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Solving Fully Fuzzy Linear Systems by use of a
Certain Decomposition of the Coefficient Matrix
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Abstract—In this paper, we give a certain decomposition of the
coefficient matrix of the fully fuzzy linear system (FFLS) to obtain
a simple algorithm for solving these systems. The new algorithm
can solve FFLS in a smaller computing process. We will illustrate
our method by solving some examples.
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I. INTRODUCTION

ONE major application of the fuzzy number arithmetic
is treating linear systems whose parameters are all or

partially represented by fuzzy numbers. The term fuzzy matrix,
which is the most important concept in this paper, has various
meanings. For definition of a fuzzy matrix we follow the
definition of Dubois and Prade, i.e. a matrix with fuzzy
numbers as its elements [5]. This class of fuzzy matrices
consist of applicable matrices, which can model uncertain
aspects and the works on them are too limited. Some of
the most interesting works on these matrices can be seen in
[2], [3], [4], [7]. A general model for solving a fuzzy linear
system whose coefficient matrix is crisp and the right-hand
side column is an arbitrary fuzzy vector, was first proposed
by Friedman et al. [6] and many authors is considered these
models for their studies (see in [8] and [9]). Another important
kind of fuzzy linear systems are including triangular fuzzy
numbers in whose all parameters and is named fully fuzzy
linear systems (see in [3], [4], [7]). Nevertheless, there is just
a few computational methods for solving the fully fuzzy linear
systems until now. For example, recently Dehghan and his
colleagues in [3] and [4] proposed two numerical methods
for solving these kind of systems. In [7], authors used a new
method for solving these systems based on QR decomposition.
Hence, in this paper we intend to solve Ã⊗ x̃ = b̃, where Ã is
a fuzzy matrix and x̃ and b̃ are fuzzy vectors with appropriate
sizes.

The structure of this paper is organized as follows:
In Section 2, we first give some basic concepts of fuzzy
sets theory and then define a fully fuzzy linear system of
equations. A numerical method for computing the solution of
FFLS is designed in Section 3. Numerical examples are given
in Section 4 to examine our method.
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II. PRELIMINARIES

In this section, we review some necessary backgrounds and
notions of fuzzy sets theory (taken from [5], [7]).
Definition 2.1. A fuzzy subset Ã of R is defined by its
membership function

μ
Ã

: R → [0, 1],

which assigns a realnumber μ
Ã

in the interval [0, 1], to each
element x ∈ R, where the value of μ

Ã
at x shows the grade

of membership of x in Ã.
Definition 2.2. A fuzzy set with the following membership
function is named a triangular fuzzy number and in this paper
we will use these fuzzy numbers.

μÃ(x) =

⎧⎨
⎩

1 − m−x
α , m − α ≤ x < m, α > 0,

1 − x−m
β , m ≤ x ≤ m + β, β > 0,

0, otherwise.
(1)

Definition 2.3. A fuzzy number Ã is called positive (negative),
denoted by Ã > 0 (Ã < 0), if its membership function μÃ(x)
satisfies μÃ(x) = 0 , ∀x ≤ 0 (∀x ≥ 0).
Using its mean value and left and right spreads, and shape
functions, such a fuzzy number Ã is symbolically written

Ã = (m,α, β).

Clearly, Ã = (m,α, β) is positive, if and only if m − α ≥ 0.

Remark 2.1. We consider 0̃ = (0, 0, 0) as a zero triangular
fuzzy number.
Remark 2.2. We show the set of all triangular fuzzy numbers
by F (R).
Definition 2.4 (Equality in fuzzy numbers). Two fuzzy
numbers M = (m,α, β) and N = (n, γ, δ) are said to be
equal, if and only if m = n, α = γ and β = δ.
Definition 2.5. For two fuzzy numbers M = (m,α, β) and
N = (n, γ, δ) the formula for the extended addition becomes:

(m,α, β) ⊕ (n, γ, δ) = (m + n, α + γ, β + δ). (2)

The formula for the extended opposite becomes:

−M = −(m,α, β) = (−m,β, α). (3)

The approximate formulas for the extended multiplication of
two fuzzy numbers can be summarized as follows as given in
[5]:
If M > 0 and N > 0, then

(m,α, β) ⊗ (n, γ, δ) ∼= (mn, mγ + nα,mδ + nβ). (4)
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For scalar multiplication:

λ ⊗ (m,α, β) =
{

(λm, λα, λβ), λ ≥ 0,
(λm,−λβ,−λα), λ < 0.

