
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

33

Abstract—State-based testing is frequently used in software 
testing. Test data generation is one of the key issues in software 
testing. A properly generated test suite may not only locate the errors 
in a software system, but also help in reducing the high cost 
associated with software testing. It is often desired that test data in 
the form of test sequences within a test suite can be automatically 
generated to achieve required test coverage. This paper proposes an 
Ant Colony Optimization approach to test data generation for the 
state-based software testing.   
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I. INTRODUCTION

Software testing remains the primary technique used to gain 
consumers’ confidence in the software. The process of testing 
any software system is an enormous task which is time-
consuming and costly [1]. The development of techniques that 
will also support the automation of software testing will result 
in significant cost savings. The application of artificial 
intelligence (AI) techniques in Software Engineering (SE) is 
an emerging area of research that brings about the cross-
fertilization of ideas across two domains.  A number of 
published works, for examples [2] and [12], have begun to 
examine the effective use of AI for SE related activities which 
are inherently knowledge intensive and human-centred.  

It has been identified that one of the SE areas with a more 
prolific use of AI techniques is software testing. The focus of 
these techniques involves the applications of genetic 
algorithms (GAs), for examples [8] and [10]. Other AI 
techniques used for test data generation included the AI 
planner approach [7] and simulated annealing [13]. Recently, 
Ant Colony Optimization (ACO) is starting to be applied in 
software testing [3, 10]. Namely Boerner and Gutjahr [3] 
described an approach involving ACO and a Markov Software 
Usage model for deriving a set of test paths for a software 
system, and McMinn and Holcombe [10] reported on the 
application of ACO as a supplementary optimization stage for 
finding sequences of transitional statements in generating test 
data for evolutionary testing. However, the results obtained so 
far are preliminary, and none of the reported results directly 
addresses specification-based software testing. 
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In this paper we propose to use UML Statechart diagrams 
and ACO for test data generation. The advantages of the 
proposed approach are: 1). our approach directly uses the 
standard UML artifacts created in software design processes; 
2). the automatically generated test sequence is always 
feasible, non-redundant and achieves the all state coverage 
criterion. Section 2 briefly discussed about software testing 
and ACO. Section 3 presents the proposed ACO approach to 
test data generation, and the conclusion is found in Section 4.  

II. SOFTWARE TESTING AND ACO

Three main activities normally associated with software 
testing are: (1) test data generation, (2) test execution 
involving the use of test data and the software under test 
(SUT) and (3) evaluation of test results. The key question 
addressed in software testing is how to select test cases with 
the aim of uncovering as many defects as possible. Of the 
three activities mentioned above, test data generation and 
evaluation of test results are the most labour intensive and 
thus would benefit most from automation. 

The process of test data generation involves activities for 
producing a set of test data that satisfied a chosen testing 
criterion. Horgan [6] has previously shown that test cases 
selected on the basis of test adequacy criteria are more 
effective at discovering defects in the SUT. While it is 
possible to manually generate an effective set of test cases, the 
more cost-effective approach is to automate the test data 
generation while ensuring that the given criterion is met.  

A variety of techniques for test data generation have been 
developed previously and these can be categorised as 
structural and functional testing. Most existing work in 
automated test data generation involving AI uses GAs and is 
mainly in the areas of structural test data generation and 
temporal behaviour testing. The ultimate aim of using GAs for 
structural testing is to generate a set of test cases that provides 
the highest possible coverage of a given structural testing 
criterion. The test objectives are expressed numerically and 
are used subsequently to formulate a suitable fitness function 
that evaluates the suitability of the generated test cases. 

ACO simulates the behavior of real ants. The first ACO 
technique is known as Ant System [4] and it was applied to 
the travelling salesman problem. Since then, many variants of 
this technique have been produced. ACO is a probabilistic 
technique that can be applied to generate solutions for 
combinatorial optimisations problems. The artificial ants in 
the algorithm represent the stochastic solution construction 
procedures which make use of (1) the dynamic evolution of 
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the pheromone trails that reflects the ants' acquired search 
experience and (2) the heuristic information related to the 
problem in hand, in order to construct probabilistic solutions.  

