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Solving Part Type Selection and Loading Problem in
Flexible Manufacturing System using Real Coded
Genetic Algorithms — Part 11: Optimization
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Abstract—This paper presents modeling and optimization of two
NP-hard problems in flexible manufacturing system (FMS), part type
selection problem and loading problem. Due to the complexity and
extent of the problems, the paper was split into two parts. The first
part of the papers has discussed the modeling of the problems and
showed how the rea coded genetic algorithms (RCGA) can be
applied to solve the problems. This second part discusses the
effectiveness of the RCGA which uses an array of rea numbers as
chromosome representation. The novel proposed chromosome
representation produces only feasible solutions which minimize a
computational time needed by GA to push its population toward
feasible search space or repair infeasible chromosomes. The proposed
RCGA improves the FMS performance by considering two
objectives, maximizing system throughput and maintaining the
balance of the system (minimizing system unbalance). The resulted
objective values are compared to the optimum values produced by
branch-and-bound method. The experiments show that the proposed
RCGA could reach near optimum solutions in a reasonable amount of
time.

Keywor ds—Flexible manufacturing system, production planning,
part type selection problem, loading problem, real-coded genetic
agorithm

|. INTRODUCTION

MS is integrating hardware and software elements and

defined as ‘a collection of production equipment logically
organized under a host computer and physically connected by
a central transport system' [1]. The hardware elements are
made up of computer numerically controlled (CNC) machines
equipped with tool magazine, pallet, loading and unloading
station, buffer for processing parts, material transport and
handling equipment such as automated guide vehicle (AGV)
and conveyor [2][3]. The software elements consist of
standard FM S software from supplier such as CNC program
and traffic management software and may be enhanced by
specific software required by user [1][4][5].

FMS have emerged as the response of a rapid change of
consumer’s demand on a wide variety of products in low to
medium volumes, shortening of product lifetimes and the
increasing competition in national and global market [6][7].
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These objectives may be achieved by the flexibility of FMS
which lead to higher utilization of resources such as machines
and tools. Generally, the flexibility of FMS can be divided into
two categories which may be divided into severa sub
categories. The first is machine flexibility. By using high
technologies, machines configuration can be changed easily by
attaching different tools to produce new type of products for
different market segments [7][8]. The second is routing
flexibility. Higher productivity and profitability can be
achieved by enabling flexibility of production routes. It means
that one product may be produced by a number of alternative
machines and as the result is the increase of a machines
utilization and the decrease of a processing time [9][10].The
FMS has a potential as a strategic tool in manufacturing
industries and its successful implementation depends to the
quality of its production planning. Therefore, an appropriate
production planning for the FMS must be established to adapt
with the increasing automation and complexity of
manufacturing systems [10]. The production planning is
conducted to ensure an efficient production process. Its
important role in determining the responsiveness and the
efficiency of the FM'S make production planning a promising
research area [6][11].There are several issuesin the production
planning stage such as part type selection problem, machine
grouping problem, production ratio problem, resource
allocation problem, and loading problem [12][13]. Definition
of the part type selection and loading problem has been
discussed in the first part of this paper. The machine grouping
problem deals with arrangement of similar machines into
identical machines groups so each machine on the same group
could perform the same operations. The production ratio
problem determines the ratio of selected set of part type should
be produced over time. Resource allocation problem deals
with allocation of the limited number of pallets and fixturesto
the part types. Depend on the specific characteristic of
manufacturing environments, various combination of some
production planning problems have been considered in the
literatures. For example, Bilgin & Azizoglu [14], Chan &
Swarnkar [15], and Chen & Ho [16] solved the machine
loading problem. Swarnkar & Tiwari [17], Choudhary, Tiwari
& Harding [18], Biswas & Mahapatra [7], Ponnambalam &
Kiat [19], and Prakash et al. [20] solved the part type selection
and loading problem simultaneously. Tabucanon, Batanov &
Basu [21] solved the part type selection and loading problem
simultaneously in the first stage and used the result on this
stage to determine the production ratio in the next stage.
However, the routing flexibility was not considered. Kim et al.
[22] solved the loading problem and the partial machine
grouping while considering tool life constraints.
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TABLE | TABLE I
TEST-BED PROBLEMS RANDOMLY GENERATED PARAMETERS
problem num. of num. of num. of scheg!uling Parameters Range
parttypes machines tool types period tool slot capacity of each machine 40-60
1 8 4 20 4000 number of copies of each tool type 2-(nMac-1)
2 8 5 25 4000 number of slots required for each tool type 3-7
3 10 4 20 4000 number of operations of each part type 2-(nMac)
4 10 5 25 4000 batch size of each part type 40-60
5 16 4 20 7000 value of each part type (dollar) 5-10
6 16 5 25 7000 number of possible machines for each operation 1-3
7 18 4 20 7000 processing time of each operation 20-40
8 18 5 25 7000 number of tool types required for each operation 5 2-
9 24 4 20 10000 nMac: number of machines
10 24 5 25 10000
un 26 4 20 10000 A chromosome construction for the real-coded GAGRE
12 26 5 25 10000 was also explained. The chromosome is a vectoreaf r
number whose size is same with the number of ppest Two
Seok Shin, Park & Keun Kim [23] solved the loadingcrossover methoddlgt-crossoverand extended-intermediate-

