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Abstract—This paper proposes an application of probabilistic 

technique, namely Gaussian process regression, for estimating an 
optimal sequence of the single machine with total weighted tardiness 
(SMTWT) scheduling problem. In this work, the Gaussian process 
regression (GPR) model is utilized to predict an optimal sequence of 
the SMTWT problem, and its solution is improved by using an 
iterated local search based on simulated annealing scheme, called 
GPRISA algorithm. The results show that the proposed GPRISA 
method achieves a very good performance and a reasonable trade-off 
between solution quality and time consumption. Moreover, in the 
comparison of deviation from the best-known solution, the proposed 
mechanism noticeably outperforms the recently existing approaches. 
 

Keywords—Gaussian process regression, iterated local search, 
simulated annealing, single machine total weighted tardiness. 

I. INTRODUCTION 
HE single machine total weighted tardiness (SMTWT) 
problem is a special case of scheduling problem that is 

referred to be a strongly NP-hard problem [1]. This problem 
deals with the scheduling of a set of independent jobs 

{ }1,2,...,J JN n=  to be processed without interruption on a 
single machine that can handle only one job at a time. Each 
job j  has an integer processing time jp , a due date jd , and 

its priority established by weight jw . For a given order of the 

jobs, the (earliness) completion time jC  and their tardiness 

( )max ,0j j jT C d= −  (i.e., the job is completed after its 

committed due date) are computed. The weighted tardiness 
j jw T  will occur when the job is not accomplished within its 

due date. Therefore, the total weighted tardiness for a given 
sequence π  is computed as ( )

J
j jj N

Z w Tπ
∈

= ∑ , and it is 

minimized to achieve the goal of this problem.  
The SMTWT problem becomes considerable in real-world 

situations such as sequencing in production process, 
sequencing of aircrafts takeoff and landing, and assigning the 
sequence of stages in a construction project, delivering the 
goods with the customer’s priority in supply chain, and so on 
[2]. Throughout the last decade, many researchers have 
proposed the approaches to solve the SMTWT problem. The 
well-known exact method is branch and bounds algorithms 
[3]–[5] to generate solutions that are guaranteed an optimality, 
but these algorithms encounter the obstacle on restriction of 
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computational time or computer storage requirements, 
especially when the problem size exceeds 50 jobs [6].  

Heuristics and meta-heuristics, in most published work, is 
attractive due to it can be fast solved to obtain near-optimal 
solution. Some of these schemes already used for the SMTWT 
problem include local search techniques [6], polynomial-time 
approximation algorithm [7], tabu search [8], [9], simulated 
annealing [10], ant colony optimization [11], iterated 
dynasearch [12], genetic algorithm [13], [14], GRASP with 
path relinking [15], variable neighborhood search [16], and 
variable structure learning automata [17]. Note that, the 
iterated dynasearch [12] is one of iterative methods that 
employs the dynamic programming combining with local 
search. In the contribution of this paper, we present a method 
that utilizes a probabilistic model (i.e., Gaussian process 
regression model) incorporated with an iterated local search to 
solve the SMTWT problem. In addition, the search 
performance of proposed algorithms is considered in both 
terms of solution deviation and computation time. 

This paper is organized as follows. The conceptual 
framework of Gaussian process regression (GPR) and its 
applications are described in Section II. In Section III, the 
proposed GPR-based algorithm for solving the SMTWT 
problem has been presented. Next, Section IV provides the 
computational results and comparison with some recent 
methods. Finally, the overall result of this work is concluded 
in Section V. 

II. GAUSSIAN PROCESS REGRESSION 
The Gaussian process regression (GPR) is known as a 

probabilistic approach for a regression model due to its 
practical and theoretical simplicity and excellent 
generalization ability [18]. The applications of GPR are found 
in many fields, for instance, the depth estimation of a point in 
the camera’s image position [19], the optimization on the 
sensor placements in the art-gallery problem [20], the quality 
improvement in the wire-cut electrical discharge machining 
process [21], and the traffic problem in Japan [22]. In addition, 
it is applied to a well-known problem in operations research 
field at first with the traveling salesman problem [23]. Hence, 
the theoretical framework of GPR method is expressed as the 
following subsections.  

A. GPR Model 
Gaussian process (GP) is a collection of random variables, 

any finite number of which has a joint Gaussian distribution, 
and it is specified by its mean function ( )m x and covariance 
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function ( ), 'k x x  [18]. Usually the mean function is assumed 
to be a zero function; thus, the Gaussian process can be 
written as ( ) ( )0, , 'f GP k⎡ ⎤⎣ ⎦x x x∼ . 

