
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3598

Abstract—We introduce an extended resource leveling model

that abstracts real life projects that consider specific work ranges for

each resource. Contrary to traditional resource leveling problems this

model considers scarce resources and multiple objectives: the

minimization of the project makespan and the leveling of each

resource usage over time. We formulate this model as a

multiobjective optimization problem and we propose a multiobjective

genetic algorithm-based solver to optimize it. This solver consists in

a two-stage process: a main stage where we obtain non-dominated

solutions for all the objectives, and a postprocessing stage where we

seek to specifically improve the resource leveling of these solutions.

We propose an intelligent encoding for the solver that allows

including domain specific knowledge in the solving mechanism. The

chosen encoding proves to be effective to solve leveling problems

with scarce resources and multiple objectives. The outcome of the

proposed solvers represent optimized trade-offs (alternatives) that can

be later evaluated by a decision maker, this multi-solution approach

represents an advantage over the traditional single solution approach.

We compare the proposed solver with state-of-art resource leveling

methods and we report competitive and performing results.

Keywords—Intelligent problem encoding, multiobjective

decision making, evolutionary computing, RCPSP, resource leveling.

I. INTRODUCTION

ROJECT Scheduling is a mechanism which translates the

performance imperatives of a project plan into a sequence

of activities to be executed in order to deliver the optimized

performance indicator predicted by the higher-level plan. More

precisely, project scheduling deals with the exact allocation of

resources (e.g. people, machines, raw materials, etc.) to

activities over time, i.e., finding a resource that will process

the activity and finding the time of processing. The obtained

schedule must respect the precedence, duration, capacity and

incompatibility constraints. One common desirable property

on a schedule is the minimization of the project duration

(makespan). Other desirable property is the balanced use of the

resources over time. Resource leveling is a process that

permits to minimize the variation of the resource usage over

J. Roca is with Intelligent Software Company, Arquennes 7181 Belgium,

and is a doctoral candidate at the Faculté Polytechnique de Mons, Mons

7000 Belgium (e-mail: javier.roca@ fpms.ac.be).

E. Pugnaghi is with Intelligent Software Company, Arquennes 7181

Belgium (e-mail: etienne.pugnaghi@planningforce.com).

G. Libert is with Computer Science Department, Faculté Polytechnique de

Mons, Mons 7000 Belgium (e-mail: gaetan.libert@fpms.ac.be).

time, and thus, reduce extraordinary demands or excessive

fluctuations in the usage of resources, which may be costly in

certain contexts. Project scheduling and leveling are among the

top challenges in project

management.

Many previous research works have analyzed independently

the makespan minimization of a project and the minimization

of the variability on the resource usage. This work introduces

an extended resource leveling problem which considers a

resource constrained project and seeks, simultaneously, the

minimization of the project’s makespan and the minimization

of the variability of each resource usage. We model this

scheduling problem as a multiobjective optimization problem

and we propose to solve it in a two-stage process where we

apply multiobjective evolutionary algorithms as the underlying

solving mechanism.

This document is organized as follows: in section II we

present a review of the resource constrained project scheduling

problem (minimization of makespan), in section III we present

a review of the resource leveling problem (resource

smoothing), in section IV we introduce the extended resource

leveling problem, in section IV we describe a solver for this

model, in part V we present the results of the experiments with

the proposed solver, and finally, in part VI we present our

conclusions.

II. THE RESOURCE-CONSTRAINED PROJECT SCHEDULING

PROBLEM

A. The RCPSP Model

Informally, the Resource-Constrained Project Scheduling

Problem (RCPSP) seeks the answer to the following question:

“Given the limited availability of resources, what is the best

way to schedule the activities in order to complete the project

in the shortest possible time?” Among the practical

applications of this model we can mention the construction of

buildings and the production planning. The RCPSP addresses

the operational, short term, scheduling. The RCPSP may be

formulated as follows: a project consists of a set of activities

{ } n1,...,A = where each activity has one mode of execution

and has to be processed without interruption (i.e. no

preemption allowed). There exist two dummy activities 1 and

n which represents the root (start) and the sink (end) of the

projects respectively. The duration of an activity j is denoted

by dj, the root and the sink have a duration of d1=0 and dn=0

respectively. There are precedence relations between the

Solving an Extended Resource Leveling

Problem with Multiobjective Evolutionary

Algorithms

Javier Roca, Etienne Pugnaghi, and Gaëtan Libert

P

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3599

activities in A, which are given by sets of immediate

predecessors Predj indicating that and activity j may not be

started before all of its predecessors are completed (i.e. finish-

to-start with zero-lag). Analogously, Succj is the set of

immediate successors of activity j. The precedence relations

can be represented by an activity-on-node network which is

assumed to be acyclic. There are K renewable resource types;

each resource k has a constant per-period-availability Rk. With

the exception of the root and sink activities, each activity j

requires rjk units of resource k during each period of its

duration. All parameters are assumed to be non-negative

integer valued.

The objective of the RCPSP is to find a schedule S of the

activities on A, i.e. a set of starting times { }nss ,....,1
 where

s1=0, the precedence and resource constraints are satisfied

(feasible schedule), and the schedule duration (makespan)

T(S)=sn is minimized. The RCPSP has been widely studied

over the past few decades. For a comprehensive survey on the

RCPSP the reader is referred to the survey made in [1]. Fig. 1

illustrates a RCPSP instance represented as an activity-on-

node network.

Fig. 1 A RCPSP Instance with 13 activities and 1 resource (adapted

from [10])

B. Solving the RCPSP

As the RCPSP is a generalization of the job shop problem, it

is a NP-hard problem in the strong sense [2]. Therefore,

heuristic and metaheuristic solution procedures are

indispensable when solving large problem instances as they

usually appear in practical cases [3]. In order to apply an

optimization algorithm to a problem, at first a suitable

representation of solutions has to be chosen. For this reason,

schedules are often represented by sequences of activities.

