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Solution of Interval-valued Manufacturing Inventory
Models With Shortages

Susovan Chakrabortty, Madhumangal Pal and Prasun Kumar Nayak

Abstract—A manufacturing inventory model with shortages with
carrying cost, shortage cost, setup cost and demand quantity as
imprecise numbers, instead of real numbers, namely interval number
is considered here. First, a brief survey of the existing works on
comparing and ranking any two interval numbers on the real line
is presented. A common algorithm for the optimum production
quantity (Economic lot-size) per cycle of a single product (so as
to minimize the total average cost) is developed which works well
on interval number optimization under consideration. Finally, the
designed algorithm is illustrated with numerical example.

Keywords—EOQ, Inventory, Interval Number, Demand, Produc-
tion, Simulation

I. INTRODUCTION

RECENTLY much attention has been focused on EOQ
models with fuzzy carrying cost, fuzzy shortage cost,

fuzzy setup cost, fuzzy demand etc; this means that elements
of carrying cost, shortage cost, setup costs and demand are
fuzzy numbers [8], [14], [19]. However EOQ model has played
an important role in the field of control theory, when we
apply the EOQ model to some practical problems which
we encounter in real situation, it is difficult to know the
values of carrying cost, shortage cost, setup cost and demand
quantity exactly; we can only know the values approximately.
Generally, uncertainties are considered as randomness and
are handled by probability theory in conventional inventory
models. Usually, researchers considered parameters either as
constant or dependent on time or probabilistic in nature. But
we cannot estimate the probability distribution due to lack
of historical data. The research on fuzzy EOQ models has
been developed by Park [11], Vujosevic [13], Kacprzyk and
Staniewski [9], Mahato and Goswami [5], [6], Lin and Yao
[3] has explored EOQ model with fuzzy lead time, fuzzy
demand and fuzzy cost coefficients. However, in reality, it
is not always easy to specify the membership function or
probability distribution in an inexact environment. Since, the
optimal total average cost of the model should be interval-
valued no studies have yet been attempted for interval valued
manufacturing inventory models with shortages, which will
be examined in this paper. We choose the interval numbers
instead of the fuzzy numbers due to the following facts.
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• If the parameters were assumed to be triangular fuzzy
numbers, then membership function of the total cost
can be calculated easily. However if the membership
function of the fuzzy variable is complex, for example,
when a trapezoidal fuzzy number and a Gaussian fuzzy
number coexist in a model, it is hard to obtain the
membership function of the total cost. Therefore, these
membership functions play a significant role in these
methods. However, in practice one may not be able to
get exact membership function for fuzzy values. Since
precise information is required, the lack of accuracy will
affect the quality of the solution obtained.

• An interval number can be throughout an extension of the
concept of a real number and also a subset of a real line
� Moore [18]. H.J.Zimmermann shows that α-cut of a
fuzzy number is an interval number. As the coefficients of
an interval signifies the extent of tolerance (or a region)
that the parameter can possibly take.

• To define a fuzzy number, three parameters are required.
For an interval number, two parameters are used. The
notation of interval numbers has the advantage of being
simple and at the same time a better model to represent
the values in the situation like “is lies between α and β”.
So the interval numbers [18], serve better our required
purpose.

Thus, the interval number theory, rather than the traditional
probability theory and fuzzy set theory, is well suited to the
inventory problem. According to the decision maker’s point
of view under changeable conditions, we may replace the
real numbers by the interval valued numbers to formulate the
problems more appropriately.

We organize the paper as follows : In section II, we give
some basic definitions, notations and comparison on interval
numbers. In section III, we give the model formulation. In
section IV, we give the solution procedure and in section V
a numerical example is presented to indicate the performance
of the proposed method.

II. INTERVAL NUMBER

An interval number proposed by Moore [18], is considered
as an extension of a real number and as a real subset of the
real line �.

Definition I: Let � be the set of all real numbers. An
interval number Ã is a closed interval defined by

Ã = [aL, aR] = {x ∈ � : aL ≤ x ≤ aR} (1)

The numbers aL, aR are called respectively the lower and up-
per limits of the interval Ã. An interval number Ã alternatively
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represented in mean-width or center-radius form as

Ã = 〈m(Ã), w(Ã)〉
= {x ∈ � : m(Ã) − w(Ã) ≤ x ≤ m(Ã) + w(Ã)}

where m(Ã) = 1
2 (aL + aR) and w(Ã) = 1

2 (aR − aL) are
respectively the mid-point and half-width of the interval Ã.
Actually, each real number can be regarded as an interval,
such as, for all x ∈ �, x can be written as an interval [x, x],
which has zero length. The set of all interval numbers in � is
denoted by I(�).

