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Abstract—In this paper we study mathematically the eigenvalue
problem for stochastic elliptic partial differential equation of Wick
type. Using the Wick-product and the Wiener-Itô chaos expansion,
the stochastic eigenvalue problem is reformulated as a system of an
eigenvalue problem for a deterministic partial differential equation
and elliptic partial differential equations by using the Fredholm
alternative. To reduce the computational complexity of this system,
we shall use a decomposition method using the Wiener-Itô chaos
expansion. Once the approximation of the solution is performed using
the finite element method for example, the statistics of the numerical
solution can be easily evaluated.

Keywords—Eigenvalue problem, Wick product, SPDEs, finite
element, Wiener-Itô chaos expansion.

I. INTRODUCTION

THIS paper is devoted to the study of the eigenvalue
problem for a stochastic partial differential equation

(SPDE) of Wick type under the framework of the
white noise analysis. We study the following problem:
Find (u(x, ω), λ(ω)) solution of the linear SPDE{

−Δu(x, ω) + κ(x, ω) � u(x, ω) = λ(ω) � u(x, ω)
u(x, ω)|∂D×Ω = 0

(1)

coefficient, λ is the eigenvalue associated to the eigenfunction
u, Ω is the set of random events, D ⊂ R

d (d = 2 or 3) an
open bounded domain with a smooth boundary ∂D.

Equation (1), is an eigenvalue problem for the evolution of
a scalar field in a random medium. It arises in several physical
and mathematical problems like:

• In random variations of the optical fiber guides
where u(x, ω) denotes the electric field for example,
κ is the refractive index of the medium with small
imperfections which include the material constituting
the fiber core or the extrinsic variations such as
microscopic random bends and others fiber core
defects and λ represents the stochastic propagation
constant [2].
• In structural mechanics where eigenvalues are
important properties. These eigenvalues represent
resonance frequencies of the systems, e.g. vibrations
and buckling [4].

We shall reformulate this stochastic problem as an infinite
set of deterministic variational problems, using the properties
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of the Wick product. Each of these variational problems
will give one of the coefficients in the Wiener-Itô chaos
expansion of the solution of (1). The method we shall use
is based on the ideas of Fourier analysis on Wiener space. In
fact, Wiener Chaos expansion represents a stochastic function
u(x, ω)x as a Fourier series with respect to an orthonormal
basis Hα, i.e., u(x, ω) =

∑
α∈I

uα(x)Hα(ω) where I denotes

the set of multi -indices α = (αj) where all αj ∈ N

and only finitely many αj �= 0, the uα’s are deterministic
coefficients and the Hα’s are the stochastic variables Hα(ω) =
Π∞

j=1hαj (〈ω, ηj(x)〉) , ω ∈ S ′(Rd) where hn denotes the
Hermite polynomial and the family {ηj}∞j=1 ⊂ S(Rd) forms
an orthonormal basis for L2(Rd).

review notation and introduce some elements of white noise. In
ˆ

we give the deterministic partial differential equations that

give a finite element approximation of our problem.

II. ELEMENTS OF WHITE NOISE ANALYSIS

Let R
d the set of spatial parameters equipped with the

Lebesgue measure. We shall construct a Wiener process
indexed by Rd, i.e. a Gaussian white noise and describe
the associated Hilbert space of quadratic integrable random
variables w.r.t. this process.

Let S = S(Rd) be the Schwartz space of smooth, rapidly
decreasing functions on R

d, and let S ′ = S ′( R
d) be the

dual space of tempered distributions. By the Bochner-Minlos
theorem, cf. [3], [6], there exists a unique probability measure
μ, called the white noise porbability measure, on the Borel
σ-algebra on S ′ with characteristic functional

E[ei〈·,η〉] :=
∫
S′

ei〈ω,η〉dμ(ω) = e
− 1

2‖η‖2

L2(Rd) (2)

The random variable 〈·, η〉S′ defined on the probability
space (S ′,B(S ′), μ) thus follows a Gaussian distribution with
mean zero and variance ‖η‖2L2(Rd), and can be interpreted as
the stochastic integral w.r.t a Brownian sheet Bt,x defined on
R

d, i.e. 〈ω, η〉S′ =
∫
Rd η(x)dBt,x(ω), ω ∈ S ′, η ∈ S .

