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Abstract—In many applications, it is a priori known that the 

target function should satisfy certain constraints imposed by, for 
example, economic theory or a human-decision maker. Here we 
consider partially monotone problems, where the target variable 
depends monotonically on some of the predictor variables but not all. 
We propose an approach to build partially monotone models based 
on the convolution of monotone neural networks and kernel 
functions. The results from simulations and a real case study on 
house pricing show that our approach has significantly better 
performance than partially monotone linear models. Furthermore, the 
incorporation of partial monotonicity constraints not only leads to 
models that are in accordance with the decision maker's expertise, 
but also reduces considerably the model variance in comparison to 
standard neural networks with weight decay. 

 
Keywords—Mixture models, monotone neural networks, 

partially monotone models, partially monotone problems.  

I. INTRODUCTION 
N many applications, it is a priori known that the target 
function should satisfy certain constraints imposed by, for 

example, economic theory or a human-decision maker. In 
many cases, however, the final model obtained by data mining 
techniques alone does not meet these constraints. It is required 
that the algorithms have to be modified (enhanced) to obey the 
constraints in a strict fashion.  

One type of constraint, which is common in many decision 
problems, is the monotonicity constraint stating that the 
greater an input is, the greater the output must be, all other 
inputs being equal. There is a wide range of applications 
where monotonicity properties hold. Well-known examples 
include credit loan approval, the dependence of labor wages 
as a function of age and education, investment decisions, 
hedonic price models, selection and evaluation tasks ([4],[6]).  

Several data mining techniques have been developed, which 
incorporate monotonicity constraints such as neural networks 
([3],[5],[11],[12]), rational cubic interpolation of one-
dimensional functions ([10]), decision trees ([1],[8]), etc. 
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However, the main assumption for the implementation of most 
of these methods is that the function (output) being estimated 
should be monotone in all inputs (so-called total 
monotonicity). This in practice, of course, is not always the 
case.  

In this paper we consider partially monotone regression 
problems, where we assume that the dependent variable 
depends monotonically on some of the independent variables 
but not all. For example, common sense suggests that the 
house price has monotone increasing dependence on the 
number of rooms and the total house area, whereas for the 
number of floors this dependence does not necessarily hold. 
Such prior knowledge about monotone relationships can be 
incorporated as constraints in data mining algorithms in order 
to improve the accuracy and interpretability of the models 
derived as well as to reduce their variance on new data. 

The paper is organized as follows. In the next section we 
introduce notations and definitions related to monotonicity, 
which are needed for the follow-up discussion. The main 
contribution of this paper is the approach for partial 
monotonicity presented in Sect.IVA. The approach is based on 
the convolution of a special type of monotone neural 
networks, introduced in Sect.III, and kernel functions. In 
Sect.IVB we present the design and the results from 
simulation studies carried out to test the performance of the 
proposed approach for partial monotonicity. Sect.IVC 
demonstrates the application of the approach on a real case 
study of house pricing. Concluding remarks are given in 
Sect.V. 

II. NOTATIONS AND DEFINITIONS 
Let x denote the vector of independent variables, which 

takes values in a k-dimensional input space X, and y denotes 
the dependent variable that takes values in a one-dimensional 
space Y. We assume that a data set D = (x, y) of p points in 
X*Y is given.  

For totally monotone problems, we assume that D is 
generated by a process with the following properties 

 
( ) ,fy ε+= x  (1)    

where f is a monotone function, and ε is a random variable 
with zero mean and constant variance 2

εσ . Monotonicity of f 
on x is defined on all independent variables by 
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( ) ( ),ff 2121 xxxx ≥⇒≥  (2)              

where 21 xx ≥  is a partial ordering on X defined by 21
ii xx ≥ , 

for i = 1, 2, …, k. The pair (x1, x2) is called comparable and if 
the relationship defined in (2) holds, it is also a monotone 
pair. 

Note that even though f is monotone, the data generated by 
(1) is not necessarily monotone due to the random effect of ε. 

For partially monotone problems, we have 
{ }m

i
m kix ,1,| K=∈= Xx , { }k,,kjx m

j
n K1| +=∈= Xx  for 

.kk m <≤1  Furthermore, a data set D = (xm, xn, y) of p points 
is generated by 

 
( ) ,,fy nm ε+= xx  (3) 

 
where f is a monotone function in xm and ε is a random 
variable with zero mean and constant variance 2

εσ .  

Our objective is to find a smooth approximation f̂  of 

f(xm,xn) such that f̂ is monotone in xm, i.e., f̂ is a partially 
monotone estimator.  

