
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

33

Abstract—State-based testing is frequently used in software
testing. Test data generation is one of the key issues in software
testing. A properly generated test suite may not only locate the errors
in a software system, but also help in reducing the high cost
associated with software testing. It is often desired that test data in
the form of test sequences within a test suite can be automatically
generated to achieve required test coverage. This paper proposes an
Ant Colony Optimization approach to test data generation for the
state-based software testing.

Keywords— Software testing, ant colony optimization, UML.

I. INTRODUCTION

Software testing remains the primary technique used to gain
consumers’ confidence in the software. The process of testing
any software system is an enormous task which is time-
consuming and costly [1]. The development of techniques that
will also support the automation of software testing will result
in significant cost savings. The application of artificial
intelligence (AI) techniques in Software Engineering (SE) is
an emerging area of research that brings about the cross-
fertilization of ideas across two domains. A number of
published works, for examples [2] and [12], have begun to
examine the effective use of AI for SE related activities which
are inherently knowledge intensive and human-centred.

It has been identified that one of the SE areas with a more
prolific use of AI techniques is software testing. The focus of
these techniques involves the applications of genetic
algorithms (GAs), for examples [8] and [10]. Other AI
techniques used for test data generation included the AI
planner approach [7] and simulated annealing [13]. Recently,
Ant Colony Optimization (ACO) is starting to be applied in
software testing [3, 10]. Namely Boerner and Gutjahr [3]
described an approach involving ACO and a Markov Software
Usage model for deriving a set of test paths for a software
system, and McMinn and Holcombe [10] reported on the
application of ACO as a supplementary optimization stage for
finding sequences of transitional statements in generating test
data for evolutionary testing. However, the results obtained so
far are preliminary, and none of the reported results directly
addresses specification-based software testing.

The authors are with the School of Computer and Information Science,
Edith Cowan University, Perth, WA 6050, Australia (phone: 61-8-93706751;
fax: 61-8-93706100; e-mail: {h.li,c.lam}@ecu.edu.au).

In this paper we propose to use UML Statechart diagrams
and ACO for test data generation. The advantages of the
proposed approach are: 1). our approach directly uses the
standard UML artifacts created in software design processes;
2). the automatically generated test sequence is always
feasible, non-redundant and achieves the all state coverage
criterion. Section 2 briefly discussed about software testing
and ACO. Section 3 presents the proposed ACO approach to
test data generation, and the conclusion is found in Section 4.

II. SOFTWARE TESTING AND ACO

Three main activities normally associated with software
testing are: (1) test data generation, (2) test execution
involving the use of test data and the software under test
(SUT) and (3) evaluation of test results. The key question
addressed in software testing is how to select test cases with
the aim of uncovering as many defects as possible. Of the
three activities mentioned above, test data generation and
evaluation of test results are the most labour intensive and
thus would benefit most from automation.

The process of test data generation involves activities for
producing a set of test data that satisfied a chosen testing
criterion. Horgan [6] has previously shown that test cases
selected on the basis of test adequacy criteria are more
effective at discovering defects in the SUT. While it is
possible to manually generate an effective set of test cases, the
more cost-effective approach is to automate the test data
generation while ensuring that the given criterion is met.

A variety of techniques for test data generation have been
developed previously and these can be categorised as
structural and functional testing. Most existing work in
automated test data generation involving AI uses GAs and is
mainly in the areas of structural test data generation and
temporal behaviour testing. The ultimate aim of using GAs for
structural testing is to generate a set of test cases that provides
the highest possible coverage of a given structural testing
criterion. The test objectives are expressed numerically and
are used subsequently to formulate a suitable fitness function
that evaluates the suitability of the generated test cases.