problem while considering a various flexibility $ucas
machine, sequence, tool and process routing. Thisemp
focuses on the part type selection and loading lpnolwith
machine and tool flexibility.

A various approaches have been proposed to soke
optimization of the production planning problemsclsuas
mathematical programming [21], Lagrangean
approach [14], genetic algorithms [16][18], paeictwarm
optimization [7][19], ant colony optimization [15]mmune
algorithm [20], two-stage heuristics based on apaioking
algorithms and a simple search technique [22], iragkent
system [24], and symbiotic evolutionary algorith@3]. A
combination of two methods was also used such bsdiging
genetic algorithm with simulated annealing [25][2GInd
hybrid tabu search and simulated annealing-baséfd Here,
heuristic methods is widely used since direct meshahich

crossovey and two mutation methodsrahdom exchange
mutation and simple-random-mutatignwere used to produce
new generations. A fithess function which is useaneasure
the goodness of the solution was constructed bygusivo
bbjective functions of the optimization of the pastpe
selection and machine loading problem, minimizirygtem

relaxatiounbalance and maximizing system throughput. A stmpl
problem set was given to demonstrate how the pexpos

RCGA solved the problem and produced an optimumtisol
in reasonable amount of time.

I1l. RESULT AND DISCUSSION

To evaluate the performance of the RCGA, we geeetat
test-bed problems as shown in Table 1. Problents 4 are
considered as small size problems, problems 5 tare8
medium size problems and problems 5 to 8 are laige

are based on mathematical programming and SM&fypiems. Lengths of scheduling period for all niaeh are

enumeration are not practical to solve these caxnmpieblems
[27]. This paper proposes a GA which uses an avfaeal

numbers as chromosome representation so the GAbean

called the real coded GA (RCGA).

Il. REVIEW OF PART |

In part I, we considered a FMS which consists s#vermethod for the RCGA. Four common selection methods

machines. The machines can perform different ojmarst
when they are equipped with different tools. Eaalt fype has
a production requirement in form of sequence ofrajens.

same within each problem. The other randomly geedra
parameters are shown in Table 2.

The RCGA is implemented in Java and experiment is

carried out on personal computer equipped withi@@ore™
i3-380 processor working at speed 2.53 GHz. Tlst §itep in
our experiment is determining the most suitableect@n

(roulette wheel, binary tournament, elitist, anglaeement)
are examined.

Each operation can be processed on several altenat The other parameters are set as follows:

machines with several alternative tools. Time ndédde parts’
operations depend on the assigned machine. Hexel-MS
has machine and tool flexibility. Two common objees
considered in literatures, maximizing system thigug and
maintaining the balance of the system (minimizingtam
unbalance), were explained.

» Crossover rate is 0.25.
*  Mutation rate is 0.05

e Population size is 500, 1000 and 1500 for smalé siz

problems, medium size problems and large size pnabl
respectively.
*  The weighted parameters arg3 anda,=1.

