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Solutions to Probabilistic Constrained Optimal
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Abstract—Recently, optimal control problems subject to probabilistic

constraints have attracted much attention in many research field. Although

probabilistic constraints are generally intractable in optimization problems,

several methods haven been proposed to deal with probabilistic constraints.

In most methods, probabilistic constraints are transformed to deterministic

constraints that are tractable in optimization problems. This paper examines

a method for transforming probabilistic constraints into deterministic

constraints for a class of probabilistic constrained optimal control problems.

Keywords—Optimal control, stochastic systems, discrete-time systems,

probabilistic constraints.

I. INTRODUCTION

MODEL predictive control (MPC), also known as

receding horizon control, is one of the most successful

control methodologies [1]-[11] because it enables optimization

of control performance while taking into account the

constraints on state and control variables. Although classical

MPC methods do not provide a systematic method to

handle uncertain disturbances, recent MPC schemes guarantee

constraint fulfillment under uncertain disturbances. The design

methods of a robust MPC against uncertain disturbances are

classified into deterministic and stochastic approaches.

In the deterministic setting, most studies are based on the

min-max approach where the performance index is minimized

over the worst possible disturbance scenario [12]-[16].

However, min-max approaches are often computationally

demanding, and the control performance is highly conservative

because the statistical properties of an occurring disturbance

are not taken into account.

The other approach is the stochastic MPC (SMPC)

where the expected values of the performance indices and

probabilistic constraints are considered by exploiting the

statistical information of a disturbance. In the deterministic

MPC, the so-called hard constraints, which must hold with a

probability of one, are taken into account for the optimization

problem. In contrast, the SMPC handles the so-called soft

constraints, which cannot be fulfilled with certainty but with

a given probability. A small relaxation in the probability

requirement is known to sometimes lead to a significant

improvement in the achievable control performance. However,

probabilistic constraints are generally intractable in an
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optimization problem. Recently, considerable attention has

been devoted to the difficulty related to the SMPC problem.

Thus, several tractable methods have been proposed to handle

the probabilistic constraints.

In [17]-[18], a second-order cone approximation method

was proposed based on the results from robust optimization

to solve the stochastic linear-quadratic control problem. In

[19]-[21], probabilistically constrained MPC problems were

transformed into deterministically constrained MPC problems

using a Gaussian assumption. In [22], a SMPC method was

proposed, which considered the probabilistic polytopic sets

instead of the deterministic bounds of uncertain disturbances.

In addition, an alternate method for the convex approximation

of probabilistic constraints with polytopic constraint functions

was proposed in [23]. In [24], a sampling method that use

scenario approximation was proposed for handling arbitrary

probability distributions of uncertain disturbances.

Although the aforementioned studies [17]-[24] have

achieved tremendous progress in handling the probabilistic

constraints of SMPC, several restrictions are imposed on

the probability distributions of stochastic disturbances, such

as the normal (Gaussian) distribution, known distribution,

finite support, and time invariance. On the other hand, the

methods proposed in [25]-[29] enable us to address unknown

arbitrary probability distributions, including non-Gaussian,

infinitely supported, and time-variant distributions, only under

the assumption of known expectation and variance in the

disturbance. These studies in [25]-[29] aim to provide a SMPC

method to successfully deal with probabilistic constraints with

a lower computational load. For this purpose, concentration

inequalities were applied to transform soft constraints on state

variables into hard constraints on control inputs.

In [25]-[27], the Chebyshev’s inequality was applied to

transform probabilistic constraints on the state variables into

deterministic constraints on the control inputs. Moreover, a

sufficient condition for the stability of the closed-loop system

with SMPC was provided in [26]. The results of computational

simulations were provided in [27] to verify the effectiveness

of the stability criteria obtained in [26]. In fact, there is

a gap between the transformed deterministic constraints in

case of known and unknown probability distribution. In [28],

the conservativeness of probabilistic constrained optimization

method for unknown probability distribution was examined.