 Gaussian process regression (GPR) is a model to estimate 
the value of a dependent variable or output by using some 
observations of dependent variables at certain values of the 
independent variable. Considering a training data set sT  of n
observations, it is given as ( ){ }, | 1, 2,...,s r rT r n= =x y , where 

rx  denotes a column vector of the r − th sequence of Jn jobs 
and ry denotes a scalar observation, i.e., the total weighted 
tardiness obtained from the r − th sequence. For convenience, 
let [ ]1 2, ,..., n=X x x x  denote the inputs and let [ ]T

1 2, ,..., ny y y=y  
be the observations, so the training data set can be written as 

( ),sT = X y . 
The assumption of GPR is that the observation arises from 

some unknown function of rx , and it may be corrupted by 
unknown Gaussian noise rε . Thus, GPR model is given by  

 

( )T
r r ry φ ε= +x w , 

 
where w is the vector of weight parameters, rε  is a white 
Gaussian noise which follows an independent and identically 
Gaussian distributed with zero mean and noise variance 2

nσ , 
that is ( )20,r nNormalε σ∼ , where n is the number of 

observations. 
Over all inputs and observations in a training dataset, the 

prior probability density of the observations given the 
parameters is estimated. Then, it is used to compute the 
posterior distribution over functions for making prediction 
(See the theoretical framework in [18], [23]). The prediction is 
done by the posterior mean and the posterior variance. Given a 
single test input sx , let ( )s sf f x  be the function value at a 

single test input sx . The posterior mean (or the predictive 
function value) is given by 

 
T 1

ŝ sf −= k K y ,                            (1) 
 

where K is the covariance matrix evaluated at all possible 
pairs of training input, T

sk  is the transpose of the vector of the 
covariance between training and test inputs. In addition, the 
( ),r t  entry of the covariance matrix (or vector) is determined 
by the covariance function ( ),r tk x x  [18]. Note that the 
predictive variance is not considered because we make the 
prediction at a single test input. Moreover, the graphical model 
for GPR can be shown in Fig. 1. 

 
Fig. 1 Pictorial of GPR approach [18], [23] 

B. Covariance Function 
Many covariance functions can be used to define a GP 

prior, for example, Matérn class of covariance function, 
squared exponential (SE) covariance function, and radial basis 
covariance function [18]. However, the SE covariance 
function is applied in our proposed algorithm because it is the 
most popular kernel, and it is given by  

 

( ) ( ) ( )T2
2

1, exp
2SE r t f r t r tk σ ⎡ ⎤= − − −⎢ ⎥⎣ ⎦

x x x x x x  

( )2 ,n r tσ δ+ x x ,                      (2) 
 

where ( ),r tδ x x  is the Kronecker delta function which equals to 
1 if and only if r t= and 0 otherwise, is the characteristic 
length-scale, 2

fσ is the signal variance of function, and 2
nσ  is 

the white noise variance. 

C. GPR Parameter Estimation 
Given a kernel, the hyperparameters of the covariance 

function (i.e., the characteristic length-scale , the signal 
variance of function 2

fσ , and the white noise variance 2
nσ ) are 

determined by the maximum likelihood method [18]. The log 
marginal likelihood function under the GP model is 

 

( ) T 21 1log | , log log 2
2 2 2n

np σ π= − + −y X θ y α K I ,        (3) 

 
where 1−=α K y and θ is a vector of , 2

fσ , and 2
nσ . The partial 

derivative of (3) with respect to θ is minimized by using a 
gradient-based optimizer until converging to zero [18]. This 
result gives a vector of optimized hyperparameters. 

In this section, we give a concise explanation on the 
theoretical framework of the GPR approach. The next section 
delineates step-by-step on its implementation, which 
incorporates with an iterated local search, for the SMTWT 
problem. 

III. PROPOSED ALGORITHM FOR THE SMTWT PROBLEM 
This section aims to discuss on our proposed approach for 

solving the single machine total weighted tardiness scheduling 
problem. This fashion combines the Gaussian process 
regression mechanism with the iterated local search technique 
(i.e., simulated annealing), then we call it as the “GPRISA” 
algorithm. The main procedure of proposed algorithm consists 
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of three phases: data preparation, prediction, and improvement 
phases, which are described respectively. In addition, the 
pseudocode of this method is disclosed at the end of this 
section. 