A. Basic interval arithmetic

Let Ã = [aL, aR] = 〈m1, w1〉 and B̃ = [bL, bR] =
〈m2, w2〉 ∈ I(�), where m1, w1 and m2, w2 are respectively
the mid-point and half-width of the interval Ã and B̃. Then

Ã+ B̃ = [aL + bL, aR + bR] = 〈m1 +m2, w1 + w2〉.
The multiplication of an interval by a real number c �= 0 is
defined as

cÃ =
{

[caL, caR]; if c > 0,
[caR, caL]; if c < 0

cÃ = c〈m1, w1〉 = 〈cm1, |c|w1〉.
The difference of these two interval numbers is

Ã− B̃ = [aL − bR, aR − bL].

The product of these two distinct interval numbers is given by

ÃB̃ = [min{aL.bL, aL.bR, aR.bL, aR.bR},
max{aL.bL, aL.bR, aR.bL, aR.bR}]

The division of these two interval numbers with 0 �∈ B is
given by

Ã/B̃ =
[
min

{
aL

bL
,
aL

bR
,
aR

bL
,
aR

bR

}
,max

{
aL

bL
,
aL

bR
,
aR

bL
,
aR

bR

}]
.

The power of an interval Ã = [aL, aR] is given by

Ãk =

⎧⎪⎪⎨
⎪⎪⎩

[1, 1]; if k = 0,
[ak

L, a
k
R]; if aL ≥ 0 or k odd,

[ak
R, a

k
L]; if aR ≤ 0 or k even,

[a1b
k−1
1 ,max{ak

L, a
k
R}]; if aL ≤ 0 ≤ aR, k ≥ 0 even

B. Comparison between interval numbers

Let Ã = [aL, aR] = 〈m1, w1〉, B̃ = [bL, bR] = 〈m2, w2〉 be
two interval numbers within I(�). These two intervals may
be one of the following types:

• Two intervals are completely disjoint(non-overlapping).
• Two intervals are nested, (fully overlapping).
• Intervals are partially overlapping.

A brief comparison on different interval orders is given in [1],
[17].

Case 1 (Disjoint subintervals): Moore [18] defined

[ [] ]
aL bLaR bR

Fig. 1. Disjoint subintervals

transitive order relations over intervals as Ã is strictly less
than B̃ if and only if aR < bL and this is denoted by Ã < B̃.

Case 2 (Nested subintervals) : Let Ã and B̃ be such that
aL ≤ bL < bR ≤ aR. Then B̃ is contained in Ã and it is
denoted by B̃ ⊆ Ã which is the extension of the concept of
the set inclusion [18]. we define the ranking order of Ã and

[ ][ ]
aL bRbL aR

Fig. 2. Nested subintervals

B̃ as

Ã ∨ B̃ =

{
Ã, if the player is optimistic
B̃, if the player is pessimistic.

The notation Ã ∨ B̃ represents the maximum among the
interval numbers Ã and B̃. Similarly

Ã ∧ B̃ =

{
B̃, if the player is optimistic
Ã, if the player is pessimistic.

The notation Ã∧B̃ represents the minimum among the interval
numbers Ã and B̃.

Case 3 (Partially overlapping subintervals) : The above
mentioned order relations introduced by Moore [18] can not
explain ranking between two overlapping closed intervals.

[ ][ ]
aL aRbL bR

Fig. 3. Partially overlapping subintervals

Definition II: For m1 ≤ m2 and w1 + w2 �= 0, an
acceptability index to the premise Ã ≺ B̃ is defined as follows
[17]:

Ψ(Ã ≺ B̃) =
m2 −m1

w1 + w2
, (2)

which is the value judgement or satisfaction degree of the
decision makers (DM) that the interval Ã is not superior to B̃
( B̃ is not inferior to Ã) in terms of value.