From these sequences feasible starting times are derived by

appropriate decoding procedures (so-called schedule

generation schemes).

1) Schedule Generation Schemes

The schedule generation schemes (SGS) are the core of

most of the heuristic and metaheuristic solution procedures for

the RCPSP [3]. In a SGS the activities are iteratively

scheduled (i.e. sj is defined for each activity) and in each

iteration an eligible activity is chosen according to some

selection mechanism. The most common selection

mechanisms are the ones proposed by priority rules, activity

lists and random keys (reviewed in the following sections).

The main types of SGS are the Serial SGS and the Parallel

SGS, illustrated in Fig. 2 (a) and (b), respectively.

Computational experiments of various authors have shown that

for some instances the serial SGS produces better schedules,

for other instances the parallel SGS is more suitable [4].

Fig. 2 Feasible schedules for the project in Fig. 1 generated with

different SGS and the LPT rule

a) Serial SGS

The serial schedule generation scheme (S-SGS) is an

activity oriented SGS where a schedule is generated in n

stages. With each stage λ∈{1,…, n} two disjoint activity sets

are associated: the set of scheduled activities and the set Eλ of

all eligible activities (i.e. all activities for which all

predecessors are already scheduled). In each stage one eligible

activity j∈ Eλ is chosen (e.g. by a priority rule) and scheduled

at its earliest precedence- and resource-feasible time.

Afterwards, the resource profiles of the partial schedule and

the set of eligible activities are updated. As the S-SGS

schedules activities with the earliest start procedure (respecting

the precedence and resource constraints) then in the obtained

schedules no activity can be (locally or globally) shifted to the

left (active schedules) [4].

b) Parallel SGS

The parallel SGS (P-SGS), is a time oriented SGS. In each

step of the scheduling process a set of activities (which might

be empty) from the eligible activity decision set is scheduled.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3600

With each stage λ a time point tλ and three disjoint activity sets

are associated: the set of finished activities, the set Aλ of all

active activities (i.e. activities which are already scheduled in

the partial schedule, but finish after time tλ), and the set Eλ of

all eligible activities (i.e. all unscheduled activities j for which

all predecessors are completed up to time tλ and for which

sufficient resources are available when j is started at time tλ).

In each stage a maximal resource-feasible subset of eligible

activities in Eλ is chosen and scheduled at time tλ. Afterwards,

the resource profiles of the partial schedule and the sets of

active and eligible activities are updated. The next decision

point tλ+1 is given by the minimum of the next value
u

kt where

a resource profile changes and the minimal completion time of

all active activities [4]

c) Backward Scheduling

An important variant of the previously described SGSs are

their backward counterparts, namely the backward S-SGS

(BS-SGS) and the backward P-SGS (BP-SGS). While in the

previously described schemes, the schedules are generated

from root-to-sink (forward scheduling), in the corresponding

backward schemes the schedules are constructed in the reverse

direction, from sink-to-root (backward scheduling), while

respecting the precedence and resource constraints. After

obtaining a backward schedule it is globally shifted to the left

in order to obtain an active schedule. For some instances the

BP-SGS and the PS-SGS can produce better schedules than

the forward counterparts, as it is illustrated in Fig. 3 where the

first schedule is obtained with a S-SGS and second with a BS-

SGS.

2) Priority Rule, Activity List, and Random Keys

A priority rule is defined as a mapping which assigns each

activity j in the set of eligible activites Eλ a value v(j) and an

objective stating whether the activity with the minimum or the

maximum value is selected [3]. Thus, the priority rule is used

to select an activity j from within a set of eligible activities

based on the value of v(j). Typical examples are the longest

processing time (LPT) and the shortest processing time (SPT)

rules. Scheduling schemes and priority rules are usually

combined in order to obtain different priority rule based

heuristics [3].

In an activity list representation the solution is encoded as a

precedence-feasible list of activities AL ={A1,A2,..An}. Each

activity can appear in the list in any position after all its

predecessors. The activity list can be included as the selection

mechanism in a SGS, thus, an activity j is selected respecting

the relative order of the activity list. An activity list could be

easily converted as a priority rule, thus v(j)= index of j in AL

(the activity chosen depends on the position of the activity in

the list AL).

The random keys representation is similar to the activity list

except that each element in the list RK is a random value that

defines the priority of an activity RK={rk1, rk2,.. rkn} where

rk1=0 and rkn=0. Analogously, the random key representation

can be included as the selection mechanism in a SGS, thus v(j)

= rkj.. Usually activities 1 and n are not included in this

representation as they are dummy activities, as illustrated in

Fig. 3.

1

2

3

4

1 2 3 4 5 6

(c)

Fig. 3 (a) A RCPSP instance (adapted from [5]) solved with a SGS

and RK={0.6,0.9,0.1,0.8,0.3}

III. THE RESOURCE LEVELING PROBLEM

A. The RLP Model

The resource leveling problem (RLP), also known as

resource smoothing, is a special case of a project scheduling

problem where the objective is to reduce extraordinary

demands or excessive fluctuations in the usage of resources

(e.g. use the required resources as even as possible over time),

which may be costly in certain contexts.

The general RLP may be formulated as follows: Let ck ≥ 0

be a cost for resource k and denote by)(rS

k t the resource

usage of resource k in period t∈{1,…, T} for a given

schedule S, where)0(rS

k
=0 and the resources are assumed to

be unlimited. The objective of the RLP is to minimize some

measure of variability (MV) evaluated over the resource

usage.

In the so-called deviation problems the deviations

(overloads) of the resource usages from a given resource

profile are minimized. Typical examples of measures of

variability for these problems are the resource leveling index

(RLI), defined in (1) and the squared deviation (SD), defined

in (2).

