
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

1972

Solving 94-bit ECDLP with 70 Computers

in Parallel
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Abstract—Elliptic curve discrete logarithm problem(ECDLP) is
one of problems on which the security of pairing-based cryptography
is based. This paper considers Pollard’s rho method to evaluate
the security of ECDLP on Barreto-Naehrig(BN) curve that is an
efficient pairing-friendly curve. Some techniques are proposed to
make the rho method efficient. Especially, the group structure on
BN curve, distinguished point method, and Montgomery trick are
well-known techniques. This paper applies these techniques and
shows its optimization. According to the experimental results for
which a large-scale parallel system with MySQL is applied, 94-bit
ECDLP was solved about 28 hours by parallelizing 71 computers.

Keywords—Pollard’s rho method, BN curve, Montgomery
multiplication.

I. INTRODUCTION

RECENT Ate-based pairings such as Optimal ate[1]

and Xate[2] on Barreto-Naehrig(BN) curve[3] have

received much attention since they realize quite efficient

pairing calculations. However, few researchers have tried

to evaluate the security of pairings. Elliptic curve discrete

logarithm problem(ECDLP)[4] is one of problems on which

the security of pairing-based cryptography is based. Pollard’s

rho method[5] is known as an efficient algorithm to solve a

large-scale ECDLP. This paper optimizes Pollard’s rho method

to solve ECDLP on G1 over Barreto-Naehrig(BN) curve. G1

is a rational point group on BN curve defined over prime field

from which an input for pairing is chosen. The rho method

basically consists of two steps: randomly generating points on

the curve and detecting a collision from the generated points.

Some techniques such as Montgomery multiplication,

Montgomery trick, distinguished point method, and the group

structure on BN curve have been proposed to make generating

random points step more efficient. Montgomery trick reduces

the number of inversions required in the calculation procedure.

Distinguished point method reduces the load of a collision

detection at server. The group structure on BN curve reduces

the size of ECDLP itself. This paper optimizes Montgomery

multiplication to make the arithmetic operations on BN curve

more efficient.

When attacking large size ECDLPs, the system for detecting

collisions is important. When solving 110-bit ECDLP, the rho

method requires about 1600[GB] storage area and it needs to

detect a collision from about 1.8×1016 points even if using the
distinguished point method. Thus, this paper considers about
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a client-server model, and then the server detects a collision

using MySQL.

Then, this paper attacks 94-bit ECDLP for evaluating the

security. This experiment uses 69 clients, and 2 servers in our

university. We used these computers during about 2 days and

the system solved a 94-bit ECDLP.

II. PRELIMINARIES

This section introduces elliptic curve over finite field and

some properties of rational point on elliptic curve. In addition,

this section introduces Pollard’s rho method.

A. Elliptic Curve
In what follows, Fp denotes a prime field. An elliptic curve

E is generally defined as follows.

E : y2 = x3 + ax+ b, a, b ∈ Fp , x, y ∈ Fpm . (1)

E(Fp) that is a set of rational points on E over Fp ,

including the infinity point O, forms an additive Abelian
group. r denotes the group order of E(Fp).
1) Elliptic Curve Addition: Elliptic curve addition is the

addition between rational points. Q1(x1, y1) + Q2(x2, y2) =
Q3(x3, y3) is defined as follows, where Q1, Q2 and Q3 are

rational points of elliptic curve E(Fp).

λ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y2 − y1
x2 − x1

if Q1 �= Q2 and x1 �= x2,

3x2
1 + a

2y1
elseif Q1 = Q2 and y1 �= 0,

φ otherwise,

(2)

(
x3

y3

)
=

⎧⎪⎪⎨
⎪⎪⎩

(
λ2 − x1 − x2

(x1 − x3)λ− y1

)
ifλ �= φ,

O otherwise.

(3)

2) Barreto-Naehrig Curve: Barreto-Naehrig(BN) curve[3]
that is well known to realize an efficient pairing is defined in

the form of

E : y2 = x3 + b, b ∈ Fp, (4)

together with the following parameter settings,

p = 36�4 − 36�3 + 24�2 − 6�+ 1, (5)

r = 36�4 − 36�3 + 18�2 − 6�+ 1, (6)

where � is a certain integer and p is the characteristic of Fp.