Thus, the max operator ”∨” for two intervals Ã and B̃ is
defined as follows [17]:

Ã ∨ B̃ =

⎧⎪⎨
⎪⎩

B̃, if Ψ(Ã ≺ B̃) > 0
Ã, if Ψ(Ã ≺ B̃) = 0;w1 < w2 and DM is pessimistic
B̃, if Ψ(Ã ≺ B̃) = 0;w1 < w2 and DM is optimistic.

The following algorithm shows the m̃ax which determines the
maximum between two interval numbers.

FUNCTION m̃ax(Ã, B̃)
if Ã = B̃ then maximum = Ã;
else
if Ã = 〈m1, w1〉 and B̃ = 〈m2, w2〉 are not
non-dominating then
if ((Ã ≺ B̃) or (Ã ≺P B̃)) then
maximum = B̃;
else
maximum = Ã;
endif;
else
if (w1 < w2) then
if the decision maker is optimistic maximum = B̃;
if the decision maker is pessimistic maximum = Ã;
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endif;
endif;
endif;
return(maximum);
END Function.

Similarly, the min operator ”∧” for two intervals Ã and B̃ is
defined as follows [17]:

∧B̃ =

⎧⎪⎨
⎪⎩

B̃, if Ψ(B̃ ≺ Ã) > 0
Ã, if Ψ(B̃ ≺ Ã) = 0;w1 > w2 and DM is pessimistic
B̃, if Ψ(B̃ ≺ Ã) = 0;w1 > w2 and DM is optimistic.

FUNCTION m̃in(Ã, B̃)
if Ã = B̃ then minimum = Ã;
else
if Ã = 〈m1, w1〉 and B̃ = 〈m2, w2〉 are not
non-dominating then
if ((Ã ≺ B̃) or (Ã ≺P B̃)) then
minimum = Ã;
else
minimum = B̃;
endif;
else
if (w1 > w2) then
if the decision maker is optimistic minimum = B̃;
if the decision maker is pessimistic minimum = Ã;
endif;
endif;
endif;
return(minimum);
END Function.

III. MODEL FORMULATION

The purpose of the EOQ model is to find the optimal order
quantity of inventory items at each time such that the sum of
the order cost, the carrying cost and the shortage cost, i.e.,
total cost is minimal.
Notations : For the sake of clarity, the following notations are
used throughout the paper.
T, the interval between production cycle ;
t1, the time after which the production is stopped ;
D̃ = [dL, dR], demand rate per unit time;
Q̃, fixed lot size per cycle;
S̃1, the inventory level at the end of t1;
S̃2, the shortage level at the end of t3;
C̃(Q), total cost in the plan period;
C̃1 = [C1L, C1R], the inventory carrying cost or holding

cost per unit item per unit time;
C̃2 = [C2L, C2R], the inventory shortage cost per unit item

per unit time;
C̃3 = [C3L, C3R], the ordering or setup cost per unit item;

Assumptions : We have the following assumptions:

• Production rate or replenishment rate is finite, say, K
units per unit item where K > D.

• Shortages are allowed and fully backlogged.
• Lead time is zero.

• The inventory planning horizon is infinite and the in-
ventory system involves only one item and one stocking
point.

• Carrying cost (C̃1), shortages cost (C̃2), ordering cost
(C̃3) and demand (D̃) are assume to be interval numbers.

A typical behavior of the EOQ manufacturing inventory
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Fig. 4. EOQ manufacturing inventory model with shortage

model with uniform demand and with shortage is depicted
in Figure 4. In this model, we can easily observe that the
inventory carrying cost C1 as well as shortages cost C2 will
be involved only when 0 ≤ S1 ≤ Q.

In this model, each production cycle time T consists of two
parts t12 and t34 which are further subdivision into t1, t2, t3,
t4 where

• inventory is building up at a constant rate K −D units
per unit time during the interval [0, t1],

• at time t = t1, the production is stopped and the stock
level decreases due to meet up the customer’s demand
only up to the time t = t1 + t2,

• shortages are accumulated at a constant rate of D units
per unit time during the time t3,

• shortages are being filled up immediately at a constant
rate K −D units per unit time during the time t4.

• The production cycle then repeat itself after the time T =
t1 + t2 + t3 + t4.

