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Abstract—Based on the Lagrangian for the Gross –Pitaevskii 

equation as derived by H. Sakaguchi and B.A Malomed [5] we have 
derived a double well model for the nonlinear optical lattice. This 
model explains the various features of nonlinear optical lattices. 
Further, from this model we obtain and simulate the probability for 
tunneling from one well to another which agrees with experimental 
results [4].  
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I. INTRODUCTION 
OSE Einstein condensation has been both predicted and 
observed in harmonic oscillator potentials [1]. Nonlinear 

optical lattices have been known to simulate BEC via 
Feshbach Resonance [2]. It is therefore natural to assume a 
harmonic potential at each site of the nonlinear optical 
lattice. Further, Solitons have been predicted [8] and 
observed [9] in these lattices. We know from the seminal 
work of Krumhansl and Schrieffer [6] that a double well 
potential gives rise to domain wall Solitons. Since domain 
wall Solitons are indeed observed [10] in nonlinear optical 
lattices we suggest that a double well potential may model 
nonlinear optical lattices. Using the double well model for 
coupled non linear optical lattices we obtain Soliton solutions 
for one and higher dimensions. For the one dimensional 
lattice we find domain wall Solitons which induce lattice 
compression, which have been observed experimentally [4]. 
Recently in the seminal paper of H. Sakaguchi and B.A 
Malomed [5] the Lagrangian corresponding to the Gross – 
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Pitaevskii equation was derived. The potential in the 
Lagrangian is the double well potential which has been treated 
in the classic paper of Krumhansl and Schrieffer [6]. As 
shown in [6] the double well potential admits Domain wall 
Solitons. Further we find light and dark Solitons in the 
coupled lattice (but not in the uncoupled lattice) which is 
again verified by recent experiments on coupled lattices [11]-
[12]. 

 
II MODEL 

The Lagrangian corresponding to the Gross –Pitaevskii 
equation, derived in [5], is  

[ ]
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This represents a double well potential of the form 

 
2 4

( )
2 4

Ax BxV x = +                (2) 

where A = 4μ and B =4( 0(2 )Cos x g− ). We note that for 
potential minima to be real either A< 0 or B< 0 (but not both). 
This implies either μ  < 0 or ( 0(2 )Cos x g− ) <0. Both 
conditions have been found in “(1)” for the existence of 
Solitons. We note from [6] that the height of the double well 

is given by   21 /
4

A B−    =
2

cos(2 )x go
μ−

−
  where 

0 (2 )g Cos x<  Note that we have two different regimes: (a) 
Height of the double well >> inter site interaction energy or 
(b) Height of double well << inter site interaction energy. The 
latter case (case (b)) correspond   the occurrence of the 
Solitons. We find domain wall Solitons for the one 
dimensional lattice and lattice compression. However, for the 
coupled nonlinear linear lattice we find both light and dark 
Solitons but no lattice compression [3]. 

II. ONE DIMENSIONAL LATTICE  
Using the parameters of the double well, A and B, 

identified in section II, we write the equation of motion [6] for 
the lattice as 
 

3 2 '' 0m A B m cφ φ φ φ+ + − =&&      (3) 
 
Following [6] we put ( )f x vtφ = − and we obtain 
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Introduce the dimensionless variables 

2 2 2
0( ) /m c v A ξ− = (Length squared)       

 (5) 
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The dimensionless form of the equation is  

2
3

2 0d
ds

η η η+ − =                

 (8) 
 
As shown in [6] this equation admits Soliton solutions of the 
form  

           tanh( 2)sη =               (9) 
which is also the domain wall solution. Note that the tanh 
solutions are domain walls which have been observed in 
nonlinear optical lattices [15].Domain wall Solitons induce 
lattice compression as observed in [16]. 

IV. TWO DIMENSIONAL LATTICE 
To develop the equations for the coupled lattice we note 

first that a photo refractive lattice with two different types of 
atoms with an exponential interaction [14] can approximate 
the interaction between the atoms. One may then write the 
Lagrangian for the coupled lattice as  
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Expanding the exponential and using the Euler Lagrange 
equations we get 
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1 1 2 22 , 2A Aμ μ= =                (13) 

1 01(2 )B Cos x g= −                (14) 

2 02(2 )B Cos x g= −               
 (15) 

We look for traveling wave solutions of the form 

1 1( )n f z v tψ = − ,                
 (16) 

 2 2( )nu f z v t= −                  (17) 
      

Here 1 2,v v are the velocities of the Soliton waves in the two 
lattices 
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We convert the above coupled equations into the 
dimensionless form 
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Making the substitutions 

Let   21 1 2 1 1
1 1 22 2 3

1 0 0 1 0 1 0

1 1, , , ,A f f C D
B u u B u B u

= ξ = η = η = =     

 (21)                              
     

we obtain 
 

2
3 21

1 1 1 22 0d
ds

η
+ η + η + η η =            

 (22) 
 

2
3 22

2 2 1 22 0d
ds

η
+ η + η + η η =            (23) 

Adding the two equations one obtains 
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The solution to the above equation can be obtained via 

elliptic equations using the method outlined in [6] 
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 Taking the real part we obtain 
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Fig. 1(a) Phase angle θ  vs the argument of the tanh function 
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Fig 1 (b)  Phase angle θ  vs the argument of the tanh function 

 
In both Fig.1 (a) and Fig. 1 (b) we plot the phase angle θ  

vs. the argument of the tanh function. The phases are opposite. 
These correspond to the light and dark Solitons which have 
been observed in nonlinear optical lattices [11]-[12]. These 
equations actually describe matter wave oscillations (with 
opposite phases) in the system. In this picture two wells of the 
double well of the lattice vibrate in opposite phases as 
observed experimentally in [13].The experimental justification 
of the solutions given here also implies that exponential 
approximation of the interaction given earlier is correct. 

V. TUNNELING 
Recently photon assisted tunneling has been observed in 

optical lattices [4] subject to a sinusoidal shaking of the 
lattice. To a first approximation we have harmonic oscillator 
states in each well. The probability of tunneling through a 
potential of height V and width a is given by (in the WKB 
approximation) 
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where E is energy of a state in the harmonic oscillator well 
and is given by [6] 
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and 0u is the potential minima. For resonance to occur the 
energy of the tunneling particles must be at least equal to  

the height of the double well hump or (
21 /

4
A B−  ). This 

means 
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using *m l A= = , we obtain 
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0
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≈ .Taking into account the 

fluctuation in 0u  we write the sinh2 term as 
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Using the expansion 
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Using this expression we simulated the probability of 
transmission. The results are shown in Fig. 3  
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Fig. 2 Transmission probability vs energy 

 
The simulated profile agrees favorably with the 

experimental results of [4]. We conclude that the double well 
model provides a reasonable basis for the study of the various 
properties of the nonlinear optical lattice.  
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