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Abstract—We introduce an extended resource leveling model 

that abstracts real life projects that consider specific work ranges for 

each resource. Contrary to traditional resource leveling problems this 

model considers scarce resources and multiple objectives: the 

minimization of the project makespan and the leveling of each 

resource usage over time. We formulate this model as a 

multiobjective optimization problem and we propose a multiobjective 

genetic algorithm-based solver to optimize it. This solver consists in 

a two-stage process: a main stage where we obtain non-dominated 

solutions for all the objectives, and a postprocessing stage where we 

seek to specifically improve the resource leveling of these solutions. 

We propose an intelligent encoding for the solver that allows 

including domain specific knowledge in the solving mechanism. The 

chosen encoding proves to be effective to solve leveling problems 

with scarce resources and multiple objectives. The outcome of the 

proposed solvers represent optimized trade-offs (alternatives) that can 

be later evaluated by a decision maker, this multi-solution approach 

represents an advantage over the traditional single solution approach. 

We compare the proposed solver with state-of-art resource leveling 

methods and we report competitive and performing results.  

 

Keywords—Intelligent problem encoding, multiobjective 

decision making, evolutionary computing, RCPSP, resource leveling. 

I. INTRODUCTION 

ROJECT Scheduling is a mechanism which translates the 

performance imperatives of a project plan into a sequence 

of activities to be executed in order to deliver the optimized 

performance indicator predicted by the higher-level plan. More 

precisely, project scheduling deals with the exact allocation of 

resources (e.g. people, machines, raw materials, etc.) to 

activities over time, i.e., finding a resource that will process 

the activity and finding the time of processing. The obtained 

schedule must respect the precedence, duration, capacity and 

incompatibility constraints. One common desirable property 

on a schedule is the minimization of the project duration 

(makespan). Other desirable property is the balanced use of the 

resources over time. Resource leveling is a process that 

permits to minimize the variation of the resource usage over 
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time, and thus, reduce extraordinary demands or excessive 

fluctuations in the usage of resources, which may be costly in 

certain contexts. Project scheduling and leveling are among the 

top challenges in project
 
management.  

Many previous research works have analyzed independently 

the makespan minimization of a project and the minimization 

of the variability on the resource usage. This work introduces 

an extended resource leveling problem which considers a 

resource constrained project and seeks, simultaneously, the 

minimization of the project’s makespan and the minimization 

of the variability of each resource usage. We model this 

scheduling problem as a multiobjective optimization problem 

and we propose to solve it in a two-stage process where we 

apply multiobjective evolutionary algorithms as the underlying 

solving mechanism.  

This document is organized as follows: in section II we 

present a review of the resource constrained project scheduling 

problem (minimization of makespan), in section III we present 

a review of the resource leveling problem (resource 

smoothing), in section IV we introduce the extended resource 

leveling problem, in section IV we describe a solver for this 

model, in part V we present the results of the experiments with 

the proposed solver, and finally, in part VI we present our 

conclusions.  

II. THE RESOURCE-CONSTRAINED PROJECT SCHEDULING 

PROBLEM 

A. The RCPSP Model 

Informally, the Resource-Constrained Project Scheduling 

Problem (RCPSP) seeks the answer to the following question: 

“Given the limited availability of resources, what is the best 

way to schedule the activities in order to complete the project 

in the shortest possible time?” Among the practical 

applications of this model we can mention the construction of 

buildings and the production planning. The RCPSP addresses 

the operational, short term, scheduling. The RCPSP may be 

formulated as follows: a project consists of a set of activities 

{ } n1,...,A = where each activity has one mode of execution 

and has to be processed without interruption (i.e. no 

preemption allowed). There exist two dummy activities 1 and 

n which represents the root (start) and the sink (end) of the 

projects respectively. The duration of an activity j is denoted 

by dj, the root and the sink have a duration of d1=0 and dn=0 

respectively. There are precedence relations between the 
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activities in A, which are given by sets of immediate 

predecessors Predj indicating that and activity j may not be 

started before all of its predecessors are completed (i.e. finish-

to-start with zero-lag). Analogously, Succj is the set of 

immediate successors of activity j.  The precedence relations 

can be represented by an activity-on-node network which is 

assumed to be acyclic. There are K renewable resource types; 

each resource k has a constant per-period-availability Rk. With 

the exception of the root and sink activities, each activity j 

requires rjk units of resource k during each period of its 

duration. All parameters are assumed to be non-negative 

integer valued.  

The objective of the RCPSP is to find a schedule S of the 

activities on A, i.e. a set of starting times { }nss ,....,1
 where 

s1=0, the precedence and resource constraints are satisfied 

(feasible schedule), and the schedule duration (makespan) 

T(S)=sn is minimized. The RCPSP has been widely studied 

over the past few decades. For a comprehensive survey on the 

RCPSP the reader is referred to the survey made in [1]. Fig. 1 

illustrates a RCPSP instance represented as an activity-on-

node network.  

 

 
Fig. 1 A RCPSP Instance with 13 activities and 1 resource (adapted 

from [10]) 

B. Solving the RCPSP 

As the RCPSP is a generalization of the job shop problem, it 

is a NP-hard problem in the strong sense [2]. Therefore, 

heuristic and metaheuristic solution procedures are 

indispensable when solving large problem instances as they 

usually appear in practical cases [3]. In order to apply an 

optimization algorithm to a problem, at first a suitable 

representation of solutions has to be chosen. For this reason, 

schedules are often represented by sequences of activities. 