∑ ∑
= =

−
r

k

T

t

k

S

kk Ytrc
1 1

)((1)

()∑ ∑
= =

−
r

k

T

t

k

S

kk Ytrc
1 1

2
)((2)

Where Yk is a target value that may be replaced by the

average resource usage defined as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3601

∑
=

=
T

i

S

kk ir
T

Y
1

)(
1

. (3)

On the other hand, in the so-called variation problems, the

resource usages should not vary much over time. Analogously

to the deviation problems, this can be achieved by minimizing

the measures of variability defined in (4) and (5).

∑ ∑
= =

−−
r

k

T

t

S

k

S

kk ttrc
1 1

)1()((4)

()
2

1 1

)1()(∑ ∑
= =

−−
r

k

T

t

S

k

S

kk ttrc (5)

In the present work we will refer to the resource usage of a

resource as the resource usage profile (RUP), defined as

RUP(rk,S)={u1,u2,..uT} (6)

where ui =)(rS

k i .

As an example, consider the RUP for the resource usage in

Fig. 4 which is RUP(R1,S)={0,0,6,5,7,0,9,6,0,0}.

B. The RL-RCPSP Model

The resource leveling RCPSP (RL-RCPSP) is a special case

of RLP where the activities and resources have the same

properties as the RCPSP (i.e. one mode of execution, no

preemption, renewable and scarce resources). The RL-RCPSP

considers the minimization of some measure of variability

without considering the makespan minimization.

C. Solving the RLP

Between the solving methods for the RLP reported in the

literature with special objective functions we can mention:

Exact algorithms based upon enumeration, integer

programming, or dynamic programming have been proposed

by, for example in [6] and [7]. Heuristic methods based on

priority-rules have been devised, for example in [8], [9], [10],

and [11]. Only small problem instances with up to 20 activities

have been solved (approximately) by those methods [12].

However, it has been remarked by Leu et al [13] that due to

the variety of network structures and resources, no single

heuristic method can always produce the best solution for all

the resource leveling problems.

Different metaheuristic methods as the ones proposed by

[13] , [14], [15] and [16].

IV. THE EXTENDED RESOURCE LEVELING PROBLEM

A. The ERLP Model

Based on our observations of practical and real-world

scenarios on the workforce and project management domains,

we found a resource leveling problem for which we were not

able to find a suitable existent formal model. We will refer to

this model as the Extended Resource Leveling Problem

(ERLP). In the ERLP each resource has an associated work

range and the objectives are multiple (i.e. the simultaneous

minimization of the project’s makespan and the smoothing of

the usage of each resource). The ERLP considers the resources

as scarce. The ERLP differs from the RL-RCPSP on the

optimization function (the RL-RCPSP only considers

makespan) and differs from traditional RLP as it consider

strictly scarce resources and multiple objectives. A work range

is defined as the time interval that must considered for

calculating the resource usage profile of a specific resource. It

is important to remark that the work range refers to a time

range evaluated over a schedule and does not represent a time

window constraint. In the ERLP the work range can be Full,

Dynamic, or Effective:

1) The full range refers to a time interval that considers

the entire duration of a project, hence, the resource

usage profile of a resource is calculated over the

interval [Start of Project, End of Project]. This is the

traditional range considered by the RLP.

2) The dynamic range considers the time interval

starting on the first resource usage and ending on the

last resource usage. The resource usage profile for

this range is calculated over the interval [Start time of

first activity, End time of last activity].

3) The effective range considers a set of possibly

discontinuous time intervals where the resource has

been used (i.e. resource usage is greater than 0). The

resource usage profile for this range is calculated on

this set of intervals.

Fig. 4 illustrates the work range types and their

corresponding time interval(s). The main interest on

considering the work ranges is based on the fact that the MV

can vary sharply depending on the work range used for its

calculation, mainly due to the bias induced by idle times (i.e.

where the resource is not being used) not considered in some

of the work ranges (that could affect the average of the

resource usage) and, logically, due to the length of the work

range. Table I illustrates the impact of considering different

work ranges with RLI calculated over the profile in Fig 4.

The choice of the work range to associate to each resource

is a decision to be taken by the project manager, for example,

depending on the type of each resource’s predefined work

basis.

Fig. 4 Example of the resource usage profile of one resource and the

possible work ranges

TABLE I

IMPACT OF DIFFERENT WORK RANGES ON THE RLI

Work Range Interval Yk RLI

Full [0,11] 3.25 35.75

Dynamic [2,9] 5.57 12.28

Effective {[2,6],[7,9]} 6.50 6.00

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3602

The ERLP can be formulated as a RCPSP with the

particularity that each resource k has an associated work range

wrk∈WR={full, dynamic, effective}. The objectives of the

ERLP are:

1) To minimize the makespan of the project, and

2) To minimize some measure of variability MV on each

resource k that is evaluated over the resource usage

profile (RUP defined in (6)) of k considering the

associated wrk as follows:









=

=

=

=

effectivewrforSkRUPE

dynamicwrforSkRUPD

fullwrforSkRUP

wrSkRUP

),(

),(

),(

),,(
 (7)

where

RUPD(rk,S)={)(rS

k i :),(),(SrluiSrfu kk ≤≤ }, (8)

fu(rk,S) is the first period where rk was used in S,

lu(rk,S) is the last period where rk was used in S, and

RUPE(rk,S)={)(rS

k i :)(rS

k i >0} (9)

thus, there exist k objectives to minimize defined as

MV(RUP(k,S,wrk)) (10)

Given a measure of variability MV, the ERLP can be

formulated as a multiobjective problem (MOP) to optimize

k+1 objective functions simultaneously, where the decision

variables set is defined as

[]T
Sx = (11)

, the vector function is defined as

[]TkwrSkRUPMVwrSRUPMVSmakespanxf),,((,),,,1((),()(1 ⋯= , (12)

and the objective is

))(min(xf . (13)

Fig. 5 illustrates an ERLP instance with 8 activities, 3

resources and with WRk={full, dynamic, effective}. Fig. 6

shows a possible schedule for this instance. Table II details the

work ranges and the RLI calculations for the obtained

schedule.