 GA iterations will be stopped after 5,000 successiv

generations no longer produces better results.

1825



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:6, No:9, 2012

TABLE Il
COMPARISONAMONG SELECTION METHODS

selection Rin Frnax Favg time itr

best
roulette wheel 2.1264 23104 21875 585 3593
binary tournament  2.2250 2.4175 2.3488 24.7 1980
elitist 2.1962 2.4101 2.3344 26.7 1284
replacement 2.3331 2.4178 2.3659 38.9 7181
TABLE IV

COMPARISONAMONG CROSSOVERRATES

crossover rate mutation rate v 29€ of

fitness value

0.00 0.40 2.377

0.05 0.35 2.376

0.10 0.30 2.392

0.15 0.25 2.388

0.20 0.20 2.393

0.25 0.15 2.384

0.30 0.10 2.400

0.35 0.05 2.366

0.40 0.00 2.294

By using these parameters and data from probleme #un
the RCGA 10 times and obtain results of minimufy,{,
maximum Enay), and averageH,,y of fitness values as shown
in Table 3. The average computation timeedondps and
number of iterations to obtain the best solutidn l{es) are
also presented. Here, the replacement selectiorhomhet
produces a higher of average of fitness value toter
methods. Therefore, we use this selection methdatiémext
step of the experiment.

By using the replacement selection, the RCGA caimtaia
the population diversity and explore the searcltafretter. It
is indicated by its significantly higher numberitdrations to
obtain the best solution. In contrast, the othelect®n
methods achieve their convergence faster which imgigate
that they are trapped in local optimum areas amdatsobtain
a better solution. Figure 2 depicts a one run freath
selection method. It shows the improvement of thet fitness
value along generations. While all other selectinathods
achieve their convergence in less than 2000 gdopsatthe
replacement selection gradually improve its chramess to
obtain higher fithess value.

The second step in our experiment is determiniegnilost
suitable crossover rate and mutation rate for tf@GR.
Appropriate crossover rate and mutation rate wdlphthe
RCGA to balance its exploration and exploitatiorligband
avoid the premature convergence [28]. In order b & fair
result, we vary the crossover ratg)(from O to 0.4 and set the
mutation rate rfir) in such way thatr+mr=0.4. Here, all runs
produce 0.4x1000 offspring in each generation. Agaie run
the RCGA 10 times using problem 7.

245

g
.

o [ePlacement p——
r' |_| binary tournament

elitist

i~
I
wn

ra

ha ra

un w
| |

fitness value
LI !
=]
; .

M
=
wun

roulette wheel

~
=

=
=1
o

ra

0 1000 2000 3000 4000 5000 6000 7000 8000 ©S000 10000

generation

Fig. 1 The best fithess value for each selection method
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Fig. 2Fitness values for various crossover rates

The result is presented in Table 4 and Figure Zatgntly,
the best result is produced by using crossoverat@®3 and
mutation rate of 0.1. Here, by using a low valuefssover
rate the RCGA will greatly depend on its mutatiater and
tend acting as a random search method. In othed, hae
RCGA will lose its ability to maintain populatioriversity if
using a high crossover rate and a low mutation ragbility to
maintain population diversity means that the RCGrmt
explore the search space effectively and will {ikeé trapped
in local optimum area.

After determining the most suitable crossover ratel
mutation rate for the RCGA, we run the RCGA fortelit-bed
problems. To measure the performance of the RCGAIsee
frequency of achieving optimum solution (FOS) amedidtion
of objective values resulted by GA to its optimueiues. The
optimum solutions are obtained by using branch{amahd
method. It is should be noted that branch-and-bauethod
required computational time more than 10 hours dtves
particular test bed problems which cannot be aeckph daily
operation of the FMS. Equation (1) shows the dewmabf
average fitness values from 20 runs of GA to optinfitness
value. Fgy is fitness value obtained by branch-and-bound
method FGA is fitness value obtained by GA in run

E - (Fopt B r221 FGAV ) 20) x100% (1)
F

dev
opt
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TABLE V
COMPUTATIONAL RESULTS