B. Chaos decomposition

A chaos decomposition is an orthonormal expansion in
the Hilbert space L2(S ′) of quadratic integrable functions

where u is a scalar or vectorial field, κ is a stochastic
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An outline of the paper is as follows. In Section II we

Section III, using the Winer-Ito chaos expansion of the solution,

must satisfy these chaos coefficients. Finally, in Section IV we

A. White noise space
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defined on (S ′,B(S ′), μ). For n ∈ N0, x ∈ R define the

Hermite polynomial hn(x) = (−1)nex
2/2 dn

dxn
(e−x2/2), and

for n ∈ N define the Hermite functions ξn(x) = π−1/4((n−
1)!)−1/2e−x2/2hn−1(

√
2x).. It is well-known that ξn ∈ S(R),

‖ξn‖∞ ≤ 1 (n ∈ N), and that {ξn : n ∈ N} constitutes an
orthonormal basis in L2(R, dx). We let {ηj}j∈N ⊂ S(Rd)
denote the orthonormal basis for L2(Rd, dx) constructed by
taking tensor-products of Hermite functions [3]:

ηj(x) = ξ
δ
(j)
1
(x1)ξδ(j)1

(x2) · · · ξδ(j)d

(xd) , j = 1, 2, · · ·
where δ(j) = (δ

(j)
1 , δ

(j)
2 , · · · , δ(j)d ) is the jth multi-index

number in some fixed ordering of all d-dimensional
multi-indices δ = (δ1, · · · , δd).

Let I denote the set of al multi-indices α = (αj) with
αj ∈ N0 (j ∈ N) with finite length l(α) = max{j;αj �= 0},
and as usual we define α + β = (αj + βj), α! =

∏
j αj !,

and |α| := ∑
j αj . For each α ∈ I we define the stochastic

variable

Hα(ω) :=

l(α)∏
j=1

hαj
(〈ω, ηj〉), ω ∈ S ′ (3)

The family {Hα : α ∈ I} constitutes an orthogonal basis
for L2(S ′,B(S ′), μ) and it holds E[HαHβ ] = α!δαβ [3].
Thus, any f in L2(μ) := L2(S ′,B(S ′), μ) has a unique
representation

f =
∑
α∈I

fαHα (4)

where fα ∈ R and ‖f‖2L2(μ) =
∑

α∈I c2αα!. The expansion
in (4) is often referred to as the Wiener-Itô chaos expansion.
We will in the following adopt the notation fα to denote the
αth chaos coefficient of a random variable f .

C. Wiener chaos expansion of a log normal process
In this work we focus on equation (1) with random

coefficient κ wich satisfy the following condition : there exist
two positive constants C1, C2 > 0 such that

0 < C1 ≤ κ(x, ω) ≤ C2 < ∞, a.e and a.s

We assume also that κ has the following Karhunen-Loeve
(K-L) expansion

κ(x, ω) =

∞∑
k=0

√
λkβk(ω)φk(x) (5)

where βk(ω) are the uncorrelated zero mean and unite variance
random variables, (λi, φi) is the pair of eigenvalues and
eigenfunctions of the covariance function. Since each βi ∈
L2(μ), it my be expanded in its Wiener chaos expansion

βk(ω) =
∑
α∈I

βk,αHα(ω) (6)

By substituting (7) in (6) we obtain

κ(x, ω) =
∑
α∈I

( ∞∑
k=0

√
λkβk,αφk(x)

)
Hα(ω)

:=
∑
α∈I

κα(x)Hα(ω)
(7)

D. Ordinary and Wick products

Definition 1: The Wick product f � g of two formal series
f =

∑
α

fαHα, g =
∑

α gαHα is defined as

f � g :=
∑

α,β∈I
fαgβHα+β . (8)

From [5] we have the following result:
Theorem 1: Suppose u =

∑
α∈I

uαHα, v =
∑
α∈I

vβHβ . If

Eμ | uv |2) < ∞, then the product uv has the Wiener chaos
expansion

uv =
∑
θ∈I

⎛
⎝∑

p∈I

∑
0≤β≤θ

C(θ, β, p)uθ−β+pvβ+p

⎞
⎠Hθ

where

C(θ, β, p) =
(θ − β + p)!(β + p)!

β!p!(θ − β)!

