). For N, K €
N, we define the subset

N K
IN7K:{O}UUU{04€N§: la|=n and ay #0}

n=1k=1

We approximate for example (ug ., Ao.n) € H} (D) x R as
follows: seek (ufy ,,, Al ,,) € Mp, X R such that:

h h h h
/1; Vg, Vop dz + /D Kol ,Un dz = g, /Duo,nvh dz (..)

Also, we assume that the set Zy g is ordered in such a
way that {u ,, A\l o < 7} has been calculated when the
7-th equation in (..) is considered. This enable us to solve
(19) as a sequence of (N + K)!/(N!K!) problems.

Once we have calculated the chaos coefficients {(u’: ) :
v € In k}. we may do stochastic simulations of the solution
as follows: first, generate M independent standard Gaussian
variables X(w) = (X;(w)) (¢ = 1,...,M) using some
random number generator, and then form the sums

ul(z,w) = >l (2)Ho(X(w)) (20)

YEIN, K

AN(w) =Y M H(X(w)) @1

YEIN, K

where Ho(X(w)) 1= [1}Z,; B, (X;(w))

The advantage of this approach is that it enables us to
generate random samples easy and fast. For example, in
situations where one is interested in repeated simulations of u”
and )\Z, one may compute the chaos coefficients in advance,
store them, and produce the simulations whenever they are
needed.

V. CONCLUSION

We presented in this paper a method to solve eigenvalue
problem for a stochastic partial differential equations of
Wick type. This method is based on a decomposition
approach by using the Wiener-It6 expansions. We have shown
that the computational cost of the original equation can
be drastically reduced using this approach. This method
decompose the original stochastic equation by solving only
linear deterministic partial differential equations combined
with a deterministic eigenvalue problem for the first chaos
coefficient.
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