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Abstract—Optimal reactive power flow is an optimization problem
with one or more objective of minimizing the active power losses for
fixed generation schedule. The control variables are generator bus
voltages, transformer tap settings and reactive power output of the
compensating devices placed on different bus bars. Biogeography-
Based Optimization (BBO) technique has been applied to solve
different kinds of optimal reactive power flow problems subject
to operational constraints like power balance constraint, line flow
and bus voltages limits etc. BBO searches for the global optimum
mainly through two steps: Migration and Mutation. In the present
work, BBO has been applied to solve the optimal reactive power
flow problems on IEEE 30-bus and standard IEEE 57-bus power
systems for minimization of active power loss. The superiority of the
proposed method has been demonstrated. Considering the quality of
the solution obtained, the proposed method seems to be a promising
one for solving these problems.

Keywords—Active Power Loss, Biogeography-Based Optimiza-
tion, Migration, Mutation, Optimal Reactive Power Flow.

I. INTRODUCTION

OPTIMAL Reactive Power Flow (ORPF) is an important
tool for power system operators both in planning and

operating stages. It has a significant influence on the economic
and secure operation of power systems and may be considered
as a sub-set of the more general power system problem known
as optimal power flow (OPF) problem. The active power loss,
voltage profile and voltage security in a power system strongly
depend upon the flow of reactive power in the transmission
lines. The ORPF deals with control of generator voltages,
transformer tap ratio, and reactive power compensating devices
(shunt capacitors). All these variables strongly affect the
flow of the reactive power in the system. Some additional
constraints like reactive power capability of generators, voltage
magnitude limits of load bus etc should also be observed to
obtain a viable solution. The main objective of an ORPF
program is to minimize the system active power loss. But
minimization of active power loss of power system may result
in such settings of the control variables which might cause
unattractive voltage profile and voltage stability margin at
different bus bars. In such situations, sometimes it is sensible
to consider voltage profile improvement and voltage stability
limit enhancement as part of objective of ORPF problems.
Voltage stability margin can be enhanced by properly con-
trolling and relocating reactive power generations. In case the
reactive power generation capacity of a system is very close
to its reactive power demand then installation of few extra
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reactive power sources at some suitable points in the system
may improve the voltage profile, voltage stability margin along
with reduction of active power loss of the system. Optimal
reactive power flow problem has been rigorously studied over
the past few decades. Many optimization techniques have
emerged so far and have been applied to solve the problem.
The earlier ORPF algorithms were based on classical mathe-
matical programming methods. Nonlinear programming (NLP)
[1], Linear programming (LP) [2-3] Quadratic programming
(QP) [4], Newton-based method [5], interior point methods
(IPM) [6], [7], mixed integer programming [8], decomposition
approach [9], dynamic programming [10] have successfully
proved their capabilities in this field. But today’s ORPF
problem is not a mathematically convex problem; as a result
most of the classical optimization techniques might converge
to a local optimum instead of at the global optimum. Moreover,
these classical techniques can not solve the complex objective
functions which are not differentiable, particularly in large
dimension problems or with complicated constraints. Due to
significant improvement in the capability of computers in
recent years, evolutionary algorithms (EAs), such as genetic
algorithm (GA) [11-15], evolutionary programming (EP) [16-
17], particle swarm optimization (PSO) [18-24] and differ-
ential evolution (DE) [25-28] are being applied for solving
various reactive power flow related problems to overcome
some of the drawbacks of conventional techniques. Genetic
algorithm (GA) has been applied successfully in different re-
active power optimization problems. K. Iba et al. [11] proposed
an integer/float mixed coding GA to reduce the system loss.
K. Y. Lee et al. [12] presented an improved version of Genetic
Algorithm after incorporating a new population selection and
generation method within simple genetic algorithm to find the
optimal placement and size of VAR compensating devices. An
adaptive genetic algorithm (AGA) is proposed by Q.H. Wu
et al. [13], for optimal reactive power dispatch problems and
voltage control operation. Here, the probabilities of crossover
and mutation are varied within basic GA, depending on the fit-
ness values of the solutions to prevent premature convergence
and refine the convergence performance of genetic algorithms.
For the optimization of reactive power, for improvement of
voltage profiles and minimization of real power loss, G. A.
Bakare et al. [14] proposed a micro-genetic based approach.
W. Yan et. al. [15] presented a novel hybrid method for the
optimal reactive power flow problems after integrating genetic
algorithm (GA) with nonlinear interior point method (IPM).
Evolutionary Programming (EP) has been applied successfully
in different power system optimization problems. In 1995,
Q.H. Wu et al. [16] applied this technique for reactive power
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dispatch and voltage control of power systems. Later on in
1997, an evolutionary programming technique for optimal
reactive power planning and minimization of active power
loss was proposed by the same authors [17]. Particle swarm
optimization (PSO) has also a wide range of application
in power system ORPF problems. H. Yoshida et al. [18]
applied PSO for reactive power and voltage control with
voltage security assessment. W. Zhang et al. [19] developed
an adaptive PSO for reactive power optimization. B. Zhao et
al. [20] presented multi-agent-based PSO method in reactive
power dispatch problem. A. A. A. Esmin et al. [21] proposed
a hybrid PSO with mutation operator to minimize the active
power loss. M. S. Kumari et al. [22] solved optimal reactive
power control problem using an improved version of PSO. For
control of reactive power and voltage, J. G. Vlachogiannis et
al. [23] proposed new PSO algorithms. Cai et al. [24] presented
a modified version of PSO method for solution of optimal
reactive power dispatch problems along with improvement
in voltage stability margin. C. H. Liang et al. [25] applied
differential evolution (DE) successfully for active power loss
minimization of IEEE 14, 30, 57 and 118-bus systems. In
2007, G. A. Bakare et al. [26] proposed differential evolution
(DE) for mixed integer, non-linear reactive power optimization
problems. M. Varadarajan et al. [27] presented application of
differential evolution for both network loss minimization and
voltage security problems. C.Y. Chung et al. [28] proposed a
hybrid algorithm of DE and EP for optimal reactive power flow
problem to minimize active power loss of power system. An-
other new population-based heuristic search algorithm known
as Seeker optimization algorithm (SOA) has been developed
and applied effectively for reactive power dispatch problems
to minimize active power loss [29]. Recently, a new concept,
based on Biogeography-Based Optimization (BBO) [30], has
been proposed by Dan Simon. BBO is based on the two
fundamental mechanisms, e.g., Migration and Mutation. Like
GAs and PSO, BBO has a way of sharing information between
solutions. GA solutions ”die” at the end of each generation,
while PSO and BBO solutions survive forever. PSO solutions
are more likely to clump together in similar groups, while GA
and BBO solutions do not have any built-in tendency to cluster.
Again in BBO poor solutions accept a lot of new features
from good ones. The additions of new features to low quality
solutions may improve the quality of those solutions. BBO has
already been applied successfully to solve non-convex, large,
complex Economic Load Dispatch problems [31]. These versa-
tile properties of this new algorithm encouraged the authors to
apply this newly developed algorithm to solve ORPF problems
for minimization of active power loss. The performance of
the proposed method has been tested on IEEE 30-bus and
IEEE 57-bus systems. It has been found through extensive
experimentations that performance of the proposed method
is better in both the cases, compared to Seeker Optimization
Algorithm (SOA) [29], different PSO [29], DE [26] and other
techniques. Section II of the paper provides a brief description
and mathematical formulation of optimal reactive power flow
(ORPF) problems. The original BBO approach is described in
Section III along with a short description of the algorithm. The
simulation studies are discussed in Section IV. The conclusion