Again, let at the end of t1, the inventory level is S1 and
at the end of time t = t1 + t2 the level becomes nil. Now
shortages start and suppose that shortages are built up of
quantity S2 at time T = t1 + t2 + t3 and then these shortages
be filled up upto the time T = t1 + t2 + t3 + t4. Therefore,

S1 = (K −D)t1 = Dt2. (3)

Again we have,

S2 = Dt3 = (K −D)t4. (4)

Since T = t1 + t2 + t3 + t4, we get

T =
K(t1 + t4)

D
. (5)

The inventory carrying cost during t12 is given by

C1 × area of 
OAB = C1 ×
(

1
2
× S1 × (t1 + t2)

)

=
1
2
C1
K(K −D)

D
t21, from, (3)
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The inventory shortage cost during t34 is given by

C2 × area of 
BCE = C2 ×
(

1
2
× S2 × (t3 + t4)

)

=
1
2
C2
K −D

KD
(DT −Kt1)2, [ from, (4) and (5)]

The inventory ordering cost during T is C3. Hence the total
cost in the plan period [0, T ] can be expressed as

X = C3 +
1
2
C1
K(K −D)

D
t21 +

1
2
C2
K −D

KD
(DT −Kt1)2

Therefore total average cost C(T, t1) is given by

C(T, t1) =
X

T
=
C3

T
+

(K −D)
2D

[
C1
t21
T

+ C2
(DT −Kt1)2

KT

]

(6)
By using calculus, we optimize C(T, t1) and we get optimum
values of T , t1, and C as,

T ∗ =

√
2KC3(C1 + C2)
C1C2D(K −D)

, t∗1 =

√
2DC2C3

C1(C1 + C2)K(K −D)
,

C∗ =

√
2C1C2C3D(K −D)

K(C1 + C2)
.

Then using these we get the optimum values of Q, t2, t3, S1

and S2.
Usually, in mathematical programming we deal with the

real numbers which are assumed to be fixed in value. In usual
models- Carrying cost (C1), set up cost (C3), demand (D)
are always fixed in value. But in real life, business cannot
be properly formulated in this way due to uncertainty. For
example, inventory carrying cost may be different in rainy
season compared to summer or winter seasons (costs of taking
proper action to prevent deteriorations of items in different
seasons and also the labour charges in different seasons are
different). Ordering cost, being dependent on the transportation
facilities may also vary from season to season. Changes in the
price of fuels, mailing charges, telephonic charges may also
make the ordering cost fluctuating. Unit purchase cost is highly
dependent on the costs of raw materials and labour charges,
which may fluctuate over time. In such cases demand and other
costs are assumed to be interval valued. But in interval oriented
system we cannot use the calculus method for optimization.

A. Interval valued EOQ model

Let us assume interval valued demand by D̃ = [dL, dR],
carrying cost by C̃1 = [c1L, c1R], shortage cost by C̃2 =
[c2L, c2R] and set up cost by C̃3 = [c3L, c3R], where first term
within the bracket denote lower limit and 2nd term within the
bracket denote the upper limit of the variable. Replacing D
by [dL, dR], C1 by [c1L, c1R], C2 by [c2L, c2R] and C3 by
[c3L, c3R] in equation (6) we have,

C̃(T, t1) =
1
T

[c3L, c3R] +
K

2T
[c1L, c1R][K − dR,K − dL][

1
dR
,

1
dL

]
t21 +

1
2KT

[c2L, c2R]
[

1
dR
,

1
dL

]
([dL, dR]T −Kt1)

2 (7)

Addition and other composition rules ( seen in the section II
in this paper ) on interval numbers are used in this equation.

But in interval oriented system we cannot use the calculus
method for optimization of C̃(T, t1). If we take T = [TL, TR]
and t1 = [t1L, t1R] then (7) becomes

C̃(T, t1) =
[

1
TR

,
1
TL

]
[c3L, c3R] +

K

2

[
1
TR

,
1
TL

]

[c1L, c1R] .[K − dR,K − dL][t21L, t
2
1R] +

1
2K

[
1
TR

,
1
TL

]

[c2L, c2R]
[

1
dR
,

1
dL

]
([dL, dR][TL, TR] −K [t1L, t1R])2 (8)

In the next section, we have presented a new method
(Multi-section Technique) dependent on interval computing
technique to solve the unconstrained optimization problems.
By using multi-section method, we are to find t∗1 = [t∗1L, t

∗
1L],

and T ∗ = [T ∗
L, T

∗
L] for which C̃(T, t1) have the optimal

(minimum) value.