From these sequences feasible starting times are derived by 

appropriate decoding procedures (so-called schedule 

generation schemes).  

 

1) Schedule Generation Schemes 

The schedule generation schemes (SGS) are the core of 

most of the heuristic and metaheuristic solution procedures for 

the RCPSP [3]. In a SGS the activities are iteratively 

scheduled (i.e. sj is defined for each activity) and in each 

iteration an eligible activity is chosen according to some 

selection mechanism.  The most common selection 

mechanisms are the ones proposed by priority rules, activity 

lists and random keys (reviewed in the following sections). 

The main types of SGS are the Serial SGS and the Parallel 

SGS, illustrated in Fig. 2 (a) and (b), respectively. 

Computational experiments of various authors have shown that 

for some instances the serial SGS produces better schedules, 

for other instances the parallel SGS is more suitable [4].  

 

   
Fig. 2 Feasible schedules for the project in Fig. 1 generated with 

different SGS and the LPT rule 

a) Serial SGS 

The serial schedule generation scheme (S-SGS) is an 

activity oriented SGS where a schedule is generated in n 

stages. With each stage λ∈{1,…, n} two disjoint activity sets 

are associated: the set of scheduled activities and the set Eλ of 

all eligible activities (i.e. all activities for which all 

predecessors are already scheduled). In each stage one eligible 

activity j∈  Eλ is chosen (e.g. by a priority rule) and scheduled 

at its earliest precedence- and resource-feasible time. 

Afterwards, the resource profiles of the partial schedule and 

the set of eligible activities are updated. As the S-SGS 

schedules activities with the earliest start procedure (respecting 

the precedence and resource constraints) then in the obtained 

schedules no activity can be (locally or globally) shifted to the 

left (active schedules) [4]. 

b) Parallel SGS 

The parallel SGS (P-SGS), is a time oriented SGS. In each 

step of the scheduling process a set of activities (which might 

be empty) from the eligible activity decision set is scheduled. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3600

 

 

With each stage λ a time point tλ and three disjoint activity sets 

are associated: the set of finished activities, the set Aλ of all 

active activities (i.e. activities which are already scheduled in 

the partial schedule, but finish after time tλ), and the set Eλ of 

all eligible activities (i.e. all unscheduled activities j for which 

all predecessors are completed up to time tλ and for which 

sufficient resources are available when j is started at time tλ). 

In each stage a maximal resource-feasible subset of eligible 

activities in Eλ is chosen and scheduled at time tλ. Afterwards, 

the resource profiles of the partial schedule and the sets of 

active and eligible activities are updated. The next decision 

point tλ+1 is given by the minimum of the next value 
u

kt  where 

a resource profile changes and the minimal completion time of 

all active activities [4] 

c) Backward Scheduling 

An important variant of the previously described SGSs are 

their backward counterparts, namely the backward S-SGS 

(BS-SGS) and the backward P-SGS (BP-SGS). While in the 

previously described schemes, the schedules are generated 

from root-to-sink (forward scheduling), in the corresponding 

backward schemes the schedules are constructed in the reverse 

direction, from sink-to-root (backward scheduling), while 

respecting the precedence and resource constraints. After 

obtaining a backward schedule it is globally shifted to the left 

in order to obtain an active schedule. For some instances the 

BP-SGS and the PS-SGS can produce better schedules than 

the forward counterparts, as it is illustrated in Fig. 3 where the 

first schedule is obtained with a S-SGS and second with a BS-

SGS. 

 

2) Priority Rule, Activity List, and Random Keys 

A priority rule is defined as a mapping which assigns each 

activity j in the set of eligible activites Eλ a value v(j) and an 

objective stating whether the activity with the minimum or the 

maximum value is selected [3]. Thus, the priority rule is used 

to select an activity j from within a set of eligible activities 

based on the value of v(j). Typical examples are the longest 

processing time (LPT) and the shortest processing time (SPT) 

rules. Scheduling schemes and priority rules are usually 

combined in order to obtain different priority rule based 

heuristics [3]. 

In an activity list representation the solution is encoded as a 

precedence-feasible list of activities AL ={A1,A2,..An}. Each 

activity can appear in the list in any position after all its 

predecessors. The activity list can be included as the selection 

mechanism in a SGS, thus, an activity j is selected respecting 

the relative order of the activity list. An activity list could be 

easily converted as a priority rule, thus v(j)= index of j in AL 

(the activity chosen depends on the position of the activity in 

the list AL). 

The random keys representation is similar to the activity list 

except that each element in the list RK is a random value that 

defines the priority of an activity RK={rk1, rk2,.. rkn} where 

rk1=0 and rkn=0. Analogously, the random key representation 

can be included as the selection mechanism in a SGS, thus v(j) 

= rkj.. Usually activities 1 and n are not included in this 

representation as they are dummy activities, as illustrated in 

Fig. 3. 

1
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4

1 2 3 4 5 6

(c)  

Fig. 3 (a) A RCPSP instance (adapted from [5]) solved with a SGS 

and RK={0.6,0.9,0.1,0.8,0.3} 

III. THE RESOURCE LEVELING PROBLEM 

A. The RLP Model 

The resource leveling problem (RLP), also known as 

resource smoothing, is a special case of a project scheduling 

problem where the objective is to reduce extraordinary 

demands or excessive fluctuations in the usage of resources 

(e.g. use the required resources as even as possible over time), 

which may be costly in certain contexts.   