RCGA Optimum values
problem time Fael%0)
FOS (seconds) F TH Su F TH
1 20 4.29 2.545 1,616.0 803.0 2.545 1616 803 0.00
2 20 5.09 2.926 2,591.0 9,838.0 2.926 2591 9838 00 0.
3 20 5.24 2.972 3,058.0 6,858.0 2.972 3058 6858 00 O.
4 20 6.26 2.531 2,196.0 3,233.0 2.531 2196 3233 000.
5 12 16.47 2.133 2,604.0 3405.6 2.156 2,676 3,738 1.06
6 13 23.63 1.936 2,587.9 7,951.6 1.968 2,605 7,126 1.59
7 2 22.21 2.404 3,321.9 3,543.1 2.458 3,595 5,529 2.23
8 17 19.86 2.077 2,861.4 4,997.4 2.088 2,871 4,768 0.51
9 3 84.09 2.260 3,940.9 4,832.4 2.349 4,150 4,204 3.79
10 8 59.06 1.803 3,179.6  10,666.6 1.809 3,212 10,879 0.34
11 0 84.29 2.248 4,286.7 6,077.9 2.305 4,417 5519 245
12 1 92.36 1.971 3,893.3 10,956.0 2.018 3,937 D29 231
average 35.25 1.19

The computational results are presented in Tab{&ofumn
‘time’ shows average of computation time (secorfdsn 20
runs of the RCGA. Columns ‘F’, ‘TH’ and ‘SU’ belogolumn
‘RCGA’ show the average of fithess value, throughpod
system unbalance obtained from 20 runs of the RCGA.

Apparently for a small number of part types (8 409, the
proposed real coded GA could achieve optimum swoiut all
runs (problems 1 to 4). These results are obtaiméess than
7 seconds. In the medium size problems (probleitas8), the
best result is obtained in problem 8 whktf, of 0.51% and the
worst solution is occurred in problem 6 wil., of 1.59%.
Except for problem 7, the RCGA could produce optimu
solutions in more than 10 runs for all problems.

The RCGA also obtains optimum solutions in seveuak
in the large size problems (problems 9, 10, and t#®) best
result is obtained in problem 10 wiffye, of 0.34% and the
worst solution is occurred in problem 9 wily., of 3.79%.

IV. CONCLUSION

The part type selection and loading problem with
flexibilities of operations have been modeled iis thaper.
These NP-hard problems were solved by using reigaGA.
Combination of proper representation and simpleegen
operators could produce promising results in realsken
amount of time. By using 12 test bed problems,ptaposed
RCGA improves the FMS performance by considering tw
objectives, maximizing system throughput and maiig the
balance of the system (minimizing system unbalan@&e
resulted objective values are compared to the qpimalues
produced by branch-and-bound method. The experément
show that the proposed RCGA could reach near optimu
solutions in reasonable amount of time.

Further work will address more complex problem wihic
considers alternative production plans whidlefer to

Overall, in larger problemsqe, values tend to increase as thepossibility of producing part on alternative op@mat
search space becomes very wide. Increasing thelgipu sequence. Resource allocation problem which refers
size, crossover rate and mutation rate will redeige values gjlocation of limited number of pallets and fixtar® the part

but the computation time will rise.
It should be noted that lower throughputs achielvgdhe
RCGA is compensated by better (lower) system umicakson

problems 5, 7 and 10. A4, values are below 4% which may

be regarded as good results considering thesetseatg
achieved in average of 35.25 seconds.

Note that these promising results are achievedsimgonly
simple genetic operators. The novel proposed chsome
representation produces feasible solutions whichimize a
computational time needed by GA to explore the ifdas
search space efficiently [29][30]. Other approacheay
require sophisticated strategies to achieve goediteewhich
may require excessive computation time such asidigbrg
tabu search with simulated annealing [17], hybidjzgenetic
algorithm with simulated annealing [25]-[26] andugzping
particle swarm optimization with local search meth§7].

types is also integrated to the existing problefgerefore, a
more powerful of GA is required.

Hybridizing the RCGA with other heuristics methoalsd
developing new crossover and mutation methods bl
considered.
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