Fig. 5 An ERLP instance with 8 activities and 3 resources

B. Solving the ERLP

Based on the structure of the ERLP it may be classified as a

discrete multiobjective combinatorial problem (e.g. find a

feasible sequence of activities that optimize the model

objectives). In order to solve the ERLP we consider a

constructive metaheuristic to build and optimize the schedule

simultaneously. The mechanics of this metaheuristic allows

optimizing the MOP formulation of the ERLP.

Our proposed solver is based on a multiobjective

evolutionary algorithm which incorporates specific ERLP

knowledge in its encoding. In the following paragraphs we

detail the basic elements of our metaheuristic approach. We

propose to solve the ERLP in two stages:

1) A main (coarse-grained optimization) stage where

we use a metaheuristic solver (i.e. schedule

generator) based on a multiobjective evolutionary

algorithm considering an intelligent encoding to

obtain a population of optimized schedules,

2) An postprocessing stage (fine-grained optimization)

which consists in the leveling improvement of the

obtained population.

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13

R1

R2

R3

Fig. 6 An example schedule for the ERLP problem in Fig. 5

TABLE II

WORK RANGES DETAILS

Resource Work Range Interval Yk RLI

R1 Full [0,13] 3.46 7.54

R2 Dynamic [4,12] 3.63 9

R3 Effective {[0,6],[10,13]} 2 0

1) Pareto Optimization and Evolutionary Algorithms

In multiobjective problems often some of the criteria are in

conflict, i.e. an improvement in one of them can only be

achieved at the expense of worsening another. Moreover, some

of the criteria may be incommensurable. The

incommensurability of criteria adds to the difficulty of the

problem because the aggregation or comparison of different

objectives is not straightforward (this is the case of the

makespan and the resource leveling objectives in the ERLP as

they are incommensurable). Moreover, in most multiobjective

optimization problems there is no single-best solution or

global optima and it is very difficult to establish preferences

among the criteria before the search process is carried out. One

way to overcome potential conflicts between –possibly

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3603

incommensurable- objectives and uncertainty in the criteria

preferences is the application of Pareto optimization

techniques. The Pareto optimization is based on the

dominance relation, described as follows [17]: Suppose we

have two distinct vectors V=(v1,v2,…,vk) and U=(u1,u2,…uk)

containing the objective values of two solutions for a k-

objective minimization problem, then:

- V strictly dominates U if vi < ui , for i = 1,2,..,k.

- V loosely dominates U if vi ≤ ui , for i = 1,2,..,k

and vi < ui , for at least one i.

- V and U are incomparable if neither V (strictly or

loosely) dominates U nor U (strictly or loosely)

dominates V.

A solution x is said to be non-dominated with respect to a

set of solutions S if there is no other solution in S that

dominates x. The Pareto-optimal front is the set of all non-

dominated solutions in the whole solution space [18]. When

there is no knowledge of the localization of the Pareto-optimal

set, the set found should be referred to as the obtained non-

dominated set or the Pareto front approximation. In the ERLP,

the final outcome is to find the Pareto front approximation

considering the objectives indicated in (12). This Pareto front

should provide the decision maker (DM) with near to optimal

trade-offs between project duration and resource leveling.

An evolutionary algorithm (EA) is a metaheuristic that uses

some mechanisms inspired by biological evolution, as

reproduction, mutation, recombination, and selection. EA

seem particularly suitable to solve MOP because they can deal

simultaneously with a set of possible solutions (i.e. the

population). The multiobjective evolutionary algorithms

(MOEA) are EAs that are specifically structured to solve MOP

problems. The outcome of a MOEA is considered to be a set

of mutually non-dominated solutions (the Pareto front

approximation). The most well-known algorithms for multi

objective optimization are based on Genetic Algorithms

(usually referred as Multiobjective Genetic Algorithms or

MOGA). We consider a MOGA as our solver mechanism due

to their ability to handle multiobjective combinatorial

problems.

C. Evolutionary Solver

1) First Stage

We propose to use a MOGA as our main solving

mechanism (first stage). For our tests we consider the NSGA-

II (Non-Dominated Sorting Genetic Algorithm II) as it is

frequently reported in the literature. NSGA-II is a well-

established MOGA using an elitist approach. Its fitness

assignment scheme consists in sorting the population in

different fronts using the non-domination order relation. To

form subsequent generations, the algorithm combines the

current population and its offspring generated with the

standard bimodal crossover and polynomial operators. Finally,

the best individuals in terms of non-dominance and diversity

are chosen. For a complete description of this algorithm the

reader is referred to [19].

a) Chromosome Encoding

In order to apply the MOGA approach we need to define a

suitable chromosome encoding (problem representation). One

of the most competitive evolutionary based algorithms for the

RCPSP (i.e. minimization of the makespan) is the intelligent

encoding (IE) introduced in [20]. The IE concludes that one of

the key factors on the effectiveness of its approach is the

incorporation of specific knowledge of the problem on the

solving mechanism. In the IE the authors propose a

chromosome encoding that employs the S-SGS and the P-SGS,

and the combination of forward and backward scheduling. The

joint use of these characteristics results in an intelligent

encoding which exploits the problem specific knowledge in an

efficient way (generation of the schedule). As one of the

objectives of the ERLP is to minimize the makespan we

consider a similar approach for our chromosome encoding.

Fig. 7 Intelligent Chromosome Encoding for the ERLP

We propose to use the encoding structure of Fig. 7 which is

based on the IE encoding. In this encoding, we include specific

knowledge of the solving mechanism as we consider the S/P

and B/F genes along with the random key RKj that permit to

build a feasible schedule (i.e. no need to repair the obtained

schedule). The RKj genes represent the random key values for

each activity j, the random keys representation is chosen due to

its flexibility and easiness to be adapted to the standard genetic

operators, as described afterwards.