A simple solution is to consider the class of partially 
monotone linear functions of the form 

 

( ) ,xaxaa,f̂
k

kj

n
jj

k

i

m
ii

nm

m

m

∑∑
+==

++=
11

0xx  subject to 

ai ≥ 0, i = 1,2, …, km. (4) 
 
We expect that the estimate in (4) would produce good fit 

for linear functions; it would give, however, poor 
approximations for complex functions (see Sect.IVB). 
Therefore, it is necessary to consider more flexible models for 
estimating any continuous partially monotone function.  

In this paper, we look at mixture models of the form 
 

( ) ( ) ( ),f̂,f̂ n
c

C

c

m
c

nm xxxx ϕ⋅= ∑
=1

 (5) 

where C is a number of clusters (subsets of D), ( )mf̂ x  is the 
output of a monotone (Sill) network, presented in the next 
section, built on xm, and ( )nxϕ  is a weight function (kernel) 
based on xn.  

III. MONOTONE NETWORKS 

A. General Notation 
A standard feedforward neural network with multi-layer 

architecture is represented by: 
− Input layer containing k+1 units - one unit for each input 

variable xk, and one bias unit set to a constant value of 1.  
− Hidden layer(s) consisting of a set of H units, which are 

connected to the bias and input nodes.  

− Output layer with one or more units that produce the 
output of the network. Here we consider neural networks 
with only one output node. 

All the connections between the layers are weighted. Let wij 
denote the weight on the connection between input j and 
hidden unit i and vi is the weight on the connection between 
hidden unit i and the output. Then, given x the functional form 
of the output Ox corresponding to a network with one hidden 
layer is represented by 

 

,θθxwλvO
H

i

k

j
ijiji∑ ∑

= =

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

1
0

1
x  (6) 

 
where θi, θ0 are the bias terms to the hidden and output nodes, 
and λ is the activation function, which is usually taken to be 
the sigmoid function ( ) .)e1(1u u−+=λ The class of networks 
in (6) can approximate any continuous function of k variables 
on any compact subset of ℜk ([2]). 

Since the focus of this paper is on monotone problems, we 
are interested in neural networks for which the output is 
guaranteed to be monotone. In [11] it is proved that a special 
class of neural networks has the capacity to approximate 
uniformly to an arbitrary degree of accuracy any continuous 
monotone function. This type of monotone networks is used in 
our study and we refer to it as to Sill networks in the 
remainder of the paper. For clarity, in the next section we 
briefly describe the architecture of Sill networks using similar 
definitions and notations as in [11]. 

B. Sill Networks 
The network considered here is based on the three-layer 

(two hidden-layer) architecture introduced by Sill in [11]. The 
input layer is connected to the first hidden layer consisting of 
a set of linear units, which are combined into several groups, 
(the number of units in each group is not necessarily the 
same). Corresponding to each group is a second hidden-layer 
unit, which computes the maximum over all first-layer units 
within the group. The final output unit computes the minimum 
over all groups. 

In formal notation, a Sill network can be represented as 
follows. Let R denote the number of nodes in the second 
hidden layer, that is the number of groups in the first hidden 
layer, with outputs g1, g2, …, gR, and hr denotes the number of 
hyperplanes within group r, r = 1, 2, …, R. The parameters 
(weights) of the hyperplanes in r are denoted by the vectors 
w(r,1), w(r,2), …, w(r, rh ). Then the output at group r is defined 
by 
 

( ) ( ) ( )( ) ,hj,maxg rj,rj,r
j

r ≤≤+⋅= 1θxwx             (7) 

where θ  is the bias term.  
The final output Ox of the network for input x is given by 
 

( ).gminO r
r

xx =  (8) 
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From (8), it follows that one group and one hyperplane 
within this group determine the output of the network for each 
input vector.  Such group and hyperplane are called active. In 
case of ties in the group or network outputs (though it is 
unlikely as the outputs are continuous), the choice of active 
hyperplane or group is made arbitrarily. 

To guarantee that the network output is monotone, all 
weights from an input to the first hidden layer are constrained 
to be non-negative (non-positive), if increasing (decreasing) 
monotonicity is desired for that input. Here, the parameters in 
(7) are enforced to be non-negative by taking an appropriate 
transformation such as w = z2, where z is a free parameter. 