is drawn in Section V.

II. ORPF PROBLEM FORMULATION

The optimal reactive power flow (ORPF) problem is mainly
concerned with minimization active power loss of power
system, subject to various equality and inequality constraints.
Mathematically ORPF problem may be represented as

Min J(x, u) (1)

Subject to g(x, u) = 0 (2)

and h(x, u) <= 0 (3)

Where, J is the objective function to be minimized. For loss
minimization problem, J can be defined as follows:

J = Ploss =
∑

k∈NTL

gk(V 2
i + V 2

j − 2ViVjcosθij) (4)

Here, Ploss denotes active power loss of the power system;
NTL is the number of network branches; gk is the conduc-
tance of branch k; k = (i, j), i ∈ NB, j ∈ Ni ; NB is the
total number of bus; Ni is the set of number of bus adjacent to
bus i; θij is the voltage angle difference between bus i and j;
Vi and Vj are the voltage of bus i and j respectively. x and u
are the vectors of dependent and control variables respectively.
The vector of dependent variables x may be represented as

xT = [PG1, VL1.....VLNPQ, QG1.....QGNPV ] (5)

where, PG1 denotes the slack bus power; VL is the PQ bus
voltages; QG is the reactive power output of the generators;
NPV is the number of voltage controlled bus; NPQ is the
number of PQ bus. The vector of control variables may be
written as

uT = [VG1.....VGPV , T1.....TNT , QC1.....QCNC ] (6)

where, NT and NC are the number of tap changing trans-
formers and shunt V AR compensators respectively, VG is the
terminal voltages at the voltage controlled bus, T is the tap
ratio of the tap changing transformers and QC is the output
of shunt V AR compensators.