Since
u � v =

∑
α∈I

∑
β∈I

uαvβHα+β

=
∑
θ∈I

∑
0≤β≤θ

uθ−βvβHθ

we have
Theorem 2:

uv = u�v+
∑
θ∈I

⎛
⎝ ∑

p∈I,p 	=0

∑
0≤β≤θ

C(θ, β, p)uθ−β+pvβ+p

⎞
⎠Hθ

By approaching uv ≈ u � v, we can view equation (1) as
an approximation or a regularization of the general stochastic
eigenvalue problem

{
−Δu(x, ω) + κ(x, ω)u(x, ω) = λ(ω)u(x, ω)

u(x, ω)|∂D×Ω = 0
(9)

III. D
COEFFICIENTS

We give now a reformulation of (1) as an infinite set of
deterministic PDEs, using the properties of the Wick product.

Theorem 3: Let κ(x, ω) =
∑
γ∈I

κγ(x)Hγ(ω).

Let u(x, ω) =
∑
γ∈I

uγ(x)Hγ(ω) and λ(ω) =
∑
γ∈I

λγHγ(ω)

be a solution of (1). Then the γ-th chaos coefficients uγ of u
and λγ of λ are given by the following triangular system of
deterministic equations:
• If γ = 0, then (u0, λ0) is solution of the eigenvalue

problem {
−Δu0 + κ0u0 = λ0u0

u0|∂D = 0
(10)

• If | γ |= 1, then (uγ , λγ) is solution of the following
problem

ETERMINISTIC EQUATIONS FOR THE CHAOS
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{
−Δuγ + (κ0 − λ0)uγ = (λγ − κγ)u0

uγ |∂D = 0
(11)

• If | γ |> 1, then (uγ , λγ) is solution of the following
problem

⎧⎪⎪⎨
⎪⎪⎩

−Δuγ + (κ0 − λ0)uγ = (λγ − κγ)u0 +∑
0<α<γ

(λα − κα)uγ−α

uγ |∂D = 0

(12)

Proof: By definition of the Wick product we have

−
∑
γ∈I

ΔuγHγ(ω) +
∑
γ∈I

∑
0≤α≤γ

(κα − λα)uγ−αHγ(ω) = 0

Due to uniqueness of the Wiener-Itô chaos expansion, this
is equivalent to

−Δuγ +
∑

0≤α≤γ

(κα − λα)uγ−α = 0, γ ∈ I

from which we deduce the equations (10), (11) and (12).
We note that we have decomposed problem (1) into a

cascade of deterministic partial differential equations where
the equation for the first coefficient (u0, λ0) is an eigenvalue
problem and others coefficients involve non-eigenvalue
inhomogeneous problems.

Theorem 4: For each γ ∈ I and knowing (uα, λα) for all
0 ≤ α < γ we have

• If | γ |= 1 then

λγ =
1

‖u0‖2
∫
D

κγu
2
0 dx (13)

• If | γ |> 1 then⎧⎪⎪⎨
⎪⎪⎩

λγ =
1

‖u0‖2
∫
D

κγu
2
0 dx−

1

‖u0‖2
∑

0<α<γ

∫
D

(λα − κα)uγ−αu0 dx
(14)

Proof: We multiply equation (12) by u0 and integrate
over D. Integrating the second derivatives term twice by parts
we find ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫
D

(−Δu0 + (κ0 − λ0)u0)uγ dx =

λγ

∫
D

u0u0 dx−
∫
D

κγu
2
0 dx+∑

0<α<γ

∫
D

(λα − κα)uγ−αu0 dx

(15)

By using equation (10), we find (14).
In order to solve the eigenvalue problem (10) we assume

for simplicity that κ0 ∈ L∞(D) and κ0 > 0. In this case
the operator −Δu0 + κ0u0 is symetric and uniformly elliptic
and we can apply the standard result of the spectrum of a
self-adjoint elliptic operator [1]:

Theorem 5: There exists an increasing sequence of real
eigenvalues of finite multiplicity

0 < λ0,1 ≤ λ0,2 ≤ · · · ≤ λ0,n ≤ · · ·

such that λ0,n −→ ∞. Moreover, there is an orthonormal
basis {u0,n : n ∈ N} of L2(D) consisting of eigenfunctions
u0,n ∈ H1

0 (D) such that{
−Δu0,n + κ0u0,n = λ0,nu0,n

u0,n|∂D = 0
(16)

From this result, we see from (11),(12) that for γ > 0 and
n ∈ N and knowing (uα,n, λα,n) for all 0 ≤ α < γ we have to
solve the following sequence of Fredholm alternative elliptic
problems