The Sill network thus described has several advantages. 
First, computation of the output is simple and fast due to the 
limited number of linear unit calculations and simple 
comparison operators performed. In addition, at each iteration 
of the training process the weights of a single linear unit (the 
active one) are only modified, which speeds up network's 
learning. Second, by constraining the coefficients of the linear 
units it is easy to incorporate domain knowledge in the 
network. Therefore, monotonicity can be easily imposed by 
restricting the coefficients to be positive or negative. Finally, 
for a particular input the output from Sill networks is easy to 
understand and interpret by the end user as the parameters of 
the linear units directly reflect the relationships in the data.  

In [11] it is shown in a case study on bond rating that the 
three-layer monotone networks perform better than a linear 
model and standard neural networks for problems where 
monotonicity is present in the domain.  

IV. APPROACH FOR PARTIAL MONOTONICITY 

A. Description  

As stated earlier, our goal is to find a smooth estimation f̂  

of f(xm, xn) given in (2) such that f̂ is monotone in xm.   
To find a smooth estimator of unknown regression function, 

a common approach is to use a non-parametric method such as 
kernel regression. An advantage of the method is its 
flexibility, i.e., it allows estimating functions of greater 
complexity. Besides being smooth, the estimator we look for 
should be also monotone in xm. However, the implementation 
of monotonicity constraints in a kernel estimator is not 
straightforward, especially for multidimensional functions. 

Then an intuitive solution to guarantee that the estimator f̂  
is smooth and partially monotone is to construct monotone 
approximations of f with respect to xm while xn is fixed and 
then to smooth out the resulting estimates by using kernels 
based on xn.  

This approach is used here for building a class of partially 
monotone functions in the form of (4). The idea is to 
convolute Sill networks built on xm and suitable kernel 
functions based on xn. 

In the first step of the proposed approach, the input space 
with respect to xn is partitioned into a number of disjoint 

subsets (clusters) by using a hierarchical clustering algorithm. 
The appropriate number of subsets is determined 
automatically by cutting off the hierarchy obtained from the 
clustering procedure at several levels (from 2 to 10). Then for 
each of the partitioning outcomes we compute the silhouette 
value as a measure for the goodness of clustering (ranged 
from –1 for bad to +1 for good) ([9]). The outcome with the 
maximal silhouette value determines the final number of 
clusters. An additional improvement in the clustering 
procedure is adding weights to the variables in the standard 
Euclidean distance measure we use. In this way, we take into 
account the significance of each variable on the dissimilarities 
between the points and the formation of the clusters, 
respectively. The vector of weights α are determined a priori 
by taking the absolute value of the respective coefficients for 
each variable obtained from the linear model fitted to the 
whole data set and normalizing them to sum up to 1.  

As a result of this partitioning of the original data D, we 
obtain a number C of subsets D1, D2, …, DC, where the 
number of points in the subsets is not necessarily the same. 
There is no restriction on the minimal number of points in a 
subset. 

For each Dc, c = 1, 2, …, C, which contains more than one 
point, the value of the non-monotone variable is fixed to the 
cluster mean .n

cx  Furthermore, an estimate ( )m
cf̂ x  of f is 

obtained based only on the values of the monotone variable xm 

for the points belonging to Dc. This is done by using Sill 
networks, which guarantees that the function approximation is 
monotone within each subset.  

If a cluster with only one point is created (i.e., an outlier in 
respect to the values of the non-monotone variables is 
detected) then the cluster mean takes the values of the non-
monotone variable for that point and the function 
approximation is just the label of the point. The reasoning for 
not ignoring the one-point clusters is as follows. Suppose we 
want to predict the label yz of a new point z, which is closer to 
a one-point cluster than to the others (meaning that the values 
of the non-monotone variables are similar). Now if z has also 
values of the monotone variable that are similar to those of the 
point in the cluster, then the predicted label is expected to be 
also close to the label of the point. However, if the values of 
the monotone variable are dissimilar between the points then z 
can be considered as a point without analog in the data (i.e., 
outlier) but its label can be still predicted by using the 
function estimations from all the clusters as described below. 