Here, g is the set of equality constraints representing the
following load flow equations:

PGi − PDi = Vi

NB∑
i=1

Vk(Gikcosθik +Biksinθik) (7)

where i=1,2.....NB

QGi −QDi = Vi

NB∑
i=1

Vk(Giksinθik +Bikcosθik) (8)

where i=1,2.....NB
where,PGi and QGi are the injected active and reactive

power, PDi and QDi are the active and reactive power demand
at bus i; Gik and Bik are the transfer conductance and
susceptance between bus i and k, θik is the phase angle
difference between the voltages at bus i and k. h is the set
of system operating constraints which include:
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A. Generator Constraints

For all Generators, including the slack, the voltages and
reactive power outputs must be restricted within their permis-
sible lower and upper limits as follows:

V min
Gi ≤ VGi ≤ V max

Gi , i = 1, 2, ...NPV (9)

Qmin
Gi ≤ QGi ≤ Qmax

Gi , i = 1, 2, ...NPV (10)

B. Transformer Constraints

Transformer tap settings must be within its specified lower
and upper limits as follows:

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, 2, ...NT (11)

C. Shunt VAR Compensator Constraints

Reactive power output of shunt V AR compensators must
be restricted within their lower and upper limits as follows:

Qmin
ci ≤ Qci ≤ Qmax

ci , i = 1, 2, ...NC (12)

D. Voltage Constraint

Voltage of each PQ bus must be within its lower and upper
operating limits as follows:

V min
Li ≤ VLi ≤ V max

Li , i = 1, 2, ...NPQ (13)

The inequality constraints of the dependant variable (like PG1,
VL, QG) may be incorporated within the objective function
as quadratic penalty terms in order to keep their final values
close to their operating limits. Therefore, to account for these
constraints, the objective function (1) may be modified to

Jmod = Ploss + λP (PG1 − P lim
G1 )2 + λV

NPQ∑
i=1

(VLi − V lim
Li )2

+ λQ

NPV +slack∑
i=1

(QGi −Qlim
Gi )2 (14)

Where λP , λV , λQ are the penalty factors. V lim
Li & Qlim

Gi are
calculated as

V lim
Li =

⎧⎨
⎩

V max
Li , VLi > V max

Li ;
V min

Li , VLi > V min
Li ;

0, else;
(15)

Qlim
Gi =

⎧⎨
⎩

Qmax
Gi , QGi > Qmax

Gi ;
Qmin

Gi , QGi > Qmin
Gi ;

0, else;
(16)

III. BIOGEOGRAPHY-BASED OPTIMIZATION

BBO [30] is a population based, stochastic optimization
technique developed by Dan Simon in 2008, which is based
on the concept of biogeography that deals with nature’s way
of distribution of species. Distribution of a species from one
place to another is influenced by factors such as rainfall,
diversity of vegetation, diversity of topographic features, land
area, temperature etc. Areas, where these factors are highly
favorable tend to have a larger number of species, compared
with a less favorable area. Movement of species from one
area to another area, facilitates sharing of their features
with each other. Owing to this movement, the quality of
some species may improve due to exchange of good features
with better species. In context of biogeography, a habitat is
defined as an Island (area) that is geographically isolated
from other Islands. Geographical areas that are well suited
as residences for biological species are said to have a high
habitat suitability index (HSI). The variables that characterize
habitability are called suitability index variables (SIVs). SIVs
can be considered as the independent variables of the habitat
and HSI calculation is carried out using these variables. The
migration of some species from a habitat to an exterior
habitat is known as emigration process and an entry into
one habitat from an outside is known as immigration process.
The rate of immigration and the emigration are functions of
the number of species in the habitat. Habitats with a high
HSI have a low species immigration rate as they are already
saturated with species. As a result, these high HSI habitats
are more static in their species distribution than low HSI
habitats. On the contrary emigration rate of high HSI habitats
are high. The large numbers of species on high HSI islands
have many opportunities to emigrate into neighboring habitats
having less number of species and share their characteristics
with those habitats. For this reason habitats with a low HSI
have a high species immigration rate. Figure 1 illustrates a
model of species movement process in a single habitat with
straight line immigration and emigration curves. This concept
of biogeography has evolved a new optimization process,
known as biogeography-based optimization (BBO) [30]. In
biogeography-based optimization process,, a good solution is
similar to an island with a high Habitat Suitability Index (HSI),
and a poor solution is equivalent to an island with a low HSI.
High HSI solutions resist change more than low HSI solutions
and tend to share their features with low HSI solutions. (This
does not mean that the superior features disappear from the
high HSI solution; the shared features still remain in the
high HSI solutions, while at the same time appearing as new
features in the low HSI solutions.). In this way poor solutions
accept a lot of new features from good solutions. This addition
of good features to low HSI solutions may raise the quality
of those solutions. Mathematically the concept of emigration
and immigration is represented by a probabilistic model. If
Ps(t)denotes the probability that a habitat contains exactly S
species at time t, at time t+ Δt the probability is