The embedding degree k of BN curve is 12.
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B. Ate Pairing
Ate pairing e is defined as follows, where E(Fpk)[r], Ker,

and π denote the set of rational points of order r, kernel of
homomorphism, and Frobenius mapping[4], respectively.

G1 = E(Fpk)[r] ∩ Ker(π − [1]), (7)

G2 = E(Fpk)[r] ∩ Ker(π − [p]), (8)

e(·, ·) : G1 ×G2 → G3 = F
∗
pk/(F∗

pk)r. (9)

In the case of BN curve, the above G1 is equal to E(Fp).

C. Twist and Skew-Frobenius Mapping
In order to improve Ate pairing with BN curve, the

sextic-twist technique is available. Since the embedding degree

of BN curve is 12 and BN curve is written as Eq.(4),

sextic-twist curve E′ is given by

E′ : y2 = x3 + bv−1, (10)

where v is a cubic and quadratic non residue in Fp2 . In this

case, we have the following isomorphism.

G
′
1 = E′(Fp12)[r] ∩ Ker(π2 − [p2]), (11)

ψ6 : (x, y) ∈ G1

�−→ (v1/3x, v1/2y) ∈ G
′
1. (12)

G
′
1 has the following automorphism π̃, where Q is a rational

point on G1. It is called skew-Frobenius mapping.

π̃(Q) = ψ−1
6 (π2(ψ6(Q)))

= (v
p2−1

3 x, v
p2−1

2 y). (13)

In this case, π̃6(Q) = π̃. Thus, in what follows, it is denoted
by π̃6. π̃6 is used for the grouping in the rho method.

D. Security of Pairing-based Cryptography
The security of pairing-based cryptography based on

discrete logarithm problem on G1, G2, and G3, and pairing

inversion problem. Thus, pairing-based cryptography requires

all of these difficulties. This paper evaluates the security of

elliptic curve discrete logarithm problem on G1 for which this

section introduces Pollard’s rho method.

1) ECDLP: ECDLP is the problem that calculates the

scalar s only by using rational points P and Q on E such

that Q=[s]P , where [s]P means

[s]P = P + P + P +︸ ︷︷ ︸
s points

. (14)

2) Pollard’s Rho Method: Pollard’s rho method is known as
an efficient technique for solving an ECDLP. The rho method

consists of two steps. The first step randomly generates a lot

of rational points as follows, where ai, bi are random numbers
from 0 to r − 1.

Ti = [ai]P + [bi]Q. (15)

The next step detects a collision among the generated points.

When a collision is found such as Ti = Tj(i �= j), the ECDLP
is solved by a simultaneous equation.

The original algorithm of rho method is given as Alg.1. In
this paper, we precompute a table which consists of n rational
points such as Eq.(15) and generate random points by using

the table. In what follows, η(Ti) is a function that decides the

index of a rational point in the table corresponding to the input

Ti. It is said that a collision occurs when
√
πr/2 points are

generated according to the birthday paradox.

Algorithm 1: Pollard’s Rho Method

Input: P , Q(= [s]P ) ∈ E(Fp) (0 ≤ s < r)
Output: s
for i = 0 to n− 1 do1

ai, bi are random elements (0 ≤ ai, bi < r),2

Ti ←[ai]P + [bi]Q.3

an, bn are random elements (0 ≤ an, bn < r),4

Tn ← [an]P + [bn]Q.5

for i = n+ 1 to r − 1 do6

l ← η(Ti−1),7

ai ← ai−1 + al, bi ← bi−1 + bl, Ti ← Ti−1 + Tl,8

if Ti = Tj(0 ≤ j ≤ i) then9
go out this loop.

s ← − (ai−aj)
(bi−bj)

(mod r).10

III. IMPROVEMENT OF RHO METHOD

This section denotes some techniques for making the attack

more efficient.