In the next step of the approach, for all Dc, c = 1, 2, …, C, 
we define 
 

( ) ,n
c

n
c

1−
−= xxαψ  

where ||⋅|| is the Euclidean distance norm weighted by α, xn 
∈D and n

cx  is the mean (centroid) value of cluster c. By 
definition ψ ≥ 0 and it determines the distance of point x to 
the mean of cluster c. By normalizing ψ with 
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TABLE I 
FACTORS AND THEIR VALUES USED IN THE SIMULATION EXPERIMENTS 

Approach for partial monotonicity Neural networks with weight decay 
Levels (values) Levels (values) Factors 

1 2 3 
Factors 

1 2 3 
1 # points in data 50 150 250 1 # points in data 50 150 250 

2 Noise level ( 2
εσ ) 0.01 0.5 2 2 Noise level ( 2

εσ ) 0.01 0.5 2 

3 # groups in Sill net 2 3 4 3 # hidden neurons  3 9 15 
4 # planes in Sill net 2 3 4 4 Weight decay 0.000001 0.00001 0.0001 

 

( ) ( )
( )

,
C
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c

n
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c
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=
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x
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ψ
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we obtain a function ϕ ≥ 0, for which 
 

( ) .
C

c

n
c 1

1

=∑
=

xϕ  

Hence, ϕ can be considered as a weighted function or a 
kernel in Nadaraya-Watson form ([7],[13]). 

Finally, we convolute ϕc with the corresponding function 
approximations ( )m

cf̂ x  for each cluster c by 
 

( ) ( ) ( ),f̂,f̂ n
c

C

c

m
c

nm xxxx ϕ⋅= ∑
=1

 

to obtain the final estimate of f. 

B. Simulation Studies  
In this section, we present the results from the simulation 

studies designed to test the effectiveness of the approach for 
partial monotonicity. We generate artificial data based on two 
independent variables and a dependent variable computed by 
applying a function that is monotone in one of them and non-
monotone in the other. 

First, two vectors of p values, xm and xn, are generated 
independently from each other. The values of vector xm are 
drawn from the uniform distribution on [0,1]. The vector xn is 
composition of two sub-vectors each of size p/2 points, which 
are drawn from two normal (Gaussian) distributions: N(1,0.5) 
and  N(5,0.5). Then, we compute the values of a third vector y 
by applying a monotone function on xm and a non-monotone 
function on xn plus a random perturbation ε ~ N(0, 2

εσ ): 

( )( ) .επx2sin2x
2
πsin3y nm ++⋅⎟

⎠
⎞

⎜
⎝
⎛+=  

Hence, we can consider xm and xn as the independent 
variables and y as the dependent variable in a data set D=(xm, 
xn, y) of p points.  

Now based on D thus generated we want to build a model 
for predicting y. Given that the constructing function is known 
to be partially monotone, we apply the approach for partial 
monotonicity as an appropriate method for estimation. The 
clustering algorithm used in the approach finds two clusters in 
the data corresponding to the two Gaussians for xn. Kernels 
and Sill networks' outputs are computed for each cluster and 
finally they are convoluted to obtain the final estimation of y. 

To obtain sound assessment for the performance of our 
approach we use standard neural networks with weight decay 
and partially monotone linear models in the form of (3) as 
benchmark methods for comparison. The standard neural 
networks consist of an input layer, one hidden layer and one 
continuous output. In the hidden layer the activation function 
is sigmoid, whereas in the output it is linear. In addition, the 
weight decay is used as a regularization method to prevent the 
networks from overfitting. This is done by adding to the 
mean-squared error the term ∑ij ijw2δ  to penalize large 

weights, where δ is the weight decay parameter. The 
comparison between our approach and the benchmark 
methods is based on the mean-squared error (MSE) as a 
measure for the quality of estimation.  

To obtain more complete performance analysis, the 
experiments with the approach for partial monotonicity and 
neural networks are conducted by using several factors with 
different values for comparison (Table I). 

All possible combinations of the four three-value factors 
require the experiment with each method to run 81 times (34). 
In order to reduce the effort and experimental cost in the 
simulations, we use the so-called fractional factorial design 
([14]), where only a certain number of combinations of factor 
values are taken to carry out the experiments. This is done in a 
systematic way by combining each value of each factor only 
once with each level of the other factors. In our case the 
fractional design requires 9 runs with each method.  

For each run we generate a collection of 50 data samples 
following the data generating procedure described above. For 
computational convenience the values of the independent 
variables in each set are fixed, whereas the value of the 
dependent variable varies across different data samples. The 
approach for partial monotonicity, neural networks with 
weight decay and partially monotone linear models are applied 
on the same collections of data samples.  