Ps(t+ Δt) =Ps(t)(1− λsΔt− μsΔt) + Ps−1λs−1Δt
+ Ps+1μs+1Δt (17)
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Fig. 1. Species model of a single habitat

where λs and μs are the immigration and emigration rates
when there are S species in the habitat. If time Δt is small
enough so that the probability of more than one immigration
or emigration can be ignored then taking the limit of equation
(17) as Δt→ 0 gives the following equation

Ṗs =⎧⎨
⎩
−(λs + μs)Ps + Ps+1μs+1;S = 0,
−(λs + μs)Ps + Ps+1μs+1 + Ps−1λs−1; 1 ≤ S ≤ Smax − 1
−(λs + μs)Ps + Ps−1λs−1;S = Smax,

(18)

From the straight-line graph of figure 1, the equation for
emigration rate muk and immigration rate lambdak for k
number of species is derived as per following way:

μk =
Ek

n
(19)

λk = I

(
1− k

n

)
(20)

where, E and I are the maximum emigration rate and maxi-
mum immigration rate respectively. n is the total number of
species in the habitat.

When E = I

λk + μk = E (21)

BBO mainly works based on Migration and Mutation.

A. Migration

With probability Pmod, known as Habitat Modification
Probability each solution can be modified based on other
solutions. If a given solution Si is selected to be modified,
then its immigration rate λi is used to probabilistically decide
whether or not to modify any suitability index variable (SIV)

in that solution. After selecting any SIV of that solution for
modification, emigration rates μj of other solutions Sj (Sj

is j − th solution set other than Si,i.e. j �= i) are used to
select which solutions among the population set will migrate
randomly to chosen SIVs to the selected solution Si.Details
about the algorithm of migration are available in [30], [31].

B. Mutation

In BBO species count probabilities Ps are used to determine
mutation rates. The probabilities of each species count can be
calculated using the differential equation (18). Each habitat
member has an associated probability, which indicates the
likelihood that it exists as a solution for a given problem.
If this probability is very low then that solution is likely to
mutate to some other solution. Similarly if the probability
of some solution is higher then that solution has very little
chance to mutate. Mutation rate of each set of solution can
be calculated in terms of species count probability using the
following equation:

m(S) = mmax

(
1− Ps

Pmax

)
(22)

where, mmax is a user-defined parameter. Details are available
in [30],[31].

C. BBO Algorithm for ORPF Problem

In the present work, the ORPF problem has been solved
using BBO. The basic BBO [30] algorithm can handle several
numbers of variables effectively. The basic control variables
of an ORPF problem, which are represented by the SIVs of
each habitat, are generator bus voltages, tap ratio of OLTC
transformers and reactive power output of shunt compensators.
Several SIV sets together form the habitat matrix [31].

Initialization of the SIV: Each element of the Habitat matrix
i.e. each SIV of a given habitat set is initialized randomly
within the effective operating limits. The initialization of the
control variables are based on (9)-(12).

In the proposed BBO algorithm, the SIVs have been up-
dated in a search space regardless of the variable type.
The values of dependent variables are next computed using
Newton−Raphson power flow [32], to determine their viola-
tions, if any, from the prescribed limits. The objective function
value is next computed using (14). The algorithm to solve
ORPF problems are given below:

Step 1) Read in the number of Generator units, number
of tap changing transformers, number of shunt compensators.
All these together define the size of SIV m in BBO algo-
rithm. Initialize no. of Habitat H , the BBO parameters like
Habitat Modification Probability Pmod, Mutation Probability,
maximum mutation rate mmax, maximum immigration rate I ,
maximum emigration rate E, step size for numerical integra-
tion dt etc. Set maximum no. of iterations Itermax and no.
of elite habitat p.

Step 2) Each SIV of a given habitat of H matrix is initialized
using the concept mentioned in ”Initialization of the SIV”.
Each habitat represents a potential solution to the problem.
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Step 3) Run the Newton−Raphson (NR) load flow program
using these SIVs and determine the dependent variables of (5),
to check whether they satisfy the inequality constraints of (10),
and (13). If the values of dependent variables for any habitat
set do not satisfy these constraints; then calculate the amount
of violation of each dependent variable from their respective
operating limits.

Step 4) Calculate the HSI (fitness value) for each habitat set
of the total habitat set as per (14) for given emigration rate
μ, immigration rate λ. Here, HSI represents the active power
loss.

Step 5) Based on the HSI value elite habitats are identified.
Here elite term is used to indicate those habitat sets, which
give best HSI values. Top p habitat sets are kept as it is after
individual iteration without making any modification on it.