IV. SOLUTION PROCEDURE:

The idea of multi-section comes out from the concept of
bisection [15], which searches for a solution by repeatedly
dividing the range of variable in to multiple parts where more
than one bisection are done at a single iteration cycle. First
of all, calculate the value of the interval valued cost function
at each cell and on the basis of the comparison of intervals
(as described in the section II(B) of this paper) finds the
optimal(minimal) value of the cost function.

Let us consider a bound unconstrained optimization (max-
imization or minimization) problem with fixed coefficients as
follows:

z = f(x), l ≤ x ≤ u,

where x = (x1, x2, . . . , xn), l = (l1, l2, . . . , ln), u =
(u1, u2, . . . , un), n represents the number of decision vari-
ables, the jth decision variable xj ; (j = 1, 2, . . . , n) lies in
the prescribed interval [lj , uj ]. Hence, the search space of the
above problem is as follows:

S = x ∈ �n : lj ≤ xj ≤ uj , j = 1, 2, . . . , n.

Suppose, an industry divides the sales season into λ periods.
Now our object is to split the accepted region(reduced)region
(for the first time, it is the given search space or assumed if the
search space is not given )into finite number of distinct equal
subregions R1, R2, . . . , Rλ to select the subregion containing
the best function value.

Let f(Ri) = [fi, fi]; i = 1, 2, . . . , λ be the interval valued
objective function f(x)in the ith subregion Ri, where fi, fi

denote the upper and lower bounds of f(x) in Ri, computed by
the application of finite interval arithmetic. Now, comparing
all the interval-valued values of objective function, f(x) in
Ri(i = 1, 2, . . . , λ)with the help of interval order relations
mentioned in earlier section, the subregion containing best
objective function value is accepted. Again, this accepted
subregion is divided into other smaller distinct subregions
R′

i(i = 1, 2, . . . , λ) by the aforesaid process and applying
the same acceptance criteria, we get the reduced subregion.
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This process is terminated after reaching the desired degree
of accuracy and finally, we get the best value of the objective
function and the corresponding values of the decision variables
in the form of closed intervals with negligible width. To solve
the problem, the optimal solution or an approximation of it
has been obtained by applying the following steps.

A. Algorithm Interval Optimal Control

Input:n(number of variables, here n = 2 ), λ(number of
divisions), lj(lower bounds), uj(upper bounds), where, j =
1, 2, · · · , n.
Output: T ∗, t∗1, S̃∗

1 , Q̃∗, C̃∗

Step 1: Initialize lmin and umin ,the lower and upper value
of interval valued cost function.
Step 2: //calculation of step lengths//

For i = 0 to n− 1
calculate hi = (ui − li)/λ
Set li = ai

end for

Step 3: //Division of region S into equal subregions Ri//
Step 3.1: For j = 0 to λ− 1

Calculate l0 = ai + j ∗ hi and
u0 = ai + (j + 1) ∗ hi

Step 3.2: For j1 = 0 to λ− 1
Calculate l1 = ai + j1 ∗ hi and
u1 = ai + (j1 + 1) ∗ hi

Step 3.3: //Call the function fl and fu//.
By using basic interval arithmetic calculate fl and
fu, lower and upper value of C̃(T, t1) respectively

Step 3.4: Applying pessimistic order relation between ‘ any
two interval numbers [fl, fu] and [lmin, umin]

choose the optimal interval number.
end j1 loop
end j loop

Step 3.5: choose the subregion Ropt among Ri(i =
1, 2, . . . , λ) which has better objective function value by
comparing the interval valuesf(Ri), i = 1, 2, 3, . . . , λ to each
other.
Step 4: //calculation of widths//.
Step 4.1: For i1 = 0 to n− 1

Calculate widths wi1 = ui1 − li1
Step 4.2: While wi1 > ε

break
Step 4.3: Set Ropt ← Ri

Return to step 1.2
end for
endwhile.
Output
END MULTISECTION

V. NUMERICAL EXAMPLE

In this section,we illustrate that the solution procedure pro-
posed in the above Algorithm can be easily implemented on a
computer and we show that, with such an implementation, the
optimal solutions can be obtained. To serve our purpose, we

have written a computer program using C++ on a PENTIUM
4 personal computer.