As a result from the experiments, for each method we 
obtain 9 estimations of MSE. These results are used then to 
compute the expected value E{MSEijkl} for all possible 
combinations of factor values (i, j, k, l), where i, j, k and l 
range from 1 to 3. As described in [14], this is done by fitting 
the exponential model 

{ } ( ) ( )(
( ) ( )),

exp

lk

jiijkl

µµµµ

µµµµµ

−+−+

+−+−+=
43

21MSEE
   (9) 

where µ  is the mean computed over all 9 estimations, 
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321 ,, kji µµµ  and 4
lµ are the means for each factor value; the fit 

of an exponential function guarantees that the estimated 
E{MSEijkl} is positive. For example, for the combination of 
factor values (50 data points, 2

εσ =0.5, 4 groups, 3 planes), 
i.e., (i=1,j=2,k=3,l=2) the approach for partial monotonicity 
has not been run. Then to compute E{MSE1232}, we use the 
respective means 3

3
2
2

1
1 µµµ ,, , and 4

2µ  in (9).  
Finally, as there are two factors (number of data points and 

noise level), which are the same in the experiments, we want 
to compare the performance of the methods for all 
combinations of values (i, j) (in total 9) of these two factors. 
For this purpose, within each (i, j) out of all value 
combinations (in total 9) we take the minimum estimation and 
variance of MSE over the other two factors. The results 
presented in Table VI in the Appendix show that the proposed 
approach for partial monotonicity is superior to the partially 
monotone linear models in providing a significantly better fit 
to the data, and superior to the standard neural networks in 
reducing considerably the model variance. The last finding is 
clear indication that the models obtained from our approach 
are more robust upon repeated sampling. 

C. Real Case Study  
In this section we present the results obtained from the 

application of the approach for partial monotonicity on a real 
case study of housing pricing. Furthermore, as in the 
simulation studies, the performance of the approach is 
compared to standard neural networks with weight decay and 
partially monotone linear models. 

The data used in the study consist of 119 observations of 
houses in the Dutch city of Den Bosch. There are 11 
independent variables describing the characteristics of a house 
(Table II). The dependent variable we want to predict is the 
house price and for further computational convenience it was 
transformed by taking its logarithm.  

 
TABLE II  

DEFINITION OF VARIABLES 
Symbol Variable 
DISTR Type of district, 4 categ. ranked from bad to good 
AREA Total house area including garden 
RM Number of bedrooms 
TYPE House type, 6 categ., ranked from flat to villa 
VOL Volume of the house 
GARD Type of garden, 4 categ. ranked from bad to good 
GARG 1-no garage, 2-normal garage, 3-large garage 
FLOORS Number of floors 
YEAR Year of building 
X-DIST Horizontal map location  
Y-DIST Vertical map location  

 
This data set has been used in previous studies ([3], [8]), 

which deal with incorporating monotonicity constraints in data 
mining algorithms but only for totally monotone problems. 
Therefore, in these studies, YEAR, X-DIST and Y-DIST were 
dropped out from the data as variables for which monotone 
relationship with the house price does not hold. Furthermore, 
we suspect that the monotonicity dependency on FLOORS is 

not expected (e.g., some expensive houses such as villas may 
have only one floor). Therefore, we conduct a test to check for 
which variables in the housing data the monotonicity 
assumption holds. This is done by using a measure for the 
degree of monotonicity (DgrMon) of data, namely the fraction 
of monotone pairs of all comparable pairs in the data. This 
measure is computed for the original data and for the data sets 
obtained after removing one or more of the four variables, for 
which we suspect lack of a monotone relationship with the 
house price. Based on the results in Table III, we can consider 
FLOORS, X-DIST, Y-DIST, and YEAR as the non-monotone 
variables in the data.  

 
TABLE III  

DEGREE OF MONOTONICITY FOR HOUSING DATA 
Removed variable(s) Comparable pairs DgrMon 
- (original data) 314 0.9140 
FLOORS 331 0.9184 
X-DIST 412 0.9199 
Y-DIST 634 0.9495 
YEAR 1073 0.9553 
Y-DIST,YEAR 1534 0.9615 
FLOORS,Y-DIST,YEAR 1620 0.9630 
X-DIST,Y-DIST,YEAR 2217 0.9648 
FLOORS,X-DIST,Y-DIST,YEAR 2345 0.9659 

 
Using this knowledge about the (non)-monotone 

relationships in the housing data, we apply the approach for 
partial monotonicity (PartMon) in order to build a model for 
predicting the house price. To obtain a sound assessment of 
the generalization capabilities of the model obtained, we split 
randomly the original data into training data of 89 
observations (75%) and test data of 30 observations (25%). 
The former is used to build a model whereas the latter is used 
to test the performance of the model. The random partition of 
the data is repeated 20 times. 