Step 6) Migration operation is performed probabilistically
on those SIVs of non-elite habitats, selected for migration as
detailed in [30], [31].

Step 7) Species count probability of each habitat is updated
using (18). Mutation operation is performed probabilistically
on those non-elite habitats, selected for mutation as detailed
in [30], [31].

Step 8) Go to step 3 for the next iteration. This loop is
terminated after a predefined number of iterations Itermax .

After each habitat is modified (steps 6 and 7), its feasi-
bility as a problem solution should be verified. If the newly
generated SIVs are feasible, then the dependent variables are
executed using that SIV sets. A SIV set is feasible, if individ-
ual SIV and dependent variables satisfy different operational
constraints of ORPF problem. If control variables (i.e. SIVs)
are not feasible, the following method is implemented in order
to map it to the set of feasible solutions.

Suppose, Ui is the value of i − th control variable of the
ORPF problem, generated after migration and mutation oper-
ation. If Umax

i and Umin
i are the upper and lower operating

limit of i−th control variable respectively, then Operating limit
constraints are satisfied in the following manner:-

If output of i− th control variable, Ui > Umax
i

Ui = Umax
i

end
If output of i− th control variable, Ui < Umin

i

Ui < Umin
i

end
If output of i−th control variable, Ui is within its maximum

and minimum operation limit

Ui = Ui

end
After fixing the control variables to their respective limits,

dependent variables are re-determined using NR load flow
method. If these dependent variables violate their respective
operation limit constraints, calculate the amount of violation of
each dependent variable from their respective operating limits
and add these values in (14).

TABLE I
BEST CONTROL VARIABLES SETTINGS FOR IEEE 30-BUS

SYSTEM (ACTIVE POWER LOSS MINIMIZATION)

Control Variable Active Power Loss (p.u.)
setting (p.u.) Base Case [33] BBO CLPSO [35] PSO [35]

V1 1.05 1.1000 1.1000 1.1000
V2 1.04 1.0944 1.1000 1.1000
V5 1.01 1.0749 1.0795 1.0867
V8 1.01 1.0768 1.1000 1.1000
V11 1.05 1.0999 1.1000 1.1000
V13 1.05 1.0999 1.1000 1.1000
T11 1.078 1.0435 0.9154 0.9587
T12 1.069 0.90117 0.9000 1.0543
T15 1.032 0.98244 0.9000 1.0024
T36 1.068 0.96918 0.9397 0.9755

Qc10 0.0 0.049998 0.049265 0.042803
Qc12 0.0 0.04987 0.050000 0.050000
Qc15 0.0 0.049906 0.050000 0.030288
Qc17 0.0 0.04997 0.050000 0.040365
Qc20 0.0 0.049901 0.050000 0.026697
Qc21 0.0 0.049946 0.050000 0.038894
Qc23 0.0 0.038753 0.050000 0.000000
Qc24 0.0 0.049867 0.050000 0.035879
Qc29 0.0 0.029098 0.050000 0.028415

Active Power Loss 0.05812 0.045511 0.045615 0.046282(p.u.)

TABLE II
BEST SOLUTIONS FOR ALL THE METHODS ON IEEE 30-BUS

SYSTEM (P.U.)

Algorithms
∑

PG Ploss PSAV E%
BBO 2.879511 0.045511 21.69477

CLPSO [35] 2.879615 0.045615 21.51583
PSO [35] 2.880212 0.046282 20.36820

IV. NUMERICAL EXAMPLES AND SIMULATION
RESULTS

Proposed BBO algorithm has been applied for minimization
of active power loss in two different test systems, viz., IEEE
30-bus test system [33] and IEEE 57-bus system [34].Pro-
grams have been written in MATLAB-7 language and executed
on a 2.3 GHz Pentium IV personal computer with 512-MB
RAM. After a number of careful experimentation, following
optimum values of BBO parameters have finally been settled
for all cases: Habitat size = 50, Habitat Modification Proba-
bility = 1, Immigration Probability bounds per gene = [0, 1],
step size for numerical integration = 1, maximum immigration
& emigration rate for each island = 1, number of elite habitat
p = 2 and Mutation Probability = 0.005.

A. Description of the Test Systems and Simulation Results

The effectiveness of the BBO algorithm has been demon-
strated through solution of ORPF problem in, IEEE 30-bus
test system and IEEE 57-bus system.