As we use a SGS (either serial or parallel), this implies that

the activities will be scheduled by considering their earliest

start time (EST) in a resource-feasible period. Regarding the

resource leveling optimization, the consequences of using a

SGS are twofold:

1) The SGS will allocate the resources up to the maximum

resource availability and will try to use resources as

much as possible. Due to this allocation policy the SGS

cannot guarantee a balanced resource allocation as it

could create usage peaks and valleys in different

scheduled activities, as illustrated in Fig. 8 (a) and (b)

where the schedule with a best resource usage balance

(Fig. 8 (c)) cannot be obtained with the original

maximum availability R1=5 by using a S-SGS.

2) The EST policy limits the exploration of the problem

search space as the SGS does not consider starting

times other than the EST (e.g. it does not consider a

possible slack range). In consequence, a SGS cannot

guarantee an optimal solution for the resource leveling.

The main reason to not use the slack range is due that

the traditional slack-based techniques (e.g. as the

critical path method (CPM), where the resources are

assumed as unlimited) cannot be easily adapted and

applied on scarce resources (as the slack range cannot

be calculated before building the schedule). Fig. 9

illustrates this limitation, notice that the second

schedule on this figure cannot be generated by a SGS

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3604

(as the schedule in Fig.9 (b) has a lower RLI than Fig .9

(a)).

To overcome the first limitation we propose to include the

genes SLi in our encoding, which indicate the new maximum

availability for each resource to be considered by the SGS

(represented as a percentage that will be evaluated over the

original maximum level). In this way the SGS can explore

different alternatives to build schedules with a better resource

usage balance. One important remark is that a reduction on the

resource availability could, potentially, increase the makespan.

This represents a trade-off between makespan and resource

usage smoothing that can be naturally handled by the

underlying MOGA. In Fig. 8 (c) we remark that by reducing

R1=5 to R1=3 or R1=4 an optimal resource leveling can be

achieved with an S-SGS.

1

2

3

4

1 2 3

(b)

5

Fig. 8 Example of reducing the maximum availability of a resource

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

(b)
Fig. 9 Example of shifting activities on a schedule

The second limitation is more complicated to solve. One

logical approach is to modify the SGS to schedule activities

within the EST and the latest start time (LST) of an activity.

However, as the resources are strictly constrained, the LST

cannot be calculated before the schedule is actually built. Due

to this limitation we propose a leveling improvement

mechanism based on activity shifting that will be applied after

obtaining a schedule (post-processing). This mechanism is

described afterwards. Consequently, our solving mechanism

will consider two stages:

1) The generation of a non-dominated population (coarse-

grained), and

2) The leveling improvement of the obtained population

without decreasing the population quality (fine-

grained).

Fig. 10 shows an example chromosome for the proposed

encoding. This chromosome will decode as a S-SGS (forward

scheduling), with RK= {0.5, 0.4, 0.3, 0.7}, and will consider

R1=4 (80% of original R1=5). The obtained schedule is the

same as the one in Fig. 8(c).

S F 0.5 0.4 0.3 0.7 80%

Fig. 10 Chromosome encoding example

b) Genetic operators

We consider the following genetic operators for the

proposed MOGA:

1) Crossover: Given two chromosomes we obtain two new

chromosomes (offspring) by using a standard two-point

crossover. As we use random keys we don’t need a

structured crossover operator as the one proposed by

the IE.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3605

2) Mutation: If a gene S/P or B/F is selected for mutation,

then the value is switched (i.e. from Serial(Parallel) to

Parallel(Serial) for gene S/P and from

Backward(Forward) to Forward(Backward) for gene

B/F). If a gene RKj is selected for mutation then

standard swap mutation is applied with other RKi gene.

In the case of the mutation of genes SLk a new random

value is assigned under the consideration of respecting

the maximal resource requirement of resource k.

3) Selection: standard binary tournament selection.

4) Initial Population: Each gene value is initialized with a

standard random generator. Alternatively, a bias

random sampling method could be applied (e.g. the

β -BRSM proposed in [21]).

The fitness function of this MOGA considers the objectives

defined in (12).

2) Second Stage

As we indicated in the previous section, the use of a SGS

has two main drawbacks regarding the resource leveling

objectives that cannot guarantee to find an optimal resource

balancing. The first limitation was solved by including SLk

genes in the encoding. In this section we propose a method to

overcome the second limitation and improve the solutions

obtained with a SGS w.r.t. the resource leveling objectives.

Leu et. al. [13] proposes a method based on activity shiftings

to overcome the EST limitation by letting the algorithm to

choose the start time of the activities by considering the range

[EST,LST]. However, this method is based on CPM slack

calculations which are not compatible with scarce resources.

As the second stage on our solver we propose a simple

metaheuristic technique based also on a MOGA that we

denominate MORLI (multiobjective resource leveling

improvement). This technique takes an input schedule S and

generates a population of non dominated schedules that –

possibly- dominates S in terms of the minimization on the

resource variability. The goals of the MORLI are twofold:

1) Maintain the makespan of S.

2) Improve the resource leveling of a given schedule S

To accomplish the first goal we define that the MOGA will

penalize schedules with a makespan different to the makespan

of S. To accomplish the second objective, MORLI performs a

series of right shifts (also referred as local shifting by

Demeulemeester and Herroelen in [22]) on specific activities

over the input schedule S. These activity shifts refers to the

sequencing of activities on a slack range by considering a

given schedule. This slack range (SLK) for each activity j is

calculated over S as

jjj ssSLK −= ' . (14)

Where sj is the start time of activity j in the schedule S, and

s’j is the start time of activity j in schedule S’ which is obtained

with a BS-SGS (without being globally shifted to the left) and

an activity list AL that corresponds to the list of the activities

of S in the order they were chosen in each iteration of the SGS.