A. Data Preparation Phase  
This phase deals with the construction of sample sequences 

that provide for training input of GPR. In order to diversify the 
search space, four constructive rules and the double-bridge 
swapping strategy are used to construct the sample sequences. 
Initially, each constructive rule is employed to create the 
initial sequence of Jn  jobs. These dispatching rules [13] are 
compendiously explained as follows: 
1) Weighted shortest processing time (WSPT): Jobs are 

arranged to process on a machine in the ascending order 
of the ratio jS , j j jS p w= . 

2) Shortest processing time (SPT): Each job j  is scheduled 
to process on a machine with the ascending order of its 
processing time.  

3) Biggest weighted first (BWF): Each job j is scheduled to 
process on machine in the descending order of its weight.  

4) The weighted modified due date (WMDD) is an effective 
rule for jobs sequencing with the total weighted tardiness, 
introduced by [24]. This dispatching rule outperforms 
other ones, e.g., EDD, WSPT, and WEDD (weighted 
EDD). The brief procedure is shown in Fig. 2: 

 

 
Fig. 2 Pseudocode of the weighted modified due date rule 

 
After constructing four initial sequences, an individual is 

perturbed again by the double-bridge scheme, which randomly 
selects four jobs in the given sequence and swaps those jobs 
[25]. This leads to new (additional) sequences as in demand. 
Here, we obtain various sample sequences (or observations) to 
be an input of GPR. 

In order to treat the sample sequences as an input of GPR, 
they must be represented and they are available in convenient 
situations. Several mechanisms have been presented to 
represent a permutation of Jn  jobs (or cities in the traveling 
salesman problem), for instance, path representation, binary 
string representation, binary matrix representation [26]. 
However, our proposed algorithm employs the binary string 

scheme to represent all sequences since it performs well when 
making prediction. This method encodes each job in a given 
sequence as a string of ( )2log Jn⎡ ⎤⎣ ⎦ bits, and then a complete 

sequence becomes a string of ( )2logJ Jn n⎡ ⎤⋅ ⎣ ⎦ bits [26]; for 

example, a string of [ ]001 011 010 000 belongs to a 
sequence 2 4 3 1→ → → . 

B. Prediction Phase  
This phase concerns with the prediction of an optimal 

sequence of Jn  jobs that process on the single machine. After 
preparing the training dataset in Section A, the sample 
sequences and their total weighted tardiness (TWT) values are 
employed to make prediction through GPR model, in which 
the sample sequences are treated as independent variables and 
their TWT values are dependent variables. In order to select a 
suitable model, the SE covariance function is computed over 
all possible pairs of two sequences by using (2), and then it is 
minimized the log marginal likelihood function (as defined in 
(3)) to determine the hyper parameters of the kernel that are 
consistent for the given training inputs. 

In the prediction step, the optimized hyper parameters are 
utilized to compute posterior distribution over functions. At 
this step, a single test input is given and used to compute the 
posterior mean (or the predictive function value) by using (1). 
Note that the single test input in this step is a sequence that has 
a minimum TWT value in training input. Later, the predictive 
function value is employed to indicate the index value r , 
given by 

 

( )2ˆarg min r sr
r y f⎡ ⎤= −⎢ ⎥⎣ ⎦

. 

 
Consequently, the sequence (in training input) that 

corresponds to r th index will be deputized an optimal 
sequence, and it provides for an input of the next phase. 
Moreover, in this step, we modify the GPR codes from their 
original in the GPML toolbox [27].  

C. Improvement Phase  
Several local searches have been proposed to improve an 

obtained sequence, e.g., descent methods, simulated 
annealing, threshold accepting, genetic algorithm, and tabu 
search [6], [13]. However, our proposed algorithm implements 
the iterated local search based on the simulated annealing (SA) 
algorithm (called the iterated SA or the ISA algorithm) 
because it is one of the provably optimal local searches [25], 
[28]–[30]. The ISA technique applies SA as a local search to 
some initially given sequence at the beginning of the 
algorithm, and then a main loop is iterated until some stopping 
criterion is satisfied.  