TABLE III
COMPARISON OF EFFICACY AMONG DIFFERENT METHODS

FOR IEEE 30-BUS SYSTEM AFTER 100 TRIALS (ACTIVE POWER
LOSS MINIMIZATION)

Methods Active Power Loss (p.u.) Simulation Success
Max. Min. Average Time (Sec.) Rate (%)

BBO 0.045522 0.045511 0.045515 110 96
PSO [35] 0.047986 0.046282 0.047363 130 43

CLPSO [35] 0.046833 0.045615 0.046397 138 80
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Fig. 2. Convergence Characteristic of IEEE 30-Bus system for Minimization
of Loss

1) IEEE 30-Bus Power System: The line and bus data and
the minimum and maximum limits on control variables and
dependent variables have been adapted from [33]. The system
has six generators at buses 1, 2, 5, 8, 11 and 13 and four
transformers with off-nominal tap ratio in lines 6-9, 6-10, 4-
12, and 28-27. In addition, shunt V AR compensating devices
are connected at bus bars 10, 12, 15, 17, 20, 21, 23, 24, and 29
for reactive power control as in [35]. The total power demand
of the system is 2.834 p.u. on 100 MVA base. The voltages of
all load bus and generator bus have been constrained within
limits of 0.95 p.u. to 1.10 p.u. The optimum settings of the
control variables for minimization of active power loss as
obtained from proposed BBO, PSO [35] and comprehensive
learning particle swarm optimizer (CLPSO) [35] have been
presented in table I. From the table II, it is seen that BBO is
able to reduce the active power loss, with respect to the base
case, by 21.69477 % [33] whereas CLPSO [35] has reduced
it by 21.51583%. The convergence characteristic is shown in
figure 2. Figure 3 shows the voltage magnitudes of all the bus
bars as calculated from the ORPF solution by the different
methods. It can be seen that all the bus voltages obtained
by the proposed method are within the limits. Further, the
standard deviation of the bus voltages in case of BBO is 0.0093
p.u.; where as it is 0.0198 p.u., 0.034 p.u. and 0.0474 p.u.
respectively in PSO, CLPSO and Base case. This implies that
the BBO approach has done two jobs simultaneously. In one
hand it has minimized active power loss and on the other hand
it has improved voltage profile in a prominent manner than the
other approaches employed on this test system. The minimum,
maximum and average active power loss as obtained by BBO
is presented in table III along with those using PSO [35] and
CLPSO [35] over 100 trials. It may be seen that the results
are favorable with BBO. Average simulation time of BBO,
CLPSO [35] and PSO [35] are 110 sec., 138 sec. and 130
sec. respectively. Again BBO converges to minimum value
96 times out of 100 trials. Hence its success rate is 20%
higher than CLPSO (80 times) [35]. Hence, it affirms that
BBO is statistically more robust in global searching ability
and computational efficiency.

Fig. 3. Bus voltage profiles for different techniques on IEEE 30-Bus system

Fig. 4. Convergence Characteristic of IEEE 57-Bus system for Minimization
of Loss (without relaxing Qlimit of Bus No. 2 and 9)

2) IEEE 57-Bus Power System: The standard IEEE 57-bus
system consists of 80 transmission lines; seven generators at
buses 1, 2, 3, 6, 8, 9, 12; and 15 OLTC transformers. The
reactive power sources are considered at bus no. 18, 25 and 53.
Line data, bus data and the minimum and maximum limits on
control variables and dependent variables have been adapted
from [34]. The total system active and reactive power demand
are 12.508 p.u. and 3.364 p.u. on 100 MVA base. The voltages
of all load bus and generator bus have been constrained within
limits of 0.94 p.u. to 1.06 p.u. Active power loss along with
control variable settings obtained from BBO, canonical genetic
algorithm (CGA) [29], SOA [29], Local Search based self-
adaptive differential evolution (L-SaDE) [29], SPSO [29],
CLPSO [29], PSO with a constriction factor (PSO-cf) [29],
PSO with adaptive inertia weight (PSO-w) [29] have been
presented in table IV. The minimum active power loss obtained
by BBO is 0.24544 p.u.. This is 2.773 % better than the
results obtained by CGA [32], where there are no violation of
any control and dependent variables limits in either method.
Apparently the best result obtained by SOA [29] is a bit lower
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TABLE IV
BEST CONTROL VARIABLES SETTINGS FOR IEEE 57-BUS SYSTEM (ACTIVE POWER LOSS MINIMIZATION)

Active Power Loss (p.u.)
Control Variable CGA BBO BBO (after SOA L-SaDE SPSO-07 CLPSO PSO-cf PSO-w

setting [29] relaxing Qlimt [29] [29] [29] [29] [29] [29]
of Bus 2 and 9)

V1 0.9686 1.0600 1.0600 1.0600 1.0600 1.0596 1.0541 1.0600 1.0600
V2 1.0493 1.0504 1.0580 1.0580 1.0574 1.0580 1.0529 1.0586 1.0578
V3 1.0567 1.0440 1.0442 1.0437 1.0438 1.0488 1.0337 1.0464 1.04378
V6 0.9877 1.0376 1.0364 1.0352 1.0364 1.0362 1.0313 1.0415 1.0356
V8 1.0223 1.0550 1.0567 1.0548 1.0537 1.0600 1.0496 1.0600 1.0546
V9 0.9918 1.0229 1.0377 1.0369 1.0366 1.0433 1.0302 1.0423 1.0369
V12 1.0044 1.0323 1.0351 1.0336 1.0323 1.0356 1.0342 1.0371 1.0334