The general RLP may be formulated as follows: Let ck ≥ 0 

be a cost for resource k and denote by )(rS

k t  the resource 

usage of resource k in period t∈{1,…, T} for a given 

schedule S, where )0(rS

k
=0 and the resources are assumed to 

be unlimited. The objective of the RLP is to minimize some 

measure of variability (MV) evaluated over the resource 

usage.  

In the so-called deviation problems the deviations 

(overloads) of the resource usages from a given resource 

profile are minimized. Typical examples of measures of 

variability for these problems are the resource leveling index 

(RLI), defined in (1) and the squared deviation (SD), defined 

in (2).  
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Where Yk is a target value that may be replaced by the 

average resource usage defined as  
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On the other hand, in the so-called variation problems, the 

resource usages should not vary much over time. Analogously 

to the deviation problems, this can be achieved by minimizing 

the measures of variability defined in (4) and (5). 
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In the present work we will refer to the resource usage of a 

resource as the resource usage profile (RUP), defined as  

RUP(rk,S)={u1,u2,..uT}  (6) 

where  ui = )(rS

k i . 

As an example, consider the RUP for the resource usage in 

Fig. 4 which is RUP(R1,S)={0,0,6,5,7,0,9,6,0,0}. 

B. The RL-RCPSP Model 

The resource leveling RCPSP (RL-RCPSP) is a special case 

of RLP where the activities and resources have the same 

properties as the RCPSP (i.e. one mode of execution, no 

preemption, renewable and scarce resources). The RL-RCPSP 

considers the minimization of some measure of variability 

without considering the makespan minimization. 

C. Solving the RLP 

Between the solving methods for the RLP reported in the 

literature with special objective functions we can mention:  

Exact algorithms based upon enumeration, integer 

programming, or dynamic programming have been proposed 

by, for example in [6] and [7]. Heuristic methods based on 

priority-rules have been devised, for example in [8], [9], [10], 

and [11]. Only small problem instances with up to 20 activities 

have been solved (approximately) by those methods [12]. 

However, it has been remarked by Leu et al [13] that due to 

the variety of network structures and resources, no single 

heuristic method can always produce the best solution for all 

the resource leveling problems.  

Different metaheuristic methods as the ones proposed by 

[13] , [14], [15] and [16].   

IV. THE EXTENDED RESOURCE LEVELING PROBLEM 

A. The ERLP Model 

Based on our observations of practical and real-world 

scenarios on the workforce and project management domains, 

we found a resource leveling problem for which we were not 

able to find a suitable existent formal model. We will refer to 

this model as the Extended Resource Leveling Problem 

(ERLP). In the ERLP each resource has an associated work 

range and the objectives are multiple (i.e. the simultaneous 

minimization of the project’s makespan and the smoothing of 

the usage of each resource). The ERLP considers the resources 

as scarce. The ERLP differs from the RL-RCPSP on the 

optimization function (the RL-RCPSP only considers 

makespan) and differs from traditional RLP as it consider 

strictly scarce resources and multiple objectives. A work range 

is defined as the time interval that must considered for 

calculating the resource usage profile of a specific resource. It 

is important to remark that the work range refers to a time 

range evaluated over a schedule and does not represent a time 

window constraint. In the ERLP the work range can be Full, 

Dynamic, or Effective: 

1) The full range refers to a time interval that considers 

the entire duration of a project, hence, the resource 

usage profile of a resource is calculated over the 

interval [Start of Project, End of Project]. This is the 

traditional range considered by the RLP. 

2) The dynamic range considers the time interval 

starting on the first resource usage and ending on the 

last resource usage. The resource usage profile for 

this range is calculated over the interval [Start time of 

first activity, End time of last activity].  

3) The effective range considers a set of possibly 

discontinuous time intervals where the resource has 

been used (i.e. resource usage is greater than 0). The 

resource usage profile for this range is calculated on 

this set of intervals. 

Fig. 4 illustrates the work range types and their 

corresponding time interval(s). The main interest on 

considering the work ranges is based on the fact that the MV 

can vary sharply depending on the work range used for its 

calculation, mainly due to the bias induced by idle times (i.e. 

where the resource is not being used) not considered in some 

of the work ranges (that could affect the average of the 

resource usage) and, logically, due to the length of the work 

range. Table I illustrates the impact of considering different 

work ranges with RLI calculated over the profile in Fig 4.  

The choice of the work range to associate to each resource 

is a decision to be taken by the project manager, for example, 

depending on the type of each resource’s predefined work 

basis.  

 
 

Fig. 4 Example of the resource usage profile of one resource and the 

possible work ranges 
 

TABLE I 

IMPACT OF DIFFERENT WORK RANGES ON THE RLI 

Work Range Interval Yk RLI 

Full [0,11] 3.25 35.75 

Dynamic [2,9] 5.57 12.28 

Effective {[2,6],[7,9]} 6.50 6.00 
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The ERLP can be formulated as a RCPSP with the 

particularity that each resource k has an associated work range 

wrk∈WR={full, dynamic, effective}. The objectives of the 

ERLP are: 

1) To minimize the makespan of the project, and 

2) To minimize some measure of variability MV on each 

resource k that is evaluated over the resource usage 

profile (RUP defined in (6)) of k considering the 

associated wrk  as follows: 

 









=

=

=

=

effectivewrforSkRUPE

dynamicwrforSkRUPD

fullwrforSkRUP

wrSkRUP
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where  

RUPD(rk,S)={ )(rS

k i : ),(),( SrluiSrfu kk ≤≤ }, (8) 

fu(rk,S) is the first period where rk was used in S, 

lu(rk,S) is the last period where rk was used in S, and 

RUPE(rk,S)={ )(rS

k i : )(rS

k i >0} (9) 

thus, there exist k objectives to minimize defined as  

MV(RUP(k,S,wrk))  (10) 