ACO simulates the behavior of real ants. The first ACO
technique is known as Ant System [4] and it was applied to
the travelling salesman problem. Since then, many variants of
this technique have been produced. ACO is a probabilistic
technique that can be applied to generate solutions for
combinatorial optimisations problems. The artificial ants in
the algorithm represent the stochastic solution construction
procedures which make use of (1) the dynamic evolution of

Software Test Data Generation using Ant
Colony Optimization

Huaizhong Li and C. Peng Lam

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

34

the pheromone trails that reflects the ants' acquired search
experience and (2) the heuristic information related to the
problem in hand, in order to construct probabilistic solutions.

In order to apply ACO to test case generation, a number of
issues need to be addressed, namely, (1) transformation of the
testing problem into a graph; (2) a heuristic measure for
measuring the “goodness” of paths through the graph; (3) a
mechanism for creating possible solutions efficiently and a
suitable criterion to stop solution generation; (4) a suitable
method for updating the pheromone; and (5) a transition rule
for determining the probability of an ant traversing from one
node in the graph to the next. In the next section, we present
an ACO approach to automatically generate test data from
UML Statechart diagrams for state-based software testing.

III. TEST DATA GENERATION USING ACO

State-based testing is a frequently used approach in
software testing. There are two major problems associated
with state-based software testing: (1) some of the generated
test cases are infeasible; (2) inevitably many redundant test
cases have to be generated in order to achieve the required
testing coverage. To our knowledge, no systematic and
efficient strategy has been reported to successfully deal with
the automatic generation of feasible test cases for state-based
software testing.

The “all state testing coverage” requirement is commonly
used in state-based software testing. A test suite is said to
achieve all states coverage if every state is accessed at least
once by a test case within. A test suite for state-based software
testing consists of a set of test cases in the following form:

SA SB SC SD SA SD SA SC SB

or alternatively, {SA, SB, SC, SD, SA, SD, SA, SC, SB} for short
notation, where SA, SB, SC, SD are the states in the
corresponding UML Statechart diagram, and represents a
transition between the two states.

The proposed approach deals with the automatic generation
of test suites from the UML Statechart diagrams for state-
based software testing, and uses the all state testing coverage
as test adequacy requirement. Specifically, the generated test
suite has to satisfy three criteria:

1. All state coverage

2. Feasibility – Each test case represents a feasible path
in the corresponding Statechart diagram

3. Optimality – Test suite contains non-redundant test
cases which have the shortest possible test sequences

A directed graph is defined as G = (V, E) where V is a set
of vertices of the graph and E a set of edges of the graph. A
UML Statechart can be viewed as a directed graph where the
vertices are the states of the Statechart diagram, and the edges
are the transitions between the states. We have developed a
tool to automatically convert a Statechart diagram to a
directed graph. For example, a typical UML Statechart
diagram, the Coffee and Cocoa Vendor Machine (CCVM),
can be converted into a directed graph CCVM = (S, T), where
S is the state set and T is the transition set. The original

CCVM Statechart diagram and the converted graph are shown
in Figure 1 and Figure 2 respectively. We will use the CCVM
example to help demonstrating our approach.

OFF S1

ON S2

COFFEE S21

IDLE S211 BUSY S212

COCOA S22

STOP S221 STREAM S222

MONEY S23

EMPTY S231 NOTEMP S232

T9(inc)[m<10]/m=m+1

T10(dec)[m>1]/m=m-1

T4(dec)[m==1]/m=0

T3(inc)/m=1

T8(done)/stop!

T7(cocoa)[m>0]/start!;dec

T6(done)/stop!

T5(coffee)[m>0]/start!;dec

T2(power-off)/light-off! T1(power-on)/light-on!;m=0

Figure 1. The UML Statechart diagram for CCVM

OFF ON

COFFEE

MONEY

IDLE BUSY

EMPTY NOTEMP

T5

T6

T3

T4

T1

T2

T9
T10

S1 S2

S21

S23

S211 S212

S231 S232

COCOA STOP STREAM

T7

T8
S221S22 S222

Figure 2. Converted CCVM graph CCVM = (S, T)

The converted graph is a directed, dynamic graph in which
the edges (transitions in Statechart sense) may dynamically
appear or disappear based on the evaluation of their guard
conditions. Unlike the work in [3] and [10], it is difficult to
apply the original ACO algorithms in [4] and [5] to this type
of dynamic graphs to generate test data for the corresponding
state-based software testing problems.