A. Using The Group Structure on BN Curve
The skew-Frobenius mapping π̃6 is available for the

grouping technique. In G1 of BN curve, suppose that the rho

method detected a collision by Ti and Tj as Ti = π̃n
6 (Tj) (0 ≤

n < 6). Because, from the Eq.(8), π̃n
6 (Tj) = [p2n]Tj . Thus,

this technique enables to reduce the average number for a

collision from
√
πr/2 to

√
πr/12. In detail,

Ti = π̃n
6 (Tj),

Ti = [p2n]Tj ,

[ai]P + [bi]Q = [p2n]([aj ]P + [bj ]Q),

ai + bi · s ≡ p2n · aj + p2n · bj · s (mod r),

s ≡ − (ai − p2n · aj)
(bi − p2n · bj) (mod r). (16)

π̃n
6 (Tj)(0 ≤ n < 6) are thus conjugates to each other that
helps efficiently solving ECDLPs since they are connected by

not only efficient mapping π̃n
6 but also scalar multiplications

[p2n]. In detail, they are given as follows, where ε = v
p2−1

3 ,

Tj = (xj , yj), (17)

π̃6(Tj) = (εxj , yj), (18)

π̃2
6(Tj) = (ε2xj , yj), (19)

π̃3
6(Tj) = (xj ,−yj), (20)

π̃4
6(Tj) = (εxj ,−yj), (21)

π̃5
6(Tj) = (ε2xj ,−yj). (22)

In order to apply this grouping technique to the rho

method, a function L(·) that determines a representative of the
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conjugate points is required. Then, a random walk is slightly

changed to Ti = L(Ti−1)+Tl, where l = η(L(Ti−1)). In this
procedure, this technique causes a fruitless cycle[7]. When a

fruitless cycle occurs, this paper escapes the cycle by adding

another rational point.

B. Montgomery Trick

The rho method calculates a lot of elliptic curve additions

for the random walk step. An elliptic curve addition costs

6A+3M + I , where A, M , and I denote calculation costs of
addition, multiplication, and inversion over Fp, respectively.

When attacking a large size ECDLP, I is much larger than
M , i.e., I > 5M in the case that p is a 94 bits prime.
Montgomery trick[6] is a technique to reduce the number

of inversions for which many elliptic curve additions are

preferred to be calculated in parallel. When using Montgomery

trick, an elliptic curve addition cost is 6A + 6M + I/cn,
where cn is the number of elliptic curve additions calculated
in parallel.

C. Distinguished Point Method

The original rho method averagely needs to store
√
πr/2

points, and detect a collision among the generated points.

Distinguished point method is proposed to reduce the number

of storing points and the time for a collision detection. This

method stores only the distinguished points. In this paper,
a distinguished point means that its x-coordinate is divisible
by a number parameter θ.

D. Parallelization

Suppose that a collision Ti = Uj was detected. Then, their

following points similarly collide as follows,

Tη(Ti) = Uη(Uj), Tη(Tη(Ti)
) = Uη(Uη(Uj)

), ... (23)

where η is used for uniquely determining a certain point in
the random walk table. Thus, it is found that a parallelization

is effective for the rho method.

IV. OPTIMIZATION

This section shows an optimization for the rho method. The

target of this paper is about 100-bit ECDLP and this paper

uses 64-bit word length computer. The compiler is gcc version

4.5.4, this version supports 128-bit integer. Thus, an addition in

Fp is easily implemented when using 128-bit integer, however

a multiplication and inversion in Fp require additional ideas.

A. Montgomery Multiplication

This paper applies Montgomery multiplication for a

multiplication in Fp. Montgomery multiplication calculates

a multiplication in Fp using only additions and bit shift

operations. The algorithm is shown as Alg.2,

Algorithm 2: Montgomery Multiplication

Input: X = (xm−1 · 2w·(m−1), ..., x1 · 2w·1, x0 · 2w·0),
Y = (ym−1 · 2w·(m−1), ..., y1 · 2w·1, y0 · 2w·0),
N = (nm−1 · 2w·(m−1), ..., n1 · 2w·1, n0 · 2w·0),
W = −N−1mod 2w

Output: Z = XY 2−m·w(mod N )
Z = 01

for i = 0 to m− 1 do2

C = 03

ti = (z0 + xiy0)W mod 2w4

for j = 0 to m− 1 do5

Q = zj + xiyj + tinj + C6

if j �= 0 then7
zj−1 = Q mod 2w

C = Q/2w8

zm−1 = C9

if Z ≥ N then10
Z = Z −N

This paper considers the optimization of Alg.2. j at line 5
equals to 0 or 1. When j = 0, it is same value of “z0+xiy0” at
line 4 and “zj + xiyj” at line 6. However, Q at line 6 maybe