In order to apply ACO to test case generation, a number of 
issues need to be addressed, namely, (1) transformation of the 
testing problem into a graph; (2) a heuristic measure for 
measuring the “goodness” of paths through the graph; (3) a 
mechanism for creating possible solutions efficiently and a 
suitable criterion to stop solution generation; (4) a suitable 
method for updating the pheromone; and (5) a transition rule 
for determining the probability of an ant traversing from one 
node in the graph to the next. In the next section, we present 
an ACO approach to automatically generate test data from 
UML Statechart diagrams for state-based software testing. 

III. TEST DATA GENERATION USING ACO

State-based testing is a frequently used approach in 
software testing. There are two major problems associated 
with state-based software testing: (1) some of the generated 
test cases are infeasible; (2) inevitably many redundant test 
cases have to be generated in order to achieve the required 
testing coverage. To our knowledge, no systematic and 
efficient strategy has been reported to successfully deal with 
the automatic generation of feasible test cases for state-based 
software testing.  

The “all state testing coverage” requirement is commonly 
used in state-based software testing. A test suite is said to 
achieve all states coverage if every state is accessed at least 
once by a test case within. A test suite for state-based software 
testing consists of a set of test cases in the following form:  

SA  SB  SC  SD  SA  SD  SA  SC  SB

or alternatively, {SA, SB, SC, SD, SA, SD, SA, SC, SB} for short 
notation, where SA, SB, SC, SD are the states in the 
corresponding UML Statechart diagram, and  represents a 
transition between the two states. 

The proposed approach deals with the automatic generation 
of test suites from the UML Statechart diagrams for state-
based software testing, and uses the all state testing coverage 
as test adequacy requirement. Specifically, the generated test 
suite has to satisfy three criteria: 

1. All state coverage

2. Feasibility – Each test case represents a feasible path 
in the corresponding Statechart diagram 

3. Optimality – Test suite contains non-redundant test 
cases which have the shortest possible test sequences 

A directed graph is defined as G = (V, E) where V is a set 
of vertices of the graph and E a set of edges of the graph. A 
UML Statechart can be viewed as a directed graph where the 
vertices are the states of the Statechart diagram, and the edges 
are the transitions between the states. We have developed a 
tool to automatically convert a Statechart diagram to a 
directed graph. For example, a typical UML Statechart 
diagram, the Coffee and Cocoa Vendor Machine (CCVM), 
can be converted into a directed graph CCVM = (S, T), where 
S is the state set and T is the transition set. The original 

CCVM Statechart diagram and the converted graph are shown 
in Figure 1 and Figure 2 respectively. We will use the CCVM 
example to help demonstrating our approach.  

OFF S1

ON  S2

COFFEE S21

IDLE S211 BUSY S212

COCOA S22

STOP S221 STREAM S222

MONEY S23

EMPTY S231 NOTEMP S232

T9(inc)[m<10]/m=m+1

T10(dec)[m>1]/m=m-1

T4(dec)[m==1]/m=0

T3(inc)/m=1

T8(done)/stop!

T7(cocoa)[m>0]/start!;dec

T6(done)/stop!

T5(coffee)[m>0]/start!;dec

T2(power-off)/light-off! T1(power-on)/light-on!;m=0

Figure 1. The UML Statechart diagram for CCVM 
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EMPTY NOTEMP
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T6

T3

T4

T1

T2

T9
T10

S1 S2

S21

S23

S211 S212

S231 S232

COCOA STOP STREAM

T7

T8
S221S22 S222

Figure 2. Converted CCVM graph CCVM = (S, T) 

The converted graph is a directed, dynamic graph in which 
the edges (transitions in Statechart sense) may dynamically 
appear or disappear based on the evaluation of their guard 
conditions. Unlike the work in [3] and [10], it is difficult to 
apply the original ACO algorithms in [4] and [5] to this type 
of dynamic graphs to generate test data for the corresponding 
state-based software testing problems. 

We consider the problem of simultaneously dispatching a 
group of ants to cooperatively search a directed graph G. The 
ants in our paradigm can sense the pheromone traces at the 
current vertex and its directly connected neighbouring 
vertices, and leave pheromone traces over the vertices.  