T4−18 0.92 0.96693 0.99165 1.00 0.94 0.95 0.99 0.98 0.90
T4−18 0.92 0.99022 0.96447 0.96 1.00 0.99 0.98 0.98 1.02
T21−20 0.97 1.0120 1.0122 1.01 1.01 0.99 0.99 1.01 1.01
T24−26 0.90 1.0087 1.0110 1.01 1.01 1.02 1.01 1.01 1.01
T7−29 0.91 0.97074 0.97127 0.97 0.97 0.97 0.99 0.98 0.97
T34−32 1.10 0.96869 0.97227 0.97 0.97 0.96 0.93 0.97 0.97
T11−41 0.94 0.90082 0.90095 0.90 0.90 0.92 0.91 0.90 0.90
T15−45 0.95 0.96602 0.97063 0.97 0.97 0.96 0.97 0.97 0.97
T14−46 1.03 0.95079 0.95153 0.95 0.96 0.95 0.95 0.96 0.95
T10−51 1.09 0.96414 0.96252 0.96 0.96 0.97 0.98 0.97 0.96
T13−49 0.90 0.92462 0.92227 0.92 0.92 0.92 0.95 0.93 0.92
T11−43 0.90 0.95022 0.95988 0.96 0.96 1.00 0.95 0.97 0.96
T40−56 1.00 0.99666 1.0018 1.00 1.00 1.00 1.00 0.99 1.00
T39−57 0.96 0.96289 0.96567 0.96 0.96 0.95 0.96 0.96 0.96
T9−55 1.00 0.96001 0.97199 0.97 0.97 0.98 0.97 0.98 0.97
Qc18 0.084 0.09782 0.09640 0.09984 0.08112 0.03936 0.09888 0.09984 0.05136
Qc25 0.00816 0.058991 0.05897 0.05904 0.05808 0.05664 0.05424 0.05904 0.05904
Qc53 0.05376 0.6289 0.062948 0.06288 0.06192 0.03552 0.06288 0.06288 0.06288

Active Power 0.2524411 0.24544 0.242616 0.242654810.242673920.24430433 0.24515204 0.24280225 0.24270526
Loss (p.u.)

Fig. 5. Convergence Characteristic of IEEE 57-Bus system for Minimization
of Loss (after relaxing Qlimit of Bus No. 2 and 9)

than BBO. However, for the control variable settings of SOA
[29], L-SaDE [29], SPSO-07 [29], CLPSO [29], PSO-cf [29],
PSO-w [29] the reactive power generation of bus number 2
and 9, on calculation comes much higher than their respective
capacity constraints of 0.50 p.u. and 0.09 p.u. The details
have been indicated in the foot-note of table IV. In, most of
the cases, reactive power generation of bus number 2 and 9
have come nearer to 0.9 p.u. and 0.6 p.u. respectively. So
the program was run again after increasing the reactive power
generation capacity of these two buses to 0.9 p.u. and 0.6 p.u.
This has reduced the active power loss to 0.242616 p.u., which
is less than the best results by SOA [29].

Reduction in active power loss with respect to base case

[29], as achieved by BBO and other techniques have been
shown in table V. From the table it can be seen that active
power loss has reduced by 13.7657 % when there is no
violation of any constraint. This is 2.4598 % less than recently
reported best result of CGA [29]. When reactive power limit
of bus 2 and 9 is relaxed; power loss has reduced by 14.7579
%. This is 0.0136 % less than the best results of SOA [29].

From table VI, it can be seen that minimum, maximum and
average active power loss obtained by BBO (for both the cases)
over 30 runs are very close to other methods. Considering the
relaxation of reactive power generation; minimum, maximum
and average active power loss obtained are less than previously
reported best results. For both the cases, BBO converges to
optimum value 29 times and 27 times out of 30 trials. Its

1Infeasible solution as reactive power of generators at bus 2 and 9 for the
schedule mentioned in [29] violates their limits by 75.20 % and 560.56 %
respectively. Reactive power source at bus 25 also violates its maximum limit.

2Infeasible solution as reactive power of generators at bus 2 and 9 for
the schedule mentioned in [29] violates their limits by 68.96 % and 594 %
respectively. Also active power loss for the above mentioned schedule comes
0.2430 p.u., which is higher than reported in the literature [29].