Similarly to the simulation studies, we compare the 
performance of the approach with standard neural networks 
with weight decay (NNet) and partially monotone linear 
models (PMonLin), which are applied on the same data 
samples. We use again several combinations (in total 9) of 
parameters for the Sill networks (groups–2,3,4; planes–2,3,4) 
and neural networks (hidden nodes–5,13,20; weight decay–
0.000001,0.00001,0.0001). The performance of the models is 
measured by computing the mean-squared error (MSE). The 
mean and variance of the minimum MSE over different 
parameter combinations are reported in Table IV.  

To check the significance of the results we performed t-
tests. Since the test set in the experiments with the three 
methods is the same, there is a natural pairing of the estimated 
errors. Therefore we use a paired t-test to test the null 
hypothesis that the models derived from the approach for 
partial monotonicity have the same error as the standard 
neural networks / partially monotone linear models against the 
one-sided alternatives. In addition, we perform F-tests for the 
significance in the variance difference of the models. The p-
values obtained from all tests are given in Table V. 
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TABLE IV 
MINIMUM MSES OBTAINED FROM THE EXPERIMENTS WITH HOUSING DATA 

Minimum MSE Method 
Mean Variance 

PartMon 0.0158 0.0000 
NNet 0.0201 0.0001 
PMonLin 0.0217 0.0001 

 
TABLE V 

P-VALUES OBTAINED FROM THE STATISTICAL TESTS 
p-value Indicator 

Mean Var 
Minimum MSE (PartMon–NNet) 0.005 0.010 
Minimum MSE (PartMon–PMonLin) 0.000 0.033 

 
The results show that the error obtained from the approach 

for partial monotonicity is significantly smaller than those 
obtained from the standard neural networks and partially 
monotone linear models. Furthermore, the significantly lower 
variances of the models derived from the approach for partial 
monotonicity show that they are more stable and robust upon 
repeated sampling.  

V. CONCLUSION 
In this paper we considered partially monotone regression 

problems where the response variable depends monotonically 
on some but not all predictor variables. An approach for 
building partially monotone models was presented, which is 
convolution of weight functions (kernels) based on the non-
monotone variables and monotone (Sill) networks built only 
on the monotone variables. Simulation and real case studies 
showed that the overall performance of the approach is 
significantly better compared to the standard neural networks 
and partially monotone linear models. First the models derived 
from our approach are more accurate than the partially 
monotone linear models. Our method provided also a better fit 
than standard neural networks on real housing data. Further 
comparison with neural networks demonstrates an additional 
advantage of the proposed approach: faster training time due 
to smaller monotone networks built on subsets of data in 

contrast to training a single network with many parameters 
required to learn the whole large data. Also the incorporation 
of partial monotonicity constraints leads not only to models 
that are in accordance with the decision maker's expertise but 
also to significant reduction of the model variance, which 
results in more robust models. 
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APPENDIX 
TABLE VI  

RESULTS OBTAINED FROM THE SIMULATION STUDIES 
50 points 150 points 250 points 

Method 2
εσ =0.01 2

εσ =0.5 2
εσ =2 2

εσ =0.01 2
εσ =0.5 2

εσ =2 2
εσ =0.01 2

εσ =0.5 2
εσ =2 

Minimum MSE/ Variance MSE 
0.05/2e-05 0.11/ 2e-05 0.27/ 3e-05 0.02/ 5e-06 0.05/ 5e-06 0.11/ 7e-06 0.03/ 1e-05 0.05/ 1e-05 0.08/ 2e-05 PartMon* 

(2, 3) (2, 3) (2, 3) (2, 3) (2, 3) (2, 3) (2, 3) (2, 3) (2, 3) 
0.02/6e-03 0.10/ 1e-03 0.20/ 4e-02 0.01/ 9e-03 0.03/ 2e-03 0.09/ 1e-03 0.02/ 3e-02 0.03/ 6e-03 0.09/ 7e-03 NNet* 
(9,1e-006) (9,1e-005)   (9,1e-004) (9,1e-006)   (9,1e-006) (9,1e-005) (9,1e-006)  (9,1e-006)  (9,1e-006) 

PMonLin 0.15/ 2e-07 0.17/ 2e-06 0.25/ 3e-05 0.14/ 1e-07 0.15/ 5e-07 0.18/ 6e-06 0.14/ 1e-07 0.15/ 3e-07 0.17/ 2e-06 
* The numbers in the brackets present the parameters of the Sill/ordinary network for which the minimum MSE is achieved.  
PartMon - (# groups, # planes); NNet - (# hidden neurons, weight decay)  