Table III illustrates this calculation for the schedule shown in

Fig. 9(a) while and Fig. 11 shows the corresponding S’

generated by the BS-SGS and evaluated over this schedule.

TABLE III

EXAMPLE OF SLACK RANGE CALCULATION

j sj s’j SLKj

2 0 2 2

3 0 0 0

4 0 1 1

5 7 10 3

6 7 8 1

7 4 4 0

8 1 2 1

9 11 14 3

10 10 11 1

11 10 10 0

12 15 15 0

Fig. 11 Schedule generated with a BS-SGS without global left

shifting

a) Chromosome Encoding

We propose to use the encoding structure in Fig. 12, where

each gene ASj corresponds to the shifting percentage of

activity j. This percentage is evaluated over the associated

SLKj, therefore shifted starting time (SST) of activity j is

calculated as

jjj ASSLKSST ×= (15)

The SST must be considered by the SGS in order to

schedule activity j, thus, the SGS will find a precedence and

resource feasible starting time for activity j starting from the

new earliest starting time (NST) calculated as:

jjj SSTESTNST += (16)

Fig. 12 Encoding for the leveling improvement

In order to illustrate this encoding, Fig. 13 shows a MORLI

chromosome that is decoded as the schedule shown in Fig.

9(b), the new starting times for each activity j are shown in

Table IV.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3606

TABLE IV

RESULTING DECODING OF THE MORLI

EXAMPLE CHROMOSOME

j SLKj ASj SSTj NSTJ

2 2 0% 0 0

3 0 0% 0 0

4 1 0% 0 0

5 3 100% 3 10

6 1 0% 0 7

7 0 0% 0 4

8 1 0% 0 1

9 3 0% 0 14

10 1 100% 1 11

11 0 100% 0 10

12 0 0% 0 15

Fig. 13 Example MORLI chromosome encoding

b) Genetic Operators

We consider the following genetic operators for the

proposed GA:

1) Crossover: Given two chromosomes we obtain two

new chromosomes (offspring) by using a standard

one-point crossover.

2) Mutation: If a gene ASj is selected for mutation, then

new random value is assigned between 0 and 100.

3) Selection: standard binary tournament selection.

4) Initial Population: Each gene value is initialized with

a standard random generator.

The fitness function of the MORLI is defined as

multiobjective:

1) Minimize the absolute makespan difference of the

input schedule and the obtained schedule,

2) Minimize the MV for each resource

V. EXAMPLE ANALYSIS

In order to validate the effectiveness of the proposed solving

method, we proceed to compare our results with state-of-art

resource leveling algorithms.

A. Experiments Setup

TABLE V

COMPUTATIONAL SETUP FOR THE EXPERIMENTS

Element Description

CPU 1.66Ghz

Language JAVA

Environment Eclipse 3.3. JDK JRE1.6.0_05-b13

NSGA-II Implemented using the library

JMETAL [23]

ERLP Model and

Project Scheduler

Implemented on a JAVA port of

PSPSolver [24]

TABLE VI

MOGA PARAMETERS

Parameter Value

Population n×5.1

Crossover rate 0.7

Mutation rate 0.2

For our experiments we considered the computational setup

detailed in Table V and the MOGA parameters detailed in

Table VI. The MOGA parameters were obtained after many

experiments and trials and are applied in both stages of the

proposed solver. We fix to 400 the maximum schedule

evaluations for the first stage and to 100 for the postprocessing

stage (e.g. a maximum of 500 evaluations).

B. Particle Swarm Optimization Algorithm

The first algorithm we analyze is the EPSO algorithm

proposed by Li et al. in [15] based in particle swarm

optimization (PSO), in this paper an example analysis is

proposed for the network detailed in Fig. 14. As this problem

is not an ERLP (it considers unlimited resources) we first

proceed to adapt it. The adaptation consists in defining

availability values to each resource, in this case we use the

values Rk={32,32,19}, which corresponds to the maximum

resource usages of a non-optimized schedule indicated in the

same paper (alternatively, this can be calculated as the

maximum levels requested after building a schedule

considering a priority rule as the shortest-processing-time),

and we consider the full range for all the resources. One

particularity of this instance is that the objective to minimize is

the variance (2σ) of the sum of the usage of resources in each

period of time.

The PSO proposed by Li et al. was able to find the schedule

S={0,0,0,3,0,7,3,5,5,9,8,10,12,12,14}. The RUP for this

schedule is detailed in Table VII and the corresponding

variance of the resource usage is 63.41.

TABLE VII

RUP FOR THE PSO SOLUTION

Time
Resource

1 2 3 4 5 6 7

R1 24 24 24 28 28 16 16

R2 17 17 17 12 12 19 19

R3 6 6 6 9 9 13 13

Sum 47 47 47 49 49 48 48

Time
Resource

8 9 10 11 12 13 14

R1 20 22 22 20 20 12 12

R2 12 12 10 11 11 11 11

R3 11 9 6 6 6 3 3

Sum 43 43 38 37 37 26 26

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3607

Fig. 14 An instance converted to ERLP (adapted from Li et al [15])

In a first experiment we consider only two objectives for the

ERLP: the makespan and the minimization of the variance of

the sum of the resource usage over time. After the first stage

(i.e. 400 schedule evaluations) the solver reported the non-

dominated population detailed in Table VIII. As can be

observed, the outcome of the MOGA is a set of trade-offs

between makespan and variance. The average time of

execution of this stage is 0.64s.