Consider a interval valued EOQ inventory system with
shortages in which the carrying cost (C̃1) = [0.15, 0.18],
shortage cost C̃2 = [20, 25] and the ordering or setup cost
(C̃3) = [500, 700], the demand quantity D̃ = [1500, 1600]
and production rate K = 4000. The approach for computing
the best found value in each subregion of the given search
region of the test problem has been coded in C + + pro-
gramming language. The solution is t∗1 = 1.1387, T ∗ =
2.9552, optimal cost C̃∗ = [330.8202, 553.1889], the opti-
mum S̃1

∗
= [2732.8872, 2846.7575] and the optimum Q̃∗ =

[4432.8000, 4728.3200]. If we consider the fuzzy model as
described by Mahata and Goswami [6] then the solution is
optimal cost C̃∗∗ = [368.3304, 502.0832]. According to pes-
simistic point of view C̃∗∧C̃∗∗ = C̃∗ = [330.8202, 553.1889].
which is better than the fuzzy model. Also the major advantage
of our proposed method over [6] lies in the fact that, at any
intermediate stage the change of value of any parameter needs
no further bulk calculations.

Based on the numerical example considered above, we now
study sensitivity of t∗1, T

∗, Q̃∗, S̃1

∗
and C̃∗ to changes in the

values of the system parameters C̃1, C̃2, C̃3 and D̃. The

TABLE I
EFFECT OF CHANGES IN THE VARIOUS PARAMETERS OF THE INVENTORY

MODEL

Value of

the % change Change in

parameter t∗1 T ∗ Q̃∗ S̃1
∗

C̃∗

+50 -12.18 -11.97 -11.97 -12.18 +23.07

m(C̃1) +25 -11.60 -11.47 -11.47 -11.61 +11.55

-25 +24.43 +24.24 +24.24 +24.43 -12.48

-50 +73.26 +72.73 +72.73 +73.26 -26.32

+50 +1.52 +1.35 +1.35 +1.52 +0.32

m(C̃2) +25 +1.45 +1.35 +1.35 +1.45 +0.22

-25 -0.28 -0.13 -0.12 -0.28 -0.15

-50 -2.75 -2.32 -2.32 -2.76 -0.52

+50 +29.43 +29.43 +29.43 +29.43 +23.20

m(C̃3) +25 +12.12 +12.12 +12.12 +12.12 +11.82

-25 -12.12 -12.12 -12.12 -12.12 -13.29

-50 -12.12 -12.12 -12.12 -12.12 -26.36

+50 +41.91 -5.34 +41.92 -2.98 +0.43

m(D̃) +25 +19.94 -4.04 +19.95 +0.97 +2.08

-25 -10.85 +18.85 -10.86 +3.25 -4.86

-50 +18.73 +137.37 +18.69 +56.29 +7.09

sensitivity analysis is performed by changing mid value of
each parameters by +50%,+25%,−25% and −50%; taking
one parameter at a time and keeping the remaining parameters
unchanged. The results are shown in the Table I. From the
Table I, it is seen that

• t∗1, T ∗, Q̃∗ and S̃1

∗
are fairly sensitive while C̃∗ are less

sensitive to changes in the value of the carrying cost C̃1.
• Each oft∗1, T

∗, Q̃∗, S̃1

∗
and C̃∗ are not much sensitive to
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changes in the value of the shortage cost C̃2.
• Percentage of the changes of t∗1, T

∗, Q̃∗, S̃1

∗
are same and

all of them with C̃∗ are moderately sensitive to changes
in the value of the setup cost C̃3.

• t∗1, Q̃
∗ is moderately sensitive and T ∗, S̃1

∗
and C̃∗ are

very less sensitive sensitive except T ∗, S̃1

∗
are very high

sensitive for −50% changes in the demand rate D̃.

VI. CONCLUSION

In this paper, we have presented an inventory model with
shortage, where carrying cost, the ordering or setup cost and
demand are assumed as interval numbers instead of crisp or
probabilistic in nature. We have considered the nature of these
quantities as interval numbers to make the inventory model
more realistic. At first, we have formulated a solution proce-
dure to optimize a general function with coefficients as interval
valued numbers using interval arithmetic. Using multi-section
technique, we have derived the solution of the model. The
algorithm has been tested using numerical example. Lastly, to
study the effect of the determined quantities on changes of
different parameters, a sensitivity analysis is also presented.
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