Therein, a quantitative assessment of the conservatism for

tractable constraints in probabilistic constrained optimization

with unknown probability distribution was provided. In [29],

the Cantelli’s inequality, which is a similar concentration

inequality to the Chebyshev’s inequality, was used to propose

a solution method to the SMPC problem. It was shown
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that both the probabilistic component-wise and affine state

constraints can be transformed into deterministic constraints

on the control input variables using the Chebyshev’s and

Cantelli’s inequalities, respectively.

In this paper, we consider bounded stochastic disturbances

and probabilistic affine state constraints. The objective of

this study is to provide an approach using the Hoeffding’s

inequality to solve the SMPC problem under bounded

disturbances with unknown probability distributions.

This paper is organized as follows: In Section II, we

introduce some notations. In Section III, the system model and

stochastic MPC problems are formulated. In Section IV, we

provide some preliminary results that are useful to construct

the main results. The main results are provided in Section V.

Finally, some concluding remarks are given in Section VI.

II. NOTATION

Let R and N denote the sets of real and natural numbers,

respectively. Let R+ denote the set of non-negative real

numbers. For matrix A, the transpose and trace of A are

denoted by A′ and trA, respectively. Let diag.{· · · } denote

a diagonal block matrix. For matrices A = {ai,j} and

B = {bi,j}, let the inequalities between A and B, such as

A > B and A ≥ B, indicate that they are component-wise

satisfied, i.e., ai,j > bi,j and ai,j ≥ bi,j is true for all i and

j, respectively. Similarly, let each notation for absolute value

|A|, square root
√
A, and multiplication A ◦B indicate that it

is true component-wise, i.e., |A| = {|ai,j |},
√
A =

{√
ai,j

}
,

and A ◦B = {ai,j × bi,j} for all i and j.

Let the triple (Ω,F ,P) denote a probability space where

Ω ⊆ R is the sampling space, F is the σ-algebra, and P
is the probability measure [30]. Ω is non-empty and is not

necessarily finite. P(E) denotes the probability that event E
occurs. If P(E) = 1, E almost surely occurs. For random

variable z : Ω → R defined by (Ω,F ,P), let the expected

value and variance of z be denoted by E(z) and V(z),
respectively. For a random vector z = [z1, · · · , zn]′, where

each of its components is a random variable zi : Ω → R

(i = 1, · · · , n), which is defined on the same probability

space (Ω,F ,P), we also adopt the same notations E(z) and

V(z) to denote c(z) = [E(z1), · · · , E(zn)]′ and V(z) =
[V(z1), · · · ,V(zn)]′ for notational simplicity. Furthermore,

covariance matrix Cv(z) is defined by Cv(z) := E [{z −
E(z)}{z − E(z)}′].

III. PROBLEM STATEMENT

Throughout this paper, we consider the following linear

discrete-time system with stochastic disturbances:

x(t+ 1) = Ax(t) +Bu(t) + Cw(t), (1)

where t ∈ N is the time step, x(t) : N → R
n is the state,

u(t) : N → R
m is the control input, and w(t) : N → R

� is

the unknown stochastic disturbance. More precisely, for each

component wi : N × Ω → R of w, the random sequence

{wi(t) : t ∈ N} is a collection of random variables in the

same probability space (Ω,F ,P) equipped with a filtration

{Ft : t ∈ N} [30]. The system coefficients A ∈ R
n×n, B ∈

R
n×m, and C ∈ R

n×� are all known as constant matrices. The

pair (A,B) is assumed to be controllable. We also assume that

the initial state x(0) is given and that all components of state

x(t) are deterministically observable. Thus, we assume that

E(x(t)) = x(t) and V(x(t)) = 0 at present time t.

Next, we introduce some assumptions about the properties

of the stochastic disturbances.

Assumption 1: wi(t) and wj(t) are independent of each

other for all i �= j and t ∈ N. Also, wi(t) and wj(k) are

independent of each other for all t �= k and j ∈ {1, · · · , �}.