Given a measure of variability MV, the ERLP can be 

formulated as a multiobjective problem (MOP) to optimize 

k+1 objective functions simultaneously, where the decision 

variables set is defined as  

[ ]T
Sx =  (11) 

, the vector function is defined as  

[ ]TkwrSkRUPMVwrSRUPMVSmakespanxf ),,((,),,,1((),()( 1 ⋯= , (12) 

and the objective is  

))(min( xf . (13) 

Fig. 5 illustrates an ERLP instance with 8 activities, 3 

resources and with WRk={full, dynamic, effective}. Fig. 6 

shows a possible schedule for this instance. Table II details the 

work ranges and the RLI calculations for the obtained 

schedule. 

 
Fig. 5 An ERLP instance with 8 activities and 3 resources 

B. Solving the ERLP 

Based on the structure of the ERLP it may be classified as a 

discrete multiobjective combinatorial problem (e.g. find a 

feasible sequence of activities that optimize the model 

objectives). In order to solve the ERLP we consider a 

constructive metaheuristic to build and optimize the schedule 

simultaneously. The mechanics of this metaheuristic allows 

optimizing the MOP formulation of the ERLP.  

Our proposed solver is based on a multiobjective 

evolutionary algorithm which incorporates specific ERLP 

knowledge in its encoding. In the following paragraphs we 

detail the basic elements of our metaheuristic approach. We 

propose to solve the ERLP in two stages:  

1) A main (coarse-grained optimization) stage where 

we use a metaheuristic solver (i.e. schedule 

generator) based on a multiobjective evolutionary 

algorithm considering an intelligent encoding to 

obtain a population of optimized schedules,  

2) An postprocessing stage (fine-grained optimization) 

which consists in the leveling improvement of the 

obtained population. 
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Fig. 6 An example schedule for the ERLP problem in Fig. 5 

 
TABLE II 

WORK RANGES DETAILS 

Resource Work Range Interval Yk RLI 

R1 Full [0,13] 3.46 7.54 

R2 Dynamic [4,12] 3.63 9 

R3 Effective {[0,6],[10,13]} 2 0 

 

 

1) Pareto Optimization and Evolutionary Algorithms 

In multiobjective problems often some of the criteria are in 

conflict, i.e. an improvement in one of them can only be 

achieved at the expense of worsening another. Moreover, some 

of the criteria may be incommensurable. The 

incommensurability of criteria adds to the difficulty of the 

problem because the aggregation or comparison of different 

objectives is not straightforward (this is the case of the 

makespan and the resource leveling objectives in the ERLP as 

they are incommensurable). Moreover, in most multiobjective 

optimization problems there is no single-best solution or 

global optima and it is very difficult to establish preferences 

among the criteria before the search process is carried out. One 

way to overcome potential conflicts between –possibly 
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incommensurable- objectives and uncertainty in the criteria 

preferences is the application of Pareto optimization 

techniques. The Pareto optimization is based on the 

dominance relation, described as follows [17]: Suppose we 

have two distinct vectors V=(v1,v2,…,vk ) and U=(u1,u2,…uk) 

containing the objective values of two solutions for a k-

objective minimization problem, then: 

- V strictly dominates U if vi < ui , for i = 1,2,..,k. 

- V loosely dominates U if vi ≤ ui , for i = 1,2,..,k 

and vi < ui , for at least one i. 

- V and U are incomparable if neither V (strictly or 

loosely) dominates U nor U (strictly or loosely) 

dominates V. 

A solution x is said to be non-dominated with respect to a 

set of solutions S if there is no other solution in S that 

dominates x. The Pareto-optimal front is the set of all non-

dominated solutions in the whole solution space [18]. When 

there is no knowledge of the localization of the Pareto-optimal 

set, the set found should be referred to as the obtained non-

dominated set or the Pareto front approximation. In the ERLP, 

the final outcome is to find the Pareto front approximation 

considering the objectives indicated in (12). This Pareto front 

should provide the decision maker (DM) with near to optimal 

trade-offs between project duration and resource leveling. 

An evolutionary algorithm (EA) is a metaheuristic that uses 

some mechanisms inspired by biological evolution, as 

reproduction, mutation, recombination, and selection. EA 

seem particularly suitable to solve MOP because they can deal 

simultaneously with a set of possible solutions (i.e. the 

population). The multiobjective evolutionary algorithms 

(MOEA) are EAs that are specifically structured to solve MOP 

problems. The outcome of a MOEA is considered to be a set 

of mutually non-dominated solutions (the Pareto front 

approximation). The most well-known algorithms for multi 

objective optimization are based on Genetic Algorithms 

(usually referred as Multiobjective Genetic Algorithms or 

MOGA).  We consider a MOGA as our solver mechanism due 

to their ability to handle multiobjective combinatorial 

problems. 