(5)

Definition 2.6. A matrix Ã = (ãij) is called a fuzzy matrix,
if each element of Ã is a fuzzy number.
A fuzzy matrix Ã will be positive and denoted by Ã > 0̃, if
each element of Ã be positive. We may represent n×n fuzzy
matrix Ã = (ãij)n×n, such that ãij = (aij , αij , βij), with the
new notation Ã = (A,M,N), where A = (aij), M = (αij)
and N = (βij) are three n × n crisp matrices.
Definition 2.7. A square fuzzy matrix Ã = (ãij) will be an
upper triangular fuzzy matrix, if

ãij = 0̃ = (0, 0, 0), ∀i > j,

and a square fuzzy matrix Ã = (ãij) will be a lower triangular
fuzzy matrix, if

ãij = 0̃ = (0, 0, 0), ∀i < j.

Definition 2.8. Consider the n × n fuzzy linear system of
equations [3], [7]:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ã11 ⊗ x̃1) ⊕ (ã12 ⊗ x̃2) ⊕ ... ⊕ (ã1n ⊗ x̃n) = b̃1,

(ã21 ⊗ x̃1) ⊕ (ã22 ⊗ x̃2) ⊕ ... ⊕ (ã2n ⊗ x̃n) = b̃2,
.
.
.

(ãn1 ⊗ x̃1) ⊕ (ãn2 ⊗ x̃2) ⊕ ... ⊕ (ãnn ⊗ x̃n) = b̃n.

(6)

The matrix form of the above equations is

Ã ⊗ x̃ = b̃,

where the coefficient matrix Ã = (ãij), 1 ≤ i, j ≤ n is a
n × n fuzzy matrix and x̃j , b̃j ∈ F (R). This system is called
a fully fuzzy linear system (FFLS).
In this paper we are going to obtain a positive solution
of FFLS Ã ⊗ x̃ = b̃, where Ã = (A,M,N) > 0̃,
b̃ = (b, g, h) > 0̃ and x̃ = (x, y, z) > 0̃. So we have

(A,M,N) ⊗ (x, y, z) = (b, g, h).

Then by using Eq.(5) we have

(Ax, Ay + Mx,Az + Nx) = (b, h, g).

Therefore, Definition 2.4 concludes that⎧⎨
⎩

Ax = b,
Ay + Mx = g,
Az + Nx = h.

(7)

So, by assuming that A be a nonsingular matrix we have⎧⎨
⎩

Ax = b ⇒ x = A−1b,
Ay = g − Mx ⇒ y = A−1(g − Mx),
Az = h − Nx ⇒ z = A−1(h − Nx).

III. A NEW DECOMPOSITION METHOD FOR SOLVING FFLS

Theorem 3.1. Let A be an n × n matrix with all non-zero
leading principal minors. Then A has a unique factorization:

A = LU,

where L is unit lower triangular and U is upper triangular [1].
Assume that Ã = (A,M,N), where A is a full rank crisp
matrix. Then if we let

(L1, 0, 0) ⊗ (U1, U2, U3) = (A,M,N), (8)

then from (5) we have⎧⎨
⎩

L1U1 = A ⇒ U1 = L−1
1 A

L1U2 = M ⇒ U2 = L−1
1 M

L1U3 = N ⇒ U3 = L−1
1 N

(9)

where matrix L1 is a lower triangular crisp matrix and matrix
U1 is an upper triangular crisp matrix.
Again consider the fully fuzzy linear systems. We are going
to construct a new method for solving FFLS Ã ⊗ x̃ = b̃,
where Ã = (A,M,N), x̃ = (x, y, z), b̃ = (b, g, h), that is

(A,M,N) ⊗ (x, y, z) = (b, g, h).

Eq.(8) implies that

(L1U1, L1U2, L1U3) ⊗ (x, y, z) = (b, g, h).

Therefore, by using (5), we have

(L1U1x, L1U2x + L1U1y, L1U3x + L1U1z) = (b, g, h).

The current system by use of Definition 2.4 can be rewrite as
follows: ⎧⎨

⎩
L1U1x = b,
L1U2x + L1U1y = g,
L1U3x + L1U1z = h,

and therefore ⎧⎨
⎩

x = U−1
1 L−1

1 b,
y = U−1

1 L−1
1 (g − L1U2x),

z = U−1
1 L−1

1 (h − L1U3x).
(10)

Now we are a position to present a new algorithm to
solve the fully fuzzy linear system.