In fact, most previous studies [17]-[29] typically assumed

that random variables are mutually independent as well as

Assumption 1. The case where random variables are mutually

correlated requires more complicated analysis than the one

provided here because Cv(w) cannot be neglected.

Assumption 2: E(w(t)) and V(w(t)) are assumed to be

known for each time t.

Note that the probability distributions of random variables

wi are not necessarily assumed to be known. However,

the probability distributions were assumed to be known in

previous studies [17]-[24] to transform the soft constraints into

hard constraints. In the present study, the assumption related to

known probability distributions is relaxed to include arbitrary

unknown probability distributions.

Hereafter, we formulate the stochastic optimal control

problem of system (1). The control input at each time t is

determined to minimize the performance index given by

J := φ[x(t+N)] +

t+N−1∑
k=t

L[x(k), u(k)]. (2a)

Here, N ∈ N denotes the length of the prediction horizon. φ
and L are defined by

φ := E [x(t+N)′Px(t+N)], (2b)

L := E [x(k)′Qx(k)] + u(k)′Ru(k), (2c)

where P , Q, and R are positive definite constant matrices.

φ ∈ R+ is the terminal cost function, and L ∈ R+ is the stage

cost function over the prediction horizon.

Let p(t) = [p1(t), · · · , pn(t)]′: N → [0 1]n denote the

probability in vector form, which means that each component

pi(t) belongs to [0 1] for each time t.

For notational convenience, let X ∈ R
nN , U ∈ R

mN , W ∈
R

�N , A ∈ R
nN×n, B ∈ R

nN×mN , C ∈ R
nN×�N , Q ∈

R
nN×nN , R ∈ R

mN×mN , and p ∈ R
nN , be defined by

X(t) :=

⎡
⎢⎣

x(t+ 1)
...

x(t+N)

⎤
⎥⎦ , U(t) :=

⎡
⎢⎣

u(t)
...

u(t+N − 1)

⎤
⎥⎦ ,

W(t) :=

⎡
⎢⎣

w(t)
...

w(t+N − 1)

⎤
⎥⎦ , A :=

⎡
⎢⎢⎢⎣

A
A2

...

AN

⎤
⎥⎥⎥⎦ ,
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B :=

⎡
⎢⎢⎢⎢⎣

B 0 · · · 0

AB B
. . .

...
...

. . .
. . . 0

AN−1B AN−2B · · · B

⎤
⎥⎥⎥⎥⎦ ,

C :=

⎡
⎢⎢⎢⎢⎣

C 0 · · · 0

AC C
. . .

...
...

. . .
. . . 0

AN−1C AN−2C · · · C

⎤
⎥⎥⎥⎥⎦ ,

Q :=

⎡
⎢⎢⎢⎢⎣

Q 0 · · · 0

0
. . .

. . .
...

...
. . . Q 0

0 · · · 0 P

⎤
⎥⎥⎥⎥⎦ , R :=

⎡
⎢⎣

R 0 0

0
. . . 0

0 0 R

⎤
⎥⎦ ,

p(t) =

⎡
⎢⎣

p(t+ 1)
...

p(t+N)

⎤
⎥⎦ .

Using the aforementioned notation, we rewrite the

performance index in (2) as:

J [x(t),X(t),U(t)] = E [x(t)′Qx(t)]

+ E [X(t)′QX(t)] +U(t)′RU(t), (3)

In addition, (1) over the prediction horizon can be rewritten

as:

X(t) = Ax(t) +BU(t) +CW(t). (4)

Assumption 3: Each element of x(t), U(t) and W(t) are

assumed to be independent for each time t.
Here, we consider three types of stochastic optimal control

problems.

A. SMPC Problem 1

We consider the probabilistic component-wise state

constraints and unbounded stochastic disturbances with

unknown probability distributions. Let x(t) and x(t) : N →
R

n denote the lower and upper bounds of x(t), respectively.