C. Evolutionary Solver 

1) First Stage 

We propose to use a MOGA as our main solving 

mechanism (first stage). For our tests we consider the NSGA-

II (Non-Dominated Sorting Genetic Algorithm II) as it is 

frequently reported in the literature. NSGA-II is a well-

established MOGA using an elitist approach. Its fitness 

assignment scheme consists in sorting the population in 

different fronts using the non-domination order relation. To 

form subsequent generations, the algorithm combines the 

current population and its offspring generated with the 

standard bimodal crossover and polynomial operators. Finally, 

the best individuals in terms of non-dominance and diversity 

are chosen. For a complete description of this algorithm the 

reader is referred to [19].  

a) Chromosome Encoding 

In order to apply the MOGA approach we need to define a 

suitable chromosome encoding (problem representation). One 

of the most competitive evolutionary based algorithms for the 

RCPSP (i.e. minimization of the makespan) is the intelligent 

encoding (IE) introduced in [20]. The IE concludes that one of 

the key factors on the effectiveness of its approach is the 

incorporation of specific knowledge of the problem on the 

solving mechanism. In the IE the authors propose a 

chromosome encoding that employs the S-SGS and the P-SGS, 

and the combination of forward and backward scheduling. The 

joint use of these characteristics results in an intelligent 

encoding which exploits the problem specific knowledge in an 

efficient way (generation of the schedule). As one of the 

objectives of the ERLP is to minimize the makespan we 

consider a similar approach for our chromosome encoding. 

 
 

Fig. 7 Intelligent Chromosome Encoding for the ERLP 

 

We propose to use the encoding structure of Fig. 7 which is 

based on the IE encoding. In this encoding, we include specific 

knowledge of the solving mechanism as we consider the S/P 

and B/F genes along with the random key RKj that permit to 

build a feasible schedule (i.e. no need to repair the obtained 

schedule). The RKj genes represent the random key values for 

each activity j, the random keys representation is chosen due to 

its flexibility and easiness to be adapted to the standard genetic 

operators, as described afterwards.   

As we use a SGS (either serial or parallel), this implies that 

the activities will be scheduled by considering their earliest 

start time (EST) in a resource-feasible period. Regarding the 

resource leveling optimization, the consequences of using a 

SGS are twofold: 

1) The SGS will allocate the resources up to the maximum 

resource availability and will try to use resources as 

much as possible. Due to this allocation policy the SGS 

cannot guarantee a balanced resource allocation as it 

could create usage peaks and valleys in different 

scheduled activities, as illustrated in Fig. 8 (a) and (b) 

where the schedule with a best resource usage balance 

(Fig. 8 (c)) cannot be obtained with the original 

maximum availability R1=5 by using a S-SGS.  

2) The EST policy limits the exploration of the problem 

search space as the SGS does not consider starting 

times other than the EST (e.g. it does not consider a 

possible slack range). In consequence, a SGS cannot 

guarantee an optimal solution for the resource leveling. 

The main reason to not use the slack range is due that 

the traditional slack-based techniques (e.g. as the 

critical path method (CPM), where the resources are 

assumed as unlimited) cannot be easily adapted and 

applied on scarce resources (as the slack range cannot 

be calculated before building the schedule). Fig. 9 

illustrates this limitation, notice that the second 

schedule on this figure cannot be generated by a SGS 
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(as the schedule in Fig.9 (b) has a lower RLI than Fig .9 

(a)). 

To overcome the first limitation we propose to include the 

genes SLi in our encoding, which indicate the new maximum 

availability for each resource to be considered by the SGS 

(represented as a percentage that will be evaluated over the 

original maximum level). In this way the SGS can explore 

different alternatives to build schedules with a better resource 

usage balance. One important remark is that a reduction on the 

resource availability could, potentially, increase the makespan. 

This represents a trade-off between makespan and resource 

usage smoothing that can be naturally handled by the 

underlying MOGA. In Fig. 8 (c) we remark that by reducing 

R1=5 to R1=3 or R1=4 an optimal resource leveling can be 

achieved with an S-SGS. 
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Fig. 8 Example of reducing the maximum availability of a resource 
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Fig. 9 Example of shifting activities on a schedule 

 

The second limitation is more complicated to solve. One 

logical approach is to modify the SGS to schedule activities 

within the EST and the latest start time (LST) of an activity. 

However, as the resources are strictly constrained, the LST 

cannot be calculated before the schedule is actually built. Due 

to this limitation we propose a leveling improvement 

mechanism based on activity shifting that will be applied after 

obtaining a schedule (post-processing). This mechanism is 

described afterwards. Consequently, our solving mechanism 

will consider two stages:  

1) The generation of a non-dominated population (coarse-

grained), and 

2) The leveling improvement of the obtained population 

without decreasing the population quality (fine-

grained).  

Fig. 10 shows an example chromosome for the proposed 

encoding. This chromosome will decode as a S-SGS (forward 

scheduling), with RK= {0.5, 0.4, 0.3, 0.7}, and will consider 

R1=4 (80% of original R1=5). The obtained schedule is the 

same as the one in Fig. 8(c). 

 

S F 0.5 0.4 0.3 0.7 80%

 
 

Fig. 10 Chromosome encoding example 

b) Genetic operators 

We consider the following genetic operators for the 

proposed MOGA: 

1) Crossover: Given two chromosomes we obtain two new 

chromosomes (offspring) by using a standard two-point 

crossover. As we use random keys we don’t need a 

structured crossover operator as the one proposed by 

the IE. 
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2) Mutation: If a gene S/P or B/F is selected for mutation, 

then the value is switched (i.e. from Serial(Parallel)  to 

Parallel(Serial) for gene S/P and from 

Backward(Forward) to Forward(Backward) for gene 

B/F). If a gene RKj is selected for mutation then 

standard swap mutation is applied with other RKi gene. 

In the case of the mutation of genes SLk  a new random 

value is assigned under the consideration of respecting 

the maximal resource requirement of resource k. 