We consider the problem of simultaneously dispatching a
group of ants to cooperatively search a directed graph G. The
ants in our paradigm can sense the pheromone traces at the
current vertex and its directly connected neighbouring
vertices, and leave pheromone traces over the vertices.

An ant k at a vertex of the graph is associated with a four
tuple (Sk, Dk, Tk, P):

Vertex Track Set Sk = {Si} keeps a vertex track of the
ant's walking history
Target Set Dk indicates those vertices which are always
connected to the current vertex . For the Statechart
diagrams, target sets only exist for the super-states of the
composite states, and the target set for a super-state
contains the current status of the composite state. For
example, the ON super-state for the CCVM graph
contains the information ON(COFFEE, COCOA,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

35

MONEY). Therefore, the target set for vertex ON is
{COFFEE, COCOA, MONEY}. The target set for vertex
COCOA is either {STOP} or {STREAM}, but not both
because the super-state for these two sub-states only
keeps the current status of the composite state
Connection Set Tk = {T(Vi)} represents the direct
connections of the current vertex with the
neighbouring vertices. Direct connection means that
there is only one directed edge from the current vertex to
the destination vertex. Tk also documents all the edges
spanning from the current vertex. T(Vi) = 0 means that
the two vertices and Vi are always connected, T(Vi) =
1 means that the two vertices appear to be connected for
the current ant at the current vertex , and T(Vi) = -1
indicates that the two vertices are not connected for the
current ant, at the current vertex and for the current
time. For the corresponding UML Statechart diagram,
the following situations appear:

T(Vi) = 0 means that either Vi is contained in the
target set for , or is contained in the target set for
Vi. This represents two vertices which are a super-
state and its targeted sub-state;
T(Vi) = 1 means that the transition between the two
states is evaluated to be feasible;
T(Vi) = -1 means that there is no transition between
two states and Vi, or the transition between the two
states is infeasible, or Vi is not in the target set of the
vertex

For examples, for an ant k at the state EMPTY (S231) in
the CCVM graph in Figure 2, Tk = {T(S23), T(S232)}. If
T3 is feasible, Tk = {0, 1}, otherwise Tk = {0, -1}; for an
ant k at the state COFFEE (S21) with target set {IDLE},
Tk = {T(S2), T(S211), T(S212)} = {0, 1, -1} since S212 is
not contained in the target set for S21 at this stage
Pheromone Trace Set P = {P(Vi)} represents the
pheromone levels at the neighbouring vertices which are
feasible to an ant at the current vertex. The pheromone
left by previous ants over the graph will not decrease,
and the succeeding ants will use the remaining
pheromone level to adjust their exploration.

Each ant keeps its own private sets Sk, Dk, and Tk, while the
public set P is left on the graph for all of the ants to share.
Ants can sense the pheromone levels on the graph, and modify
P in the exploration of the graph. The following algorithm is
proposed for an ant to explore the directed graph:

Algorithm for ant k

1. Evaluation at vertex
Update the Track - Push the current vertex into the
track set Sk

Evaluate Connections - Evaluate all connections to the
current vertex to determine Tk. The procedure involves
evaluation of all possible transitions from the current
states to other neighbouring states, using the state-
transition table associated with the UML Statechart
diagram

Sense the Trace - For the non-negative connections in
Tk, the ant senses and gathers the corresponding
pheromone levels P at the other ends of the connections

2. Move to next vertex
Select Destination - The following prioritized rules are
used in ant's selection:
o Select the vertex Vi with the lowest pheromone

level P(Vi) sensed from the current vertex
o If vertices Vi and Vj shares the same lowest

pheromone level P(Vi) = P(Vj), but T(Vi) = 0 and
T(Vj) = 1, select Vi

o If vertices Vi and Vj shares the same