Here, we impose the following probabilistic constraint on

the optimization problem: for k = t + 1, · · · , t + N and

i = 1, · · · , n,

P (xi(k) < xi(k) < xi(k)) ≥ pi(k), (5)

where xi(k), xi(k) ∈ R, and pi(k) ∈ [0 1] for k = t +
1, · · · , t+N are given constant sequences and their subscript

indicates the ith element of the vector. Condition (5) indicates

that state xi over the prediction horizon must remain within

the bound [xi xi] at least with probability pi.
Let X ∈ R

nN and X ∈ R
nN be defined by:

X(t) :=

⎡
⎢⎣

x(t+ 1)
...

x(t+N)

⎤
⎥⎦ , X(t) :=

⎡
⎢⎣

x(t+ 1)
...

x(t+N)

⎤
⎥⎦ .

Using the above notation, probabilistic constraint (5) is

rewritten in vector form as

P (
X(t) < X(t) < X(t)

) ≥ p(t). (6)

More precisely, by using the components: Xi,Xi,Xi ∈ R,

and pi ∈ [0 1] of the vectors, condition (6) can be described

as:
nN∧
i=1

{P (
Xi(t) < Xi(t) < Xi(t)

) ≥ pi(t)
}
, (7)

where notation ∧ denotes the logical conjunction.

B. SMPC Problem 2

We consider the probabilistic affine state constraints and

unbounded stochastic disturbances with unknown probability

distributions. Thus, we impose the following probabilistic

constraint on the optimization problem:

P (DX(t) < h) ≥ p. (8)

where D ∈ R
s×nN, 0 < h ∈ R

s
+, p ∈ [0 1]s, and s ∈ N are

given constant parameters.

C. SMPC Problem 3

We consider the probabilistic affine state constraints and

bounded stochastic disturbances with unknown probability

distributions. Here, we assume that U(t) and W(t) satisfy

the following conditions for each time t:

FU(t) < U, (9a)

GW(t) < W, (9b)

where F ∈ R
f×mN, G ∈ R

g×�N, U ∈ R
f , W ∈ R

g , f ∈ N,

and g ∈ N are given constant parameters. Then, we impose

probabilistic constraint (8) on the optimization problem.

IV. PRELIMINARIES

In this section, we provide some preliminary results that are

useful to derive the main results.

The inequality shown below is known as the Chebyshev’s

inequality.

Lemma 1 ([31]): For any random variable x and positive

constant κ ≥ 1, the following inequality holds:

P
(
|x− E(x)| ≥ κ

√
V(x)

)
≤ 1

κ2
. (10)

The inequality shown below is known as the Cantelli’s

inequality.

Lemma 2 ([31]): For any random variable x and positive

constant κ > 0, the following inequality holds:

P (x− E(x) ≥ κ) ≤ V(x)
V(x) + κ2

(11)

The inequality shown below is known as the Hoeffding’s

inequality.

Lemma 3 ([31]): Let x1, · · · , xn be independent random

variables such that xi takes its values in [ai, bi] almost surely
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for all i = 1, · · · , n. Then, for every positive constant κ > 0,

the following inequality holds:

P
(

n∑
i=1

(xi − E(xi)) ≥ κ

)
≤ exp

(
− 2κ2∑n

i=1 (bi − ai)
2

)
(12)

Hereafter, we provide the solutions to SMPC problems 1–2.

First, we transform the minimization problem of (2) subject

to (1) into a quadratic programming problem with respect to

the sequence of control inputs over the prediction horizon.

From (4), E(X(t)) and V(X(t)) are given by:

E(X(t)) = Ax(t) +BU(t) +CE(W(t)), (13a)

V(X(t)) = (C ◦C)V(W(t)). (13b)

In (13a), we apply E(x(t)) = x(t) because the present state

x(t) is a deterministic vector. Moreover, (3) indicates that

J = x(t)′Qx(t) +U(t)′RU(t)

tr[QCv(X(t))] + E(X(t))′QE(X(t)). (14)

Note that covariance matrix Cv(X(t)) is independent of U(t):

Cv(X(t)) = E [{X(t)− E(X(t))}{X(t)− E(X(t))}′]
= E [{CW(t)−CE(W(t))}{CW(t)−CE(W(t))}′] .