3) Selection: standard binary tournament selection. 

4) Initial Population: Each gene value is initialized with a 

standard random generator. Alternatively, a bias 

random sampling method could be applied (e.g. the 

β -BRSM proposed in [21]). 

The fitness function of this MOGA considers the objectives 

defined in (12). 

 

2) Second Stage 

As we indicated in the previous section, the use of a SGS 

has two main drawbacks regarding the resource leveling 

objectives that cannot guarantee to find an optimal resource 

balancing. The first limitation was solved by including SLk 

genes in the encoding. In this section we propose a method to 

overcome the second limitation and improve the solutions 

obtained with a SGS w.r.t. the resource leveling objectives. 

Leu et. al. [13] proposes a method based on activity shiftings 

to overcome the EST limitation by letting the algorithm to 

choose the  start time of the activities by considering the range 

[EST,LST]. However, this method is based on CPM slack 

calculations which are not compatible with scarce resources.  

As the second stage on our solver we propose a simple 

metaheuristic technique based also on a MOGA that we 

denominate MORLI (multiobjective resource leveling 

improvement). This technique takes an input schedule S and 

generates a population of non dominated schedules that –

possibly- dominates S in terms of the minimization on the 

resource variability. The goals of the MORLI are twofold:  

1) Maintain the makespan of S. 

2) Improve the resource leveling of a given schedule S  

To accomplish the first goal we define that the MOGA will 

penalize schedules with a makespan different to the makespan 

of S. To accomplish the second objective, MORLI performs a 

series of right shifts (also referred as local shifting by 

Demeulemeester and Herroelen in [22]) on specific activities 

over the input schedule S. These activity shifts refers to the 

sequencing of activities on a slack range by considering a 

given schedule.  This slack range (SLK) for each activity j is 

calculated over S as 

jjj ssSLK −= ' . (14) 

Where sj is the start time of activity j in the schedule S, and 

s’j is the start time of activity j in schedule S’ which is obtained 

with a BS-SGS (without being globally shifted to the left) and 

an activity list AL that corresponds to the list of the activities 

of S in the order they were chosen in each iteration of the SGS. 

Table III illustrates this calculation for the schedule shown in 

Fig. 9(a) while and Fig. 11 shows the corresponding S’ 

generated by the BS-SGS and evaluated over this schedule. 

TABLE III 

EXAMPLE OF SLACK RANGE CALCULATION 

j sj s’j SLKj 

2 0 2 2 

3 0 0 0 

4 0 1 1 

5 7 10 3 

6 7 8 1 

7 4 4 0 

8 1 2 1 

9 11 14 3 

10 10 11 1 

11 10 10 0 

12 15 15 0 

 

 

 

Fig. 11 Schedule generated with a BS-SGS without global left 

shifting 

a) Chromosome Encoding 

We propose to use the encoding structure in Fig. 12, where 

each gene ASj corresponds to the shifting percentage of 

activity j. This percentage is evaluated over the associated 

SLKj, therefore shifted starting time (SST) of activity j is 

calculated as 

jjj ASSLKSST ×=   (15) 

The SST must be considered by the SGS in order to 

schedule activity j, thus, the SGS will find a precedence and 

resource feasible starting time for activity j starting from the 

new earliest starting time (NST) calculated as:  

jjj SSTESTNST +=   (16) 

 

 

Fig. 12 Encoding for the leveling improvement 
 

In order to illustrate this encoding, Fig. 13 shows a MORLI 

chromosome that is decoded as the schedule shown in Fig. 

9(b), the new starting times for each activity j are shown in 

Table IV. 
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TABLE IV 

RESULTING DECODING OF THE MORLI  

EXAMPLE CHROMOSOME 

j SLKj ASj SSTj NSTJ 

2 2 0% 0 0 

3 0 0% 0 0 

4 1 0% 0 0 

5 3 100% 3 10 

6 1 0% 0 7 

7 0 0% 0 4 

8 1 0% 0 1 

9 3 0% 0 14 

10 1 100% 1 11 

11 0 100% 0 10 

12 0 0% 0 15 

 

 

Fig. 13 Example MORLI chromosome encoding 

b) Genetic Operators 

We consider the following genetic operators for the 

proposed GA: 

1) Crossover: Given two chromosomes we obtain two 

new chromosomes (offspring) by using a standard 

one-point crossover.  

2) Mutation: If a gene ASj is selected for mutation, then 

new random value is assigned between 0 and 100. 

3) Selection: standard binary tournament selection. 

4) Initial Population: Each gene value is initialized with 

a standard random generator. 

The fitness function of the MORLI is defined as 

multiobjective: 
 

1) Minimize the absolute makespan difference of the 

input schedule and the obtained schedule, 

2) Minimize the MV for each resource 

V. EXAMPLE ANALYSIS 

In order to validate the effectiveness of the proposed solving 

method, we proceed to compare our results with state-of-art 

resource leveling algorithms.  

A. Experiments Setup 

 

TABLE V 

COMPUTATIONAL SETUP FOR THE EXPERIMENTS 

Element Description 

CPU 1.66Ghz 

Language JAVA 

Environment Eclipse 3.3. JDK JRE1.6.0_05-b13 

NSGA-II Implemented using the library 

JMETAL [23] 

ERLP Model and 

Project Scheduler 

Implemented on a JAVA port of 

PSPSolver [24] 

 
 

TABLE VI 

MOGA PARAMETERS 

Parameter Value 

Population n×5.1  

Crossover rate 0.7 

Mutation rate 0.2 

 

For our experiments we considered the computational setup 

detailed in Table V and the MOGA parameters detailed in 

Table VI. The MOGA parameters were obtained after many 

experiments and trials and are applied in both stages of the 

proposed solver. We fix to 400 the maximum schedule 

evaluations for the first stage and to 100 for the postprocessing 

stage (e.g. a maximum of 500 evaluations).  