An ant k at a vertex  of the graph is associated with a four 
tuple (Sk, Dk, Tk, P): 

Vertex Track Set  Sk = {Si} keeps a vertex track of the 
ant's walking history 
Target Set Dk indicates those vertices which are always 
connected to the current vertex . For the Statechart 
diagrams, target sets only exist for the super-states of the 
composite states, and the target set for a super-state 
contains the current status of the composite state. For 
example, the ON super-state for the CCVM graph 
contains the information ON(COFFEE, COCOA, 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

35

MONEY). Therefore, the target set for vertex ON is 
{COFFEE, COCOA, MONEY}. The target set for vertex 
COCOA is either {STOP} or {STREAM}, but not both 
because the super-state for these two sub-states only 
keeps the current status of the composite state 
Connection Set Tk = {T(Vi)} represents the direct 
connections of the current vertex  with the 
neighbouring vertices. Direct connection means that 
there is only one directed edge from the current vertex to 
the destination vertex. Tk also documents all the edges 
spanning from the current vertex. T(Vi) = 0 means that 
the two vertices  and Vi are always connected, T(Vi) = 
1 means that the two vertices appear to be connected for 
the current ant at the current vertex , and T(Vi) = -1 
indicates that the two vertices are not connected for the 
current ant, at the current vertex  and for the current 
time. For the corresponding UML Statechart diagram, 
the following situations appear: 

T(Vi) = 0 means that either Vi is contained in the 
target set for , or  is contained in the target set for 
Vi. This represents two vertices which are a super-
state and its targeted sub-state; 
T(Vi) = 1 means that the transition between the two 
states is evaluated to be feasible; 
T(Vi) = -1 means that there is no transition between 
two states  and Vi, or the transition between the two 
states is infeasible, or Vi is not in the target set of the 
vertex 

For examples, for an ant k at the state EMPTY (S231) in 
the CCVM graph in Figure 2, Tk = {T(S23), T(S232)}. If 
T3 is feasible, Tk = {0, 1}, otherwise Tk = {0, -1}; for an 
ant k at the state COFFEE (S21) with target set {IDLE}, 
Tk = {T(S2), T(S211), T(S212)} = {0, 1, -1} since S212 is 
not contained in the target set for S21 at this stage 
Pheromone Trace Set P = {P(Vi)} represents the 
pheromone levels at the neighbouring vertices which are 
feasible to an ant at the current vertex. The pheromone 
left by previous ants over the graph will not decrease, 
and the succeeding ants will use the remaining 
pheromone level to adjust their exploration. 

Each ant keeps its own private sets Sk, Dk, and Tk, while the 
public set P is left on the graph for all of the ants to share. 
Ants can sense the pheromone levels on the graph, and modify 
P in the exploration of the graph. The following algorithm is 
proposed for an ant to explore the directed graph: 

Algorithm for ant k

1. Evaluation at vertex 
Update the Track - Push the current vertex  into the 
track set Sk

Evaluate Connections - Evaluate all connections to the 
current vertex  to determine Tk. The procedure involves 
evaluation of all possible transitions from the current 
states  to other neighbouring states, using the state-
transition table associated with the UML Statechart 
diagram 

Sense the Trace - For the non-negative connections in 
Tk, the ant senses and gathers the corresponding 
pheromone levels P at the other ends of the connections 

2. Move to next vertex 
Select Destination - The following prioritized rules are 
used in ant's selection: 
o Select the vertex Vi with the lowest pheromone 

level P(Vi) sensed from the current vertex 
o If vertices Vi and Vj shares the same lowest 

pheromone level P(Vi) = P(Vj), but T(Vi) = 0 and 
T(Vj) = 1, select Vi

o If vertices Vi and Vj shares the same lowest 
pheromone level P(Vi) = P(Vj) and T(Vi) = T(Vj),
randomly select one vertex 

Destination  is the vertex selected using the above rules 
Update Pheromone - Update the pheromone level for the 
current vertex  to 

   P( ) = max(P( ), P( )+1)        if     T( ) = 1 
 or 
   P( ) = max(P( ), P( )+1)+TP       if     T( ) = 0 

where TP is a high pheromone level which decays in one 
iteration of the two steps, namely, TP quickly decays to 
0 before ant's next move at the end of Step 2 
Move - Move to the destination vertex , set  := , and 
return to Step 1. 

In the above algorithm, TP is used to encourage an ant to 
perform forward exploration and to prevent an ant from 
immediately moving back to the previously stayed vertex. In 
the Statechart sense, TP prevents an ant from doing redundant 
moves between a super-state and its sub-state. 