Substituting (13a) into (14) and neglecting the terms that do

not contain U(t), we obtain

min
U(t)

J [x(t),X(t),U(t)] = (15)

min
U(t)

{
U′(t) (B′QB+R)U(t)

+2 (Ax(t) +CE(W(t)))
′
QBU(t)

}
.

Note that the minimization problem of J in (2) subject to (1)

has been reduced to a quadratic programming problem with

respect to U.

In general, solving the quadratic programming problem

with probabilistic constraints is not straightforward. In [26]

and [29], the methods for solving SMPC problems 1–2 were

provided. The probabilistic constraints were converted into

deterministic constraints using the concentration inequalities

in Lemmas 1–2.

A. Solution to SMPC Problem 1

The following proposition has been proved in [26].

Proposition 1 ([26]): Suppose that the following condition

holds:

Umin(t) ≤ BU(t) ≤ Umax(t), (16)

where Umin and Umax are defined by:

Umin(t) := X(t) + κ(t) ◦
√

(C ◦C)V(W(t)) (17a)

−Ax(t)−CE(W(t)),

Umax(t) := X(t)− κ(t) ◦
√

(C ◦C)V(W(t)) (17b)

−Ax(t)−CE(W(t)).

κ(t) :=

[
1√

1− p1(t)
, · · · , 1√

1− pnN (t)

]′
. (17c)

Then, the probabilistic condition (6) is fulfilled.

Remark 1: From Proposition 1, the minimization problem

of (15) with probabilistic constraint (6) is reduced to a

quadratic programming problem with deterministic constraint

(16), which can be solved using a conventional algorithm [32].

Remark 2: Suppose that we impose not only probabilistic

state constraint (6) but also control input constraint (9a) on

the optimization problem. Then, the optimization problem can

be reduced to a quadratic programming problem (15) subject

to the following constraint:⎡
⎣ −B

B
F

⎤
⎦U(t) ≤

⎡
⎣ Umin

Umax

U

⎤
⎦ . (18)

Solving quadratic programming problem (15) subject to

constraint (18) is also straightforward using a conventional

algorithm [32].

B. Solution to SMPC Problem 2

The following proposition has been proved in [29].

Proposition 2 ([29]): Suppose that the following condition

holds:

DBU(t) ≤ h−D (Ax(t) +CE(W(t)))−V(t), (19)

where the ith element of V ∈ R
s is given by:

Vi =

√
pi

1− pi
((DC ◦DC)V(W(t)))i. (20)

Then, the probabilistic condition (8) is fulfilled.

Remark 3: From Proposition 2, the minimization problem

of (15) with probabilistic constraint (8) is reduced to a

quadratic programming problem with deterministic constraint

(19), which can be solved using a conventional algorithm [32].

Remark 4: Consider an example of affine state constraint

(8) as shown below:

P
(

nN∑
i=1

Xi < h

)
≥ p. (21)

In contrast, the following condition is an example of

component-wise state constraint (6).

P (
X < X

) ≥ p. (22)

Suppose that Xi is given by: Xi = h/nN for all i =
1, · · · , nN . Then, we have the following condition:

P
(

nN∑
i=1

Xi < h

)
≥ β, (23)

β :=

nN∏
i=1

pi.

Comparing (21) with (23), we can see that β in (23) takes

an underestimated value compared with p in (21). This is the

advantage of applying probabilistic constraint (8) rather than

(6).
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V. MAIN RESULTS

In this section, we provide the main results that are useful

to solve SMPC problem 3.