B. Particle Swarm Optimization Algorithm 

The first algorithm we analyze is the EPSO algorithm 

proposed by Li et al. in [15] based in particle swarm 

optimization (PSO), in this paper an example analysis is 

proposed for the network detailed in Fig. 14. As this problem 

is not an ERLP (it considers unlimited resources) we first 

proceed to adapt it. The adaptation consists in defining 

availability values to each resource, in this case we use the 

values Rk={32,32,19}, which corresponds to the maximum 

resource usages of a non-optimized schedule indicated in the 

same paper (alternatively, this can be calculated as the 

maximum levels requested after building a schedule 

considering a priority rule as the shortest-processing-time), 

and we consider the full range for all the resources. One 

particularity of this instance is that the objective to minimize is 

the variance ( 2σ ) of the sum of the usage of resources in each 

period of time.   

The PSO proposed by Li et al. was able to find the schedule 

S={0,0,0,3,0,7,3,5,5,9,8,10,12,12,14}. The RUP for this 

schedule is detailed in Table VII and the corresponding 

variance of the resource usage is 63.41. 

 
TABLE VII 

RUP FOR THE PSO SOLUTION 

Time 
Resource 

1 2 3 4 5 6 7 

R1 24 24 24 28 28 16 16 

R2 17 17 17 12 12 19 19 

R3 6 6 6 9 9 13 13 

Sum 47 47 47 49 49 48 48 

Time 
Resource 

8 9 10 11 12 13 14 

R1 20 22 22 20 20 12 12 

R2 12 12 10 11 11 11 11 

R3 11 9 6 6 6 3 3 

Sum 43 43 38 37 37 26 26 
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Fig. 14 An instance converted to ERLP (adapted from Li et al [15]) 

 

In a first experiment we consider only two objectives for the 

ERLP: the makespan and the minimization of the variance of 

the sum of the resource usage over time. After the first stage 

(i.e. 400 schedule evaluations) the solver reported the non-

dominated population detailed in Table VIII. As can be 

observed, the outcome of the MOGA is a set of trade-offs 

between makespan and variance. The average time of 

execution of this stage is 0.64s.  

 
TABLE VIII 

POPULATION OBTAINED ON THE FIRST  

EXPERIMENT WITHOUT POSTPROCESSING 

Chromosome 2σ  *Mk 

A={P,B,9,1,7,2,8,0,3,7,5,4,3,2,5,8,5,97%,59%,93%} 121,26 14 

B={P,B,8,2,3,6,1,3,9,7,5,4,3,2,5,2,9,64%,98%,72%} 45,38 17 

C={P,B,8,2,3,6,1,3,9,4,2,3,6,6,8,4,3,73%,94%,87%} 96,39 16 

D={S,B,8,2,3,6,1,3,9,4,2,2,9,6,8,4,3,87%,94%,73%} 120,43 15 

*Mk = makespan 

 
TABLE IX 

POPULATION OBTAINED ON THE FIRST  

EXPERIMENT AFTER POSTPROCESSING 

Chromosome 2σ  *Mk 

A’={100,0,0,100,0,100,0,0,0,100,100,0,100} 61.41 14 

B’={100,100,0,100,100,100,100,100,100,100,0,0,0} 34.13 17 

C’={0,100,0,100,0,0,100,100,0,100,0,0,0} 53.73 16 

D’={0,100,0,100,0,0,100,100,0,100,0,0,0} 58.71 15 

*Mk = makespan 
 

TABLE X 

RUP OF THE BEST SCHEDULE 

OBTAINED WITH THE PROPOSED SOLVER 

Time 
Resource 

1 2 3 4 5 6 7 

R1 24 24 24 20 28 24 18 

R2 17 17 17 10 12 8 15 

R3 6 6 6 7 9 7 9 

Sum 47 47 47 37 49 39 42 

Time 
Resource 

8 9 10 11 12 13 14 

R1 18 20 24 20 20 12 12 

R2 15 13 17 14 14 11 11 

R3 9 9 12 10 10 3 3 

Sum 42 42 53 44 44 26 26 

 

TABLE XI 

COMPARISON OF RESULTS BETWEEN THE PSO 

AND THE PROPOSED SOLVER FOR THE FIRST EXPERIMENT 

Method Best variance 2σ  
Time to 

solve 

PSO 63.41 720 s 

MOGA ERLP 

(without 

postprocessing) 

121.26 0.64 s 

MOGA ERLP 

(with postprocessing) 
61.41 1.84 s 

 

In order to compare our solution to the one obtained with 

the PSO we chose the solution with the lower makespan (e.g. 

chromosome A), the corresponding schedule is 

S={0,0,0,3,0,5,3,5,7,8,8,8,11,12,14}. After applying the 

postprocessing stage (with an average processing time of 1.2s) 

these solutions where optimized as shown in Table VIII. After 

improving the schedule of chromosome A the solver obtains 

the schedule  S’={0,0,0,4,0,5,3,6,8,9,8,8,12,12,14}, the RUP 

for this schedule is detailed in Table X. Table XI presents the 

results obtained with the PSO and our proposed MOGA 

considering the schedule with the minimum makespan. We can 

conclude from these results that our MOGA outperforms the 

PSO approach reported by Li et al for this example. As an 

important remark, the PSO reported by Li et al. outperforms 

three other RLP methods using this example (a basic PSO, a 

dynamic programming approach, and a genetic algorithm 

approach).  