TABLE VIII

POPULATION OBTAINED ON THE FIRST

EXPERIMENT WITHOUT POSTPROCESSING

Chromosome 2σ *Mk

A={P,B,9,1,7,2,8,0,3,7,5,4,3,2,5,8,5,97%,59%,93%} 121,26 14

B={P,B,8,2,3,6,1,3,9,7,5,4,3,2,5,2,9,64%,98%,72%} 45,38 17

C={P,B,8,2,3,6,1,3,9,4,2,3,6,6,8,4,3,73%,94%,87%} 96,39 16

D={S,B,8,2,3,6,1,3,9,4,2,2,9,6,8,4,3,87%,94%,73%} 120,43 15

*Mk = makespan

TABLE IX

POPULATION OBTAINED ON THE FIRST

EXPERIMENT AFTER POSTPROCESSING

Chromosome 2σ *Mk

A’={100,0,0,100,0,100,0,0,0,100,100,0,100} 61.41 14

B’={100,100,0,100,100,100,100,100,100,100,0,0,0} 34.13 17

C’={0,100,0,100,0,0,100,100,0,100,0,0,0} 53.73 16

D’={0,100,0,100,0,0,100,100,0,100,0,0,0} 58.71 15

*Mk = makespan

TABLE X

RUP OF THE BEST SCHEDULE

OBTAINED WITH THE PROPOSED SOLVER

Time
Resource

1 2 3 4 5 6 7

R1 24 24 24 20 28 24 18

R2 17 17 17 10 12 8 15

R3 6 6 6 7 9 7 9

Sum 47 47 47 37 49 39 42

Time
Resource

8 9 10 11 12 13 14

R1 18 20 24 20 20 12 12

R2 15 13 17 14 14 11 11

R3 9 9 12 10 10 3 3

Sum 42 42 53 44 44 26 26

TABLE XI

COMPARISON OF RESULTS BETWEEN THE PSO

AND THE PROPOSED SOLVER FOR THE FIRST EXPERIMENT

Method Best variance 2σ
Time to

solve

PSO 63.41 720 s

MOGA ERLP

(without

postprocessing)

121.26 0.64 s

MOGA ERLP

(with postprocessing)
61.41 1.84 s

In order to compare our solution to the one obtained with

the PSO we chose the solution with the lower makespan (e.g.

chromosome A), the corresponding schedule is

S={0,0,0,3,0,5,3,5,7,8,8,8,11,12,14}. After applying the

postprocessing stage (with an average processing time of 1.2s)

these solutions where optimized as shown in Table VIII. After

improving the schedule of chromosome A the solver obtains

the schedule S’={0,0,0,4,0,5,3,6,8,9,8,8,12,12,14}, the RUP

for this schedule is detailed in Table X. Table XI presents the

results obtained with the PSO and our proposed MOGA

considering the schedule with the minimum makespan. We can

conclude from these results that our MOGA outperforms the

PSO approach reported by Li et al for this example. As an

important remark, the PSO reported by Li et al. outperforms

three other RLP methods using this example (a basic PSO, a

dynamic programming approach, and a genetic algorithm

approach).

In a second experiment we consider the standard objectives

of the ERLP. In this particular example the solver seeks to

optimize the makespan and the variance (2σ) of each resource.

Table XII shows a comparison of the results found. An

important remark is that two of the found solutions by the

solver dominate the solution found by the PSO. For this

specific example, we conclude that our solver can optimize

simultaneously each objective and present competitive trade-

offs to the DM.

TABLE XII

COMPARISON OF RESULTS BETWEEN THE PSO

AND THE PROPOSED SOVLER FOR THE SECOND EXPERIMENT

2σ
Method

R1 R2 R3
Makespan

Time to

solve

PSO 26.11 11.02 10.26 14 720 s

26.11 6.71 7.19 14

21.19 7.17 8.42 14

MOGA ERLP

(with

postprocessing) 23.64 9.48 11.19 14

2.64 s

C. Petrinet Approach

Raja and Kunaman [16] propose a Petrinet-based approach

to solve the single and multi resource leveling. This method

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3608

considers the resources as unlimited and the objective is to

minimize the measure ∑ 2

iR . In their paper, the authors

propose a case study as detailed in Fig. 15. In a third

experiment we adapt this problem to the ERLP setting the

resource availability to R1={12} (e.g. calculated by a using a

priority rule) and the range to dynamic (as activity 2 requires 0

resources during 2 time units). This result is obtained in 0.28s

(including the postprocessing) and the MOGA is able to find

the best result proposed by Raja and Kunaman between the set

of non-dominated solutions, as detailed in Table XIII.

TABLE XIII

POPULATION OBTAINED FOR THE THIRD EXPERIMENT

Schedule ∑ 2

iR Makespan

S={0,0,2,8,2,13,13,11,17,20} 885.0 20

S={0,05,13,2,16,16,8,20,23} 741.0 23

S={0,0,8,16,2,19,19,11,23,26} 651.0 26

S={0,0,15,2,5,26,11,25,30,33} 507.0 33

Fig.15 An instance converted to ERLP (adapted from Raja and

Kunaman[16])

D. Optimal Multiple Resource Leveling

In our fourth experiment we analyze the method proposed

by Younis and Saad in [7]. In this method the authors propose

a mathematical formulation for the optimal resource leveling

of multiple resources and present the study case illustrated in

Fig. 16. We adapt this problem to the RLP by setting

Rk={11,8,18}, the MV is the RLI and all the ranges as Full.

Our solver was able to find the optimal values reported by

Younis and Saad (e.g. when Rk={10,7,18}) in 0.21s, as

detailed in Table XIV.