A. Solution to SMPC Problem 3

Let U∗ be the solution of the minimization problem of (15)

subject to (9a). Because W(t) is bounded to satisfy (9b), X(t)
is also bounded. In fact, the lower and upper bounds (Xi and

Xi, respectively) of Xi are obtained by solving the linear

programming problems as follows: For given x(t) and U∗,

Xi(t) = min
W(t)

(Ax(t) +BU∗ +CW(t))i , (24)

Xi(t) = max
W(t)

(Ax(t) +BU∗ +CW(t))i , (25)

subject to (9b).

Thus, X is bounded as X ≤ X ≤ X. Using this property, we

can state the following theorem:

Theorem 1: Suppose that the following condition holds:

DBU(t) ≤ h−D (Ax(t) +CE(W(t)))− Z(t), (26)

where the ith element of Z ∈ R
s is given by:

Zi =

√
− log(1− pi)

2

(
(D ◦D)(X−X) ◦ (X−X)

)
i
.

(27)

Then, the probabilistic condition (8) is fulfilled.

Proof: Using Lemma 3, we have the following inequality

in the component-wise form:

P ((DX)i − E(DX)i ≥ κ)

≤ exp

(
−2κ2(

(D ◦D)(X−X) ◦ (X−X)
)
i

)
. (28)

Accordingly, we have the following inequality:

P ((DX)i − E(DX)i < κ)

≤ 1− exp

(
−2κ2(

(D ◦D)(X−X) ◦ (X−X)
)
i

)
. (29)

Suppose that the following equation holds:

pi = 1− exp

(
−2κ2(

(D ◦D)(X−X) ◦ (X−X)
)
i

)
. (30)

Then, it follows from (30) that

κ = Zi. (31)

Consequently, we have the following inequality:

P ((DX)i − E(DX)i < Zi) ≥ pi. (32)

For notational simplicity, we rewrite inequality (32) in a vector

form, i.e.,

P (DX(t) < DE(X(t)) + Z(t)) ≥ p. (33)

Note that if the following condition:

DE(X(t)) +V(t) ≤ h (34)

is satisfied, then the probabilistic condition (8) is fulfilled.

Substituting (13a) into (34), we can see that the condition

(34) is equivalent to condition (26). Therefore, we conclude

that if deterministic constraint (26) on U(t) is satisfied, then

the probabilistic constraint (8) on X(t) is also satisfied. This

completes the proof.

Remark 5: Note that condition (26) can be solved even if

variance V(W) is unknown. This is the advantage of condition

(26).

Remark 6: We provide a quantitative assessment of the

conservatism between conditions (19) and (26). Subtracting

the right-hand side of (19) from that of (26) yields

Vi − Zi =

√
pi

1− pi
((DC ◦DC)V(W(t)))i

−
√

− log(1− pi)

2

(
(D ◦D)(X−X) ◦ (X−X)

)
i
.

(35)

Let γ and η be defined by:

γ :=

√
pi

1− pi
,

η :=

√
− log(1− pi)

2
.

Noting that

0 ≤ η

γ
< 1 for 0 ≤ pi ≤ 1, (36)

we have the following:

Vi − Zi = γ
Vi

γ
−

(
η

γ

)
γ
Zi

η
,

> γ

(
Vi

γ
− Zi

η

)
. (37)

Here, we suppose that

|C|
√

V(W) ≥ X−X. (38)

Then, it follows from (37) that

Vi − Zi > 0. (39)

Consequently, we can see that condition (26) is less

conservative than (19) in the case of (38).

VI. CONCLUSION

In this study, we have examined a MPC design

method for linear discrete-time systems with additive

stochastic disturbances under probabilistic constraints. The

advantage of the proposed method is its applicability to

stochastic disturbances with unknown probability distribution.

Concentration inequalities were applied to successfully handle

probabilistic constraints with a lower computational load.

Thus, the SMPC problem with probabilistic constraints

was reduced to a quadratic programming problem with

deterministic constraints, which can be solved using a

conventional algorithm. The feasibility and stability analyses

based on the proposed method are possible future research

areas.
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