• If | γ |= 1{
−Δuγ,n + (κ0 − λ0,n)uγ,n = (λγ,n − κγ)u0,n (17)

uγ,n|∂D = 0

where λn,γ is given by

λγ,n =
1

‖u0,n‖2
∫
D

κγu
2
0,n dx (17)

• If | γ |= 1⎧⎪⎪⎨
⎪⎪⎩

−Δuγ,n + (κ0 − λ0,n)uγ,n =

(λγ,n − κγ)u0,n +
∑

0<α<γ

(λα,n − κα)uγ−α,n (19)

uγ,n|∂D = 0

where λn,γ is given by⎧⎪⎪⎨
⎪⎪⎩

λγ,n =
1

‖u0,n‖2
∫
D

κγu
2
0,n dx− (20)

1

‖u0,n‖2
∑

0<α<γ

∫
D

(λα,n − κα)uγ−α,nu0,n dx

Finally by the Fredholm alternative theorem [1], we may
state the following result:

Theorem 6: Let κ0 ∈ L∞(D) with κ0 > 0. Then for each
n ∈ N there exists a solution uγ,n ∈ H1

0 (D) of the problem
(17) or (19) whis is not unique.

Proof: Let

Fγ,n := (λγ,n − κγ)u0,n +
∑

0<α<γ

(λα,n − κα)uγ−α,n

By using (18), (20), we have the orthogonality relation

(Fγ,n, u0,n)L2(D) = 0

And the result follows from the Fredholm alternative
theorem, since λ0,n is an eigenvalue of the auto-adjoint
compact operator −Δ+κ0I with the associated eigenfunction
u0,n.

IV. THE APPROXIMATED SOLUTION

From the previous section, we can see that our problem (1)
admit a sequence of eigenfunctions un(x, ω) and eigenvalues
λn(ω) given by

un(x, ω) =
∑
γ∈I

uγ,n(x)Hγ(ω) (18)

λn(ω) =
∑
γ∈I

λγ,nHγ(ω) (19)
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where uγ,n, λn are given by (17)-(20).
Since equations (17), (19) are recast in a deterministic

manner, their numerical solution can be obtained using
numerical methods widely used for approximating partial
differential equations. Let us now introduce a discrete version
of this model problem using the finite element method.

Let Mh a finite element sub-space of H1
0 (D). For N,K ∈

N, we define the subset

IN,K = {0} ∪
N⋃

n=1

K⋃
k=1

{
α ∈ N

k
0 : |α| = n and αk �= 0

}
We approximate for example (u0,n, λ0,n) ∈ H1

0 (D)×R as
follows: seek (uh

0,n, , λ
h
0,n) ∈ Mh × R such that:∫

D
∇uh

0,n∇vh dx+

∫
D
κ0u

h
0,nvh dx = λh

0,n

∫
D
uh
0,nvh dx (..)

Also, we assume that the set IN,K is ordered in such a
way that {uh

n,α, λ
h
n,α α ≺ γ} has been calculated when the

γ-th equation in (..) is considered. This enable us to solve
(19) as a sequence of (N +K)!/(N !K!) problems.

Once we have calculated the chaos coefficients {(uh
n,γ) :

γ ∈ IN,K}, we may do stochastic simulations of the solution
as follows: first, generate M independent standard Gaussian
variables X(ω) = (Xi(ω)) (i = 1, . . . ,M ) using some
random number generator, and then form the sums

uh
n(x, ω) :=

∑
γ∈IN,K

uh
n,γ(x)Hα(X(ω)) (20)

λh
n(ω) :=

∑
γ∈IN,K

λh
n,αHγ(X(ω)) (21)

where Hα(X(ω)) :=
∏M

j=1 hαj (Xj(ω))
The advantage of this approach is that it enables us to

generate random samples easy and fast. For example, in
situations where one is interested in repeated simulations of uh

n

and λh
n, one may compute the chaos coefficients in advance,

store them, and produce the simulations whenever they are
needed.

V. CONCLUSION

We presented in this paper a method to solve eigenvalue
problem for a stochastic partial differential equations of
Wick type. This method is based on a decomposition
approach by using the Wiener-Itô expansions. We have shown
that the computational cost of the original equation can
be drastically reduced using this approach. This method
decompose the original stochastic equation by solving only
linear deterministic partial differential equations combined
with a deterministic eigenvalue problem for the first chaos
coefficient.
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