TABLE XIV

COMPARISON OF RESULTS BETWEEN THE PSO

AND THE PROPOSED SOLVER FOR THE FIRST EXPERIMENT

RLI
Method

R1 R2 R3
*Mk

Time to

Solve

Optimal Resource

Leveling
5.0 9.0 35.0 5

Not

reported

MOGA ERLP

(without

postprocessing)

5.0

21.0

9.0

17.0

35.0

19.0

5

7
0.047s

MOGA ERLP

(with

postprocessing)

4.8

13.0

20.0

21.0

33.8

23.0

5

7
0.172s

*Mk = makespan

Fig. 16 An instance converted to ERLP (adapted fromYounis and

Saad [7])

E. ERLP Benchmark

In order to share and compare our results with the research

community we publish a benchmark set for the ERLP. This

test set is freely available for download from

http://rocamatics.wordpress.com. In this online resource we

also publish the comments and the results obtained by other

methods. Our benchmark consists in an adaptation from the

RCPSP benchmark sets from PSPLIB [25]: J30, J60, J90, and

J120. We modify these datasets to include different work

ranges for each resource and we consider the RLI as the main

MV. In this benchmark we report:

1. The ERLP parameters (work ranges) for each instance

2. The best non-dominated solutions for each instance

(pareto fronts)

3. The best known individual MV for each resource in

each instance

VI. CONCLUSION

We introduce an extended resource leveling model that

accurately abstracts projects with a specific work range for

each resource and consider the simultaneous optimization of

the makespan and the resource leveling of each resource

usage. We propose a metaheuristic-based solver for this

model. The computational results show that the proposed

solver is a fast and effective algorithm. It is our opinion that

the success of the proposed solver is mainly due to the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3609

incorporation of specific knowledge of the problem via the

intelligent encoding. The proposed encoding helps the solver

to overcome potential SGS limitations. Other important feature

of the proposed solver is its ability to propose alternative (non

dominated) solutions to the DM as it is based on the MOEA

approach. Future research could include a detailed

performance analysis of the solver and its extension to the

multi-mode version of the ERLP, and also the study of the

application of the proposed encoding with other paradigms

(tabu search, simulated annealing, ant systems, etc.)

REFERENCES

[1] R. Kolisch., S. Hartmann, Experimental Investigation of Heuristics for

Resource-Constrained Project Scheduling: An Update, European

Journal of Operational Research, 2005.

[2] J. Blazewicz, W. Cellary, R. Slowinsky, J. Weglarz . Scheduling under

Resource Constraints: Deterministic Models, Annals of Operations

Research, 1987.

[3] R. Kolisch, S. Hartmann. Heuristic Algorithms for Solving the

Resource-Constrained Project Scheduling Problem: Classification and

Computational Analysis in Project scheduling: Recent models,

algorithms and applications, Kluwer, 1999.

[4] P. Brucker, S. Knust, Complex Scheduling, Springer, 2005.

[5] V. Valls, F. Ballestín, S. Quintanilla, Justification Technique

Generalizations, in Perspectives in Modern Project Scheduling,

Springer, 2006.

[6] H.N. Ahuja, Construction Performance Control by Networks, Wiley,

New York, 1976.

[7] M.A. Younis, B. Saad, Optimal resource leveling of multi-resource

projects, Computers and Industrial Engineering, 31, 1996.

[8] A.R. Burgess, J.B. Killebrew, Variation in activity level on a cyclical

arrow diagram, Journal of Industrial Engineering 13, 1962.

[9] R.B. Harris, Precedence and Arrow Networking Techniques for

Construction, Wiley, New York, 1978.

[10] R.B. Harris, Packing method for resource leveling (pack), Journal of

Construction Engineering and Management 116, 1990.

[11] L. Kim, K. Kim, N. Jee, Y. Yoon, Enhanced Resource Leveling

technique for Project Scheduling, Journal of Asian Architecture and

Building Engineering, 466, 2005

[12] P. Brucker, A. Drexl, W. Mohring, K. Neumann, E. Pesh, Resource-

constrained project scheduling: Notation, classification, models, and

methods, European Journal of Operational Research 112, 3-41, 1999.

[13] Leu, C. Yang, J. Huang, Resource leveling in construction by genetic

algorithm-based optimization and its decision support system

application, Automation in construction, 2000.

[14] Y. Sheng-Li, M. Hong, L. Ri, GA-Based Resource Leveling

Optimization for Construction Project, in International Conference on

Machine Learning and Cybernetics, 2006

[15] X. Li, L. Zhang, J. Qi, S. Zhang, An extended particle swarm

optimization algorithm based on coarse-grained and fine-grained

criteria an dits application, Journal of Central South University of

Technology, 15, 2008.

[16] K. Raja, S. Kumanan, Resource Leveling Using Petrinet and Memetic

Approach, American Journal of Applied Sciences, 4, 2007.

[17] P. Dasgupta. P. Chakrabarti, S. Desarkar, Multiobjective Heuristic

Search: An introduction to Intelligent Search Methods for Multicriteria

Optimization, Computational Intelligence, Vieweg, 1999.

[18] C. Coello, D. Van Veldhuizen, G. Lamont, Evolutionary Algorithms for

Solving Multi-Objective Problems, Kluwer Academic Publishers, 2002.

[19] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist

multiobjective genetic algorithm: NSGA-II, IEEE Transactions on

Evolutionary Computation, 6, 2002.

[20] J. Alcaraz, C. Maroto, A hybrid genetic algorithm based on intelligent

encoding for project scheduling, in perspectives in modern project

scheduling, Springer, 2007.

[21] V. Valls, F. Ballestin,S. Quintanilla S, A hybrid genetic algorithm for

the resource-costrained scheduling problem, European Journal of

Operational Research, 2007.

[22] E. Demeulemeester, W. Herroelen, Project scheduling. A research

handbook, Kluwer Academic Publishers, 2002.

[23] J. Durillo, A Nebro, F. Luna, B. Dorronsoro , E. Alba, jMetal: A Java

Framework for Developing Multi-Objective Optimization

Metaheuristics, Tech Report DNL06, Departamento de Lenguajes y

Ciencias de la Computación, University of Málaga, 2006.

[24] J. Roca, F. Bossuyt, G. Libert, PSPSolver: An Open Source Library for

the RCPSP, Proceedings of the 26th Workshop of the UK Planning and

Scheduling Special Interest Group, 2007.

[25] R. Kolish, A. Sprechher, PSPLIB A Project Scheduling Problem

Library, European Journal of Operational Research, 96, 1997.