Multiple ants can be sent to explore the converted graphs 
simultaneously in order to accelerate the exploration process 
and to produce shorter test sequences. Each ant is assigned a 
unique ID which represents its priority in the cooperative 
team. The following rule is used in the cooperative 
exploration by the ants: 

Rule: When there are two or more ants at a vertex , the 

ants have to leave  according to their priorities in the team. 

An ant with a higher priority leaves and sets pheromone level 

for  first, followed by lower priority ants.  

The final pheromone level left over  is the highest one set 
by all ants.  

Similar to [14], it can be shown that all vertices can be 
visited in limited steps (upper bound). The details however are 
omitted due to space limitation. The algorithm for an ant 
terminates when one of the following two conditions is 
satisfied: 

The union of all track sets Sk contains all vertices of 
the graph which means the coverage criterion has been 
satisfied, i.e., all states have been visited at least once; 
The search upper bound has been reached. In this case, 
this group of ants fails to find a solution which achieves 
the required coverage. More ants will have to be 
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deployed in order to find a solution. 
The final optimal solution can be obtained by examining all 

of the solution candidates created by ant exploration. 
Next we demonstrate the proposed algorithm using the 

CCVM given in Figure 2. For illustration purpose, we send 
two ants, namely Ant 1 and Ant 2, to simultaneously walk the 
directed CCVM graph. Both ants start from the default state 
S1. Using the proposed algorithm, two ants’ traces are 
recorded in their trace set S1 and S2. Initially both ants have to 
make a random decision at vertex S2 according to our 
algorithm. Assume that both ants randomly select to move 
from S2 to S23, one variation of their traces for the CCVM 
Statechart, which is illustrated using the dotted and the dashed 
traces respectively in Figure 3, turns out to be the optimal test 
suite which contains two test cases and satisfies all three 
required criteria: 

Ant 1: {S1, S2, S23, S231, S232, S23, S2, S22, S221, S222}

Ant 2: {S1, S2, S23, S231, S232, S23, S2, S21, S211, S212}

OFF ON

COFFEE

MONEY

IDLE BUSY

EMPTY NOTEMP

T5

T6

T3

T4

T1

T2

T9
T10

S1 S2

S21

S23

S211 S212

S231 S232

COCOA STOP STREAM

T7

T8
S221S22 S222

Ant 1:

Ant 2:

Figure 3 Optimal Solution 

If in the random decision stage, Ant 1 decides to move from 
S2 to S23, but Ant 2 decides to move from S2 to S21 instead, 
different traces are created for both ants. One solution 
candidate is illustrated in Figure 4 which also provides a 
feasible test suite for the CCVM graph: 

Ant 1: {S1, S2, S23, S231, S232, S23, S2, S22, S221, S222}

Ant 2: {S1, S2, S21, S211, S21, S2, S22, S211, S22, S2, S23, S231,   
S232, S23, S2, S21, S211, S212}

OFF ON

COFFEE

MONEY

IDLE BUSY

EMPTY NOTEMP

T5

T6

T3

T4

T1

T2

T9
T10

S1 S2

S21

S23

S211 S212

S231 S232

COCOA STOP STREAM

T7

T8
S221S22 S222

Ant 1:

Ant 2:

Figure 4 Solution Candidate 

However, it can be easily observed that this alternative test 
suite doesn’t satisfy the third criterion as the second test case 
in the suite contains many redundant nodes.  

Note that instead of two ants, a single ant or more than two 

ants can also be used to explore the CCVM graph. However, 
none of these cases provides solutions which satisfy the 
required criteria. For example, one of the best possible 
solution candidates created by single ant exploration is: 

Ant: {S1, S2, S23, S231, S232, S23, S2, S21, S211, S212, S21, S2,
S22, S221, S222 } 
  While this test suite contains the minimum number of test 

cases, the test case within the test suite has longer sequence 
length which violates the third requirement criterion. Similar 
observation can be drawn when the number of ants exceeds 3. 

IV. CONCLUSION

This paper presented an ACO approach to test sequence 
generation for state-based software testing. A directed 
dynamic graph is created to represent the Statechart model 
structure of a software system under test. Using the developed 
ACO algorithm, a group of ants can effectively explore the 
graph and generate optimal test data to achieve test coverage 
requirement.  
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