In each main loop of the ISA mechanism, the modification 
step (“kick-move”) yields a new locally optimal solution 
according to the SA local search and a previous solution, then 
these two solutions are evaluated in the acceptance step before 
starting the next loop. In addition, the SA scheme starts from 
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ŷ y

y
−

= ×

s evaluated ov

osed algorithm
trials: the me
solution fro

set and the a
r an individu
e of the avera
y using (4), a
ge of average

e MAD values
which each o
231%, and 0.0
he obtained so
xtremely clos
ons, which are

S AND RESULT

al conditions t
ts. In additio

ed results fro
or optimal) so
the results o

zed to compa
mon instances. 

m is implemen
n three proble

m size), in whic
otal instances)
computation 
100 CPU3.10
GPR predicti

sequences and
2 0nσ = (by tr

our algorithm 
0.97= , U =

MaxCount _ u
50≤  jobs, 

obs. 
ning dataset t
A algorithm o
, the total w
ore, the perfo
deviation perc
lues achieved
(or optimal) s

100 ,             

ver the proble

m correspond
ean percentage
om the best-
average runnin
ual instance i
age deviation 
and then for 

e deviation (M

s for the wt40
of them conta
0570%, respe
olutions achie
se to the best-
e provided in 

 

TS 
that we 
on, we 
om our 
olutions 
obtained 
are with 
 

nted in 
em sets 
ch each 
), taken 
is done 

0 GHz. 
ion, the 
d initial 
rial and 

(in Fig. 
20000 , 

50u = , 
and 

that we 
on each 

weighted 
ormance 
centage 

d by our 
solution 

      (4) 

m size. 

d to the 
e of the 
-known 
ng time 
in each 
among 
all 40 

MAD) is 

0, wt50, 
ains 40 

ectively. 
eved by 
-known 
the OR 

lib
for
ne
In 
qu
ite
cri
ne

fir
de
zer
the
are
zer
pe
zer

tim
da

brary. Howeve
r searching, a
ar-optimal so

our prelimi
uickly reaches
erations, but 
iteria. Conseq
cessary to ach
 

COMPU

Problem set 
wt40 
wt50 
wt100 

 
For the preci

rst quartile, an
viation occur 
ro percentage
e wt40 proble
e only the med
ro. Lastly, f
rcentage of th
ro; however, t
 

Fig. 4 Percent

 

Fig. 5 The ave
 
Fig. 5 shows

me among thr
ataset) consum

er, the effort o
and it has an
lution when t
inary investig
s the best-kn
it still execu

quently, it tak
hieve the solut

TA
TATIONAL RESUL

MAD (%)
0.0109 
0.0231 
0.0570 

ision and acc
nd third quart
with the sam
 of the averag

em (as in Fig.
dian and first 
for the wt10
he average de
the minimum 

tage of the aver
prob

erage running ti

s the box-and-
ee datasets (c

med by the GP

of computation
n increasing t
the size of dat
gation, the 

nown solution
utes until it 
es more comp
tion. 

ABLE I 
LTS FOR GPRISA

Mean runn

curacy of sea
tile of percen

me valueat zero
ge deviation fo
. 4). For the w
quartile of on

00 problem, 
eviation gets 
percentage of

rage deviation o
blem set 

ime executed o

-whisker plot 
consisting of 4
PRISA algorit

n is spent muc
time to achie
taset becomes
GPRISA alg
n within shor
meets the st
putational tim

A ALGORITHM 
ning time (second

31.3 
36.7 
67.9 

arching, the m
ntage of the a
o while there 
for some instan
wt50 problem
ne that is absor
the distributi
slightly away

f that is still at

obtained from e

n each problem

of average ru
40 instances i
thm. This alg

ch time 
eve the 
s large. 
gorithm 
rt-term 
opping 

me than 

ds) 

median, 
average 
is non-
nces in 

m, there 
rbed at 
ion of 
y from 
t zero. 

 
each 

 
m set 

unning 
in each 
gorithm 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:6, 2014

963

 

 

spends an increasing time as the exponential trend (depending 
on the problem size). For the wt40 and wt50 problems, the 
GPRISA algorithm spends approximately 31 seconds and 35 
seconds of the executing time respectively while it consumes 
roughly 70 seconds of the running time on the wt100 dataset. 

C. Comparison 
This section discusses the comparison of our proposed 

GPRISA algorithm with two recent approaches: the backward 
forward (BF) heuristics [2] and the variable structure learning 

automata (VSLA) [17], on the common 26 instances 
(belonging to three problem sets). The summary results for 
comparison, including the common instance number in each 
problem size, the best-known solution for each instance, the 
mean percentages of average deviation obtained by GPRISA, 
the percentages of average deviation achieved by BF 
heuristics, and the amount of deviation percentages produced 
by VSLA algorithm, can be seen in Table II. 