3Infeasible solution as reactive power of generators at bus 2 and 9 for the
schedule mentioned in [29] violates their limits by 65.88 % and 647.56 %
respectively. Also voltage magnitude of Bus 29, 45 and 46 exceeds the upper
limit of load Bus voltage 1.06.

4Infeasible solution as reactive power of generators at bus 2 and 9 for the
schedule mentioned in [29] violates their limits by 93.94 % and 462.44 %
respectively. Also voltage magnitude of Bus 43 is 1.0607 which exceeds the
upper limit of load Bus voltage 1.06.

5Infeasible solution as reactive power of generators at bus 2 and 9 for the
schedule mentioned in [29] violates their limits by 74.64 % and 598.67 %
respectively.

6Infeasible solution as reactive power of generators at bus 2 and 9 for the
schedule mentioned in [29] violates their limits by 73.02 % and 567.56 %
respectively. Also voltage magnitude of Bus 45 and 55 exceeds the upper
limit of load Bus voltage 1.06.
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Fig. 6. Bus voltage profiles for different techniques on IEEE 57-Bus system

TABLE V
BEST SOLUTIONS FOR ALL THE METHODS ON IEEE 57-BUS

SYSTEM (P.U.)

Algorithms
∑

PG Ploss PSAV E%
BBO 12.75344 0.24544 13.7657

BBO (after
relaxing Qlimt 12.750616 0.242616 14.7579

of Bus 2 and 9)
CGA [29] 12.7604 0.2524411 11.3059
SOA [29] 12.7507 0.2426548 14.7443

L-SaDE [29] 12.7507 0.2426739 14.7376
SPSO-07 [29] 12.7533 0.2443043 14.1647
CLPSO [29] 12.7531 0.2451520 13.8669
PSO-cf [29] 12.7508 0.2428022 14.6925
PSO-w [29] 12.7507 0.2427052 14.7266

success rate to reach optimum solution is 96.67 % and 90
% respectively. Hence, it reproduces global search ability of
BBO.

The convergence characteristics using BBO for both the
cases are shown in figure 4 and figure 5. From figure 6, it
is observed that all the bus voltages optimized by BBO are
within the limits of 0.94 p.u. to 1.06 p.u. But in case of
CLPSO, PSO-w, PSO-cf voltages of few bus have crossed the
specified limits [29]. Standard deviation of all bus voltages in
case of BBO are 0.0244 p.u. (without relaxing reactive power
limit) and 0.0229 (after relaxing reactive power limit); where

TABLE VI
COMPARISON OF EFFICACY AMONG DIFFERENT METHODS

FOR IEEE 57-BUS SYSTEM AFTER 30 TRIALS (ACTIVE POWER
LOSS MINIMIZATION)

Methods Active Power Loss (p.u.) Average Simulation Success
Max. Min. Average Time (Sec.) Rate (%)

BBO 0.245452 0.24544 0.245445 232.32 96.67
BBO (after

relaxing Qlimt 0.242621 0.242616 0.242619 332.15 90.00
of Bus 2 and 9)

CGA [29] 0.2750772 0.2524411 0.2629356 411.38 NA*
SOA [29] 0.2428046 0.2426548 0.2427078 391.32 NA

L-SaDE [29] 0.2439142 0.2426739 0.2431129 410.14 NA
SPSO-07 [29] 0.2545745 0.2443043 0.2475227 137.35 NA
CLPSO [29] 0.2478083 0.2451520 0.2467307 426.85 NA
PSO-cf [29] 0.2603275 0.2428022 0.2469805 408.19 NA
PSO-w [29] 0.2615279 0.2427052 0.2472596 408.48 NA

as it is 0.0237 p.u., in case of SOA. Thus, both improvement
in voltage profile and active power loss observed in case of
BBO.

Average simulation time taken by BBO (both the cases) are
232.32 sec. and 332.15 sec.. This is 40.6317 % and 15.1206 %
less than that of SOA [29].Therefore, improved computational
efficiency of BBO is also prominent from these results.

V. CONCLUSION

In this paper, the BBO has been successfully implemented
to solve ORPF problems for minimization of active power
loss. This approach has been tested and examined on both
IEEE 30−bus and IEEE 57−bus systems to demonstrate its
effectiveness. The results obtained from the BBO approach
were compared to those reported in the recent literature. It
has been observed here, that the BBO has the ability to
reduce the active power loss reasonably without violating any
constraints. When some constraints are relaxed like observed
in recent literature, BBO is able to give better quality solution
in comparison to the best results reported in recent recent
literature. Moreover, BBO possesses excellent convergence
characteristics and robustness compared to SOA, CLPSO and
other techniques. Therefore, from the simulation results it may
be concluded that the BBO is superior to the other algorithms
in terms of solution quality, computational efficiency and
robustness for solving ORPF problems.
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