129-bit. This paper deals with this carry by comparison. In

line 6, store xiyj first. Next, calculate Q and compare with

the stored xiyj . If Q < xiyj , a carry occurs. The optimized
Montgomery multiplication algorithm is shown in Alg.3.
Algorithm 3: Optimized Montgomery Multiplication

Input: X = (x1 · 264, x0), Y = (y1 · 264, y0),
N = (n1 · 264, n0), W = −N−1mod 264

Output: Z = XY 2−128(mod N )
xy = x0 × y01

t = xy ×W mod 2642

Q = xy+(t× n0)3

carry = Q < xy4

Q = x0 × y1+(t× n1)+Q/2645

if carry then6

Q = Q+ 264

Z = Q/2647

xy = x1 × y0 +Q mod 2648

t = xy ×W mod 2649

Q = xy+(t× n0)10

carry = Q < xy11

Z = Z + x1 × y1 + t× n1 +Q/26412

if carry then13

Z = Z + 264

if Z ≥ N then14
Z = Z −N

B. Collision Detection at Server
This paper considers about a model such that many clients

generate random rational points by the optimized rho method

in parallel and then send the generated and distinguished points

to the server, and the server detects a collision.

There are a few rational points on the server when using

the technique described in Sec.III-C, however it is difficult that
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all points are stored on memory. For example, when solving

110-bit ECDLP and setting the parameter θ by 220, about√
π × 2110/12/220 ≈ 1.8 × 1016 points need to be stored. If
the size of 1 data is 100[Byte], it requires 1600[GB] storage

area.

Therefore this paper stores rational points on the storage

such as HDD (Hard Disk Drive). When rational points are

stored in HDD, the number of storing points are increased,

however, the performance degradation is caused by disk IO.

This paper avoids the performance degradation by controlling

the size of θ in Sec.III-C.

V. EXPERIMENT

This paper implemented the optimized rho method

described in Chap.III and Chap.IV and evaluated the security
of ECDLP. In this experiment, the target is 94-bit ECDLP,

where r = 9401882419968856913336171017(94-bit). Then
average number for detecting a collision is

√
πr/12 ≈

49599992270415 according to the birthday paradox on the
technique described in Sec.III-A. This paper tried to find the
scalar s for the following P and Q(= [s]P ).

P = (7262408195386367430506168279,

5909492387210969059012426224) (24)

Q = (8830658031211912159902020265,

7909569409614716533720230088) (25)

Table I shows the computational environment.

Table II shows the result. The scalar value s was

4960155460405181786913975321 from solving result.

The number of generated points in Table II is given

by multiplying the number of stored points and θ for

the distinguished points. According to the result, 94-bit

ECDLP was solved in 100779[sec] by generating about

42069934473216 points. Since, the average number

for a collision is
√

πr/12 ≈ 49599992270415, it is
estimated that 94-bit ECDLP is averagely solved by

100779[sec]× 49599992270415
42069934473216 ≈ 118818[sec].

TABLE I
COMPUTATIONAL ENVIRONMENT

Client
The number of computers 69

OS Windows7 Professional (64-bit)
CPU Intel Core 2 Duo (3.06GHz)

Server

The number of computers 2
OS CentOS 6.5 (64–bit)

CPU
Intel Core 2 Duo (2.80GHz)
Intel Core i5-4670K (3.40GHz)

Database MySQL ver. 5.1.73

TABLE II
RESULT

The number of stored points 10030254

θ for distinguished point 222

The number of generated points 42069934473216

Time for solving an ECDLP[sec] 100779

Average time for solving an ECDLP[sec] 118818

VI. CONCLUSION

This paper has evaluated the security of G1 in pairing-based

cryptography on BN 94-bit curve by optimized the rho method.

The results of the experiment of a 94-bit ECDLP show that

the problem was solved in 28 hours with 71 computers.

Since the number of the generated points in the experiment

is 42069934473216, the number is much smaller than the

estimated average number of the rho method.
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