 
TABLE II 

COMPARISON OF THE SEARCH PERFORMANCE 

Problem set Instance number Best-known 
solutions 

Methods (unit: percent) 
BF heuristics [2] VSLA [17] GPRISA 

wt40 1 913 0.0000 13.075 0.0000 
(Problem size = 40 jobs) 9 16225 2.7304 2.648 0.0000 

11 17465 0.5554 2.961 0.0000 
24 119947 0.4911 0.211 0.0000 
59 3784 0.0000 17.381 0.0000 
89 25881 3.3306 5.227 0.0240 
97 114686 0.3688 0.337 0.0000 

119 66707 0.6461 1.665 0.0000 
wt50 12 36378 0.4508 4.019 0.1792 

(Problem size = 50 jobs) 59 3770 4.1379 16.769 0.1326 
113 35106 4.7884 6.295 0.0000 
120 101665 0.6433 1.189 0.0504 
121 78315 0.6857 0.709 0.0743 

wt100 14 157476 5.8060 9.401 0.0563 
(Problem size = 100 jobs) 24 744287 2.7632 0.154 0.0005 

31 24202 4.5327 25.276 0.1289 
38 90440 9.3941 9.306 0.0621 
42 425875 4.5537 0.797 0.0524 
47 623356 4.2560 0.186 0.0028 
60 19912 7.5331 38.129 0.0000 
71 640816 2.8319 0.165 0.0050 
89 54612 7.8096 6.427 0.0897 
99 622464 4.8980 0.175 0.0058 

111 159123 5.1243 2.431 0.0220 
116 370614 7.3513 0.967 0.0403 
123 397029 5.8991 0.379 0.0345 

 
In Table II, for all the 26 common instances, our proposed 

GPRISA algorithm performs remarkably better amount of 
deviation percentages than both comparing methods. For the 
wt40 problem, our GPRISA algorithm achieves definitely the 
best-known solutions that belong to almost all instances, 
except for the instance number 89 with 0.024% of deviation 
from its best-known value). In addition, for the wt50 and 
wt100 problems, there is only an instance of each problem that 
the GPRISA innovation accomplishes the best-known 
solution, i.e., the instance number 113 of the wt50 problem 
and the instance number 60 of the wt100 problem. 

In summary, our proposed GPRISA algorithm is the best 
method, among three mechanisms. It admirably reaches the 
best-known solutions of nine instances (out of 26). Finally, 
almost all amounts of deviation percentages over 26 common 
instances are lower than 0.1%, from the best-known solutions. 

V. CONCLUSION 
This paper develops a new algorithm, which combines a 

probabilistic method (namely, Gaussian process regression) 
with an iterated local search based on simulated annealing 
scheme, for solving the single machine total weighted 
tardiness-scheduling problem. It adopts many construction 
heuristics: WSPT, SPT, BWF, and WMDD, to construct the 
sample sequences, and then each of individuals are employed 
to generate other sample sequences by using the double-bridge 
method. These sequences and their sums of weighted tardiness 
are treated as a training input of the Gaussian process 
regression (GPR) for making a prediction of an optimal 
sequence. After that, the iterated simulated annealing (ISA) 
technique is called for improving the obtained solution. 
Hence, we call this method: GPRISA algorithm.  

In order to investigate on the search performance, we 
provide the numerical experiments on various problem sizes 
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with the 120 benchmark instances (40 instances for each 
problem size of 40, 50, and 100 jobs) taken from OR library. 
As a result, the proposed GPRISA algorithm performs an 
efficiency performance. In addition, for all three problem 
sizes, it achieves very close to the best-known (or optimal) 
solutions within 0.1% of average deviation percentages, and 
the computational time spent to achieve solution is reasonable. 
Moreover, we compare the search performance of the 
GPRISA algorithm with two existing methods: the backward 
forward (BF) heuristics and the variable structure learning 
automata (VSLA), on the common 26 instances (belonging to 
three problem sets). The results show that our proposed 
GPRISA algorithm clearly outperforms the comparing 
approaches for all 26 common instances. 

The future work aims to improve the performance of our 
proposed GPRISA algorithm to reduce the computational time 
that spends to acquire the optimal values. Furthermore, the 
application of the proposed algorithm will be considered for 
implementing to other optimization problems.  
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