In a second experiment we consider the standard objectives 

of the ERLP. In this particular example the solver seeks to 

optimize the makespan and the variance ( 2σ ) of each resource. 

Table XII shows a comparison of the results found. An 

important remark is that two of the found solutions by the 

solver dominate the solution found by the PSO. For this 

specific example, we conclude that our solver can optimize 

simultaneously each objective and present competitive trade-

offs to the DM. 
 

TABLE XII 

COMPARISON OF RESULTS BETWEEN THE PSO 

AND THE PROPOSED SOVLER FOR THE SECOND EXPERIMENT 

2σ  
Method 

R1 R2 R3 
Makespan 

Time to 

solve 

PSO 26.11 11.02 10.26 14 720 s 

26.11 6.71 7.19 14 

21.19 7.17 8.42 14 

MOGA ERLP 

(with 

postprocessing) 23.64 9.48 11.19 14 

2.64 s 

 

C. Petrinet Approach 

Raja and Kunaman [16] propose a Petrinet-based approach 

to solve the single and multi resource leveling. This method 
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considers the resources as unlimited and the objective is to 

minimize the measure ∑ 2

iR . In their paper, the authors 

propose a case study as detailed in Fig. 15. In a third 

experiment we adapt this problem to the ERLP setting the 

resource availability to R1={12} (e.g. calculated by a using a 

priority rule) and the range to dynamic (as activity 2 requires 0 

resources during 2 time units). This result is obtained in 0.28s 

(including the postprocessing) and the MOGA is able to find 

the best result proposed by Raja and Kunaman between the set 

of non-dominated solutions, as detailed in Table XIII. 

 
TABLE XIII 

POPULATION OBTAINED FOR THE THIRD EXPERIMENT  

Schedule ∑ 2

iR  Makespan 

S={0,0,2,8,2,13,13,11,17,20} 885.0 20 

S={0,05,13,2,16,16,8,20,23} 741.0 23 

S={0,0,8,16,2,19,19,11,23,26} 651.0 26 

S={0,0,15,2,5,26,11,25,30,33} 507.0 33 

 

 

 

Fig.15 An instance converted to ERLP (adapted from Raja and 

Kunaman[16]) 

 

D. Optimal Multiple Resource Leveling  

In our fourth experiment we analyze the method proposed 

by Younis and Saad in [7]. In this method the authors propose 

a mathematical formulation for the optimal resource leveling 

of multiple resources and present the study case illustrated in 

Fig. 16. We adapt this problem to the RLP by setting 

Rk={11,8,18}, the MV is the RLI and all the ranges as Full. 

Our solver was able to find the optimal values reported by 

Younis and Saad (e.g. when Rk={10,7,18}) in 0.21s, as 

detailed in Table XIV.  

 

 

 

 

 

 

 

 

 

TABLE XIV 

COMPARISON OF RESULTS BETWEEN THE PSO 

AND THE PROPOSED SOLVER FOR THE FIRST EXPERIMENT 

RLI 
Method 

R1 R2 R3 
*Mk 

Time to 

Solve 

Optimal Resource 

Leveling 
5.0 9.0 35.0 5 

Not 

reported 

MOGA ERLP  

(without 

postprocessing) 

5.0 

21.0 

9.0 

17.0 

35.0 

19.0 

5 

7 
0.047s 

MOGA ERLP  

(with 

postprocessing) 

4.8 

13.0 

20.0 

21.0 

33.8 

23.0 

5 

7 
0.172s 

*Mk = makespan 

 

 

Fig. 16 An instance converted to ERLP (adapted fromYounis and 

Saad [7]) 

 

E. ERLP Benchmark 

In order to share and compare our results with the research 

community we publish a benchmark set for the ERLP. This 

test set is freely available for download from 

http://rocamatics.wordpress.com. In this online resource we 

also publish the comments and the results obtained by other 

methods. Our benchmark consists in an adaptation from the 

RCPSP benchmark sets from PSPLIB [25]: J30, J60, J90, and 

J120. We modify these datasets to include different work 

ranges for each resource and we consider the RLI as the main 

MV. In this benchmark we report: 

1. The ERLP parameters (work ranges) for each instance 

2. The best non-dominated solutions for each instance 

(pareto fronts) 

3. The best known individual MV for each resource in 

each instance 

VI. CONCLUSION 

We introduce an extended resource leveling model that 

accurately abstracts projects with a specific work range for 

each resource and consider the simultaneous optimization of 

the makespan and the resource leveling of each resource 

usage. We propose a metaheuristic-based solver for this 

model. The computational results show that the proposed 

solver is a fast and effective algorithm. It is our opinion that 

the success of the proposed solver is mainly due to the 
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incorporation of specific knowledge of the problem via the 

intelligent encoding. The proposed encoding helps the solver 

to overcome potential SGS limitations. Other important feature 

of the proposed solver is its ability to propose alternative (non 

dominated) solutions to the DM as it is based on the MOEA 

approach. Future research could include a detailed 

performance analysis of the solver and its extension to the 

multi-mode version of the ERLP, and also the study of the 

application of the proposed encoding with other paradigms 

(tabu search, simulated annealing, ant systems, etc.)  
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