A. Algorithm

(Fully Fuzzy Linear Systems Solver)
Step 1: Assume that Ã = (A,M,N), where A is a full rank
crisp matrix.
Compute LU-decomposition for crisp matrix A as

A = L1U1.

Step 2: Set
L2 = 0, L3 = 0.
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Step 3: Compute
U2 = L−1

1 M.

Step 4: Compute
U3 = L−1

1 N.

Step 5: Compute the solution of the fully fuzzy linear system
(A,M,N) ⊗ (x, y, z) = (b, g, h) as follows:⎧⎨

⎩
x = U−1

1 L−1
1 b,

y = U−1
1 L−1

1 (g − L1U2x),
z = U−1

1 L−1
1 (h − L1U3x).

IV. NUMERICAL EXAMPLES

In this section, we apply our algorithm for solving three
fully fuzzy linear systems to illustrate the advantage of our
method.
Example 4.1. Consider the following FFSL (taken from [3]):⎛

⎝ (6, 1, 4) (5, 2, 2) (3, 2, 1)
(12, 8, 20) (14, 12, 15) (8, 8, 10)
(24, 10, 34) (32, 30, 30) (20, 19, 24)

⎞
⎠

⎛
⎝ x̃

ỹ
z̃

⎞
⎠

=

⎛
⎝ (58, 30, 60)

(142, 139, 257)
(316, 297, 514)

⎞
⎠

First we obtain LU-decomposition for matrix A as follows:⎛
⎝ 6 5 3

12 14 8
24 32 20

⎞
⎠ = L1U1 =

⎛
⎝ 1 0 0

2 1 0
4 3 1

⎞
⎠

⎛
⎝ 6 5 3

0 4 2
0 0 2

⎞
⎠ .

So we can obtain matrices U2 and U3 from steps 3 and 4 in
Algorithm as follows:

U2 = L−1
1 M =

⎛
⎝ 1 2 2

6 8 4
−12 −2 −1

⎞
⎠ ,

U3 = L−1
1 N =

⎛
⎝ 4 2 1

12 11 8
−18 −11 −4

⎞
⎠ .

Therefore, Eq.(10) concludes that

x̃ = (4, 1, 3), ỹ = (5,
1
2
, 2), z̃ = (3,

1
2
, 1).

As we see, the mentioned system has a same solution with
LU decomposition method as given in [3].

Example 4.2. Consider the following FFSL (taken from [4]):⎛
⎝ (19, 1, 1) (12, 1.5, 1.5) (6, 0.5, 0.2)

(2, 0.1, 0.1) (4, 0.1, 0.4) (1.5, 0.2, 0.2)
(2, 0.1, 0.2) (2, 0.1, 0.3) (4.5, 0.1, 0.1)

⎞
⎠

⎛
⎝ x̃

ỹ
z̃

⎞
⎠

=

⎛
⎝ (1897, 427.7, 536.2)

(434.5, 76.2, 109.3)
(535.5, 88.3, 131.9)

⎞
⎠

First we obtain LU-decomposition for matrix A as follows:⎛
⎝ 19 12 6

2 4 1.5
2 2 4.5

⎞
⎠ = L1U1 =

⎛
⎝ 1 0 0

0.1052 1 0
0.1052 0.2693 1

⎞
⎠

⎛
⎝ 19 12 6

0 2.7368 0.8684
0 0 3.6346

⎞
⎠ .

So we can obtain matrices U2 and U3 from steps 3 and 4 in
Algorithm as follows:

U2 = L−1
1 M =

⎛
⎝ 1 1.5 0.5

−0.0052 −0.0578 0.1473
−0.0038 −0.0423 0.0076

⎞
⎠ ,

U3 = L−1
1 N =

⎛
⎝ 1 1.5 0.2

−0.0052 0.2421 0.1789
0.0961 0.0769 0.0307

⎞
⎠ .

Therefore, Eq.(10) concludes that

x̃ = (36.9999, 7, 13.3015),

ỹ = (61.9999, 5.5, 4.5793),

z̃ = (74.9999, 10.1999, 13.9195).

V. CONCLUSION

In this paper, we used a certain decomposition of the
coefficient matrix of the fully fuzzy linear system of equations
to construct a new algorithm for solving fully fuzzy linear
systems. We examined our algorithm by solving three fully
fuzzy linear systems. In particular, in the second and third
cases, we exactly used two examples which was used in [3]
and [4], respectively. We saw that both algorithms obtained
the same solutions, but our algorithm (As one may compare
with [3] and [4]) can solve the mentioned linear systems by a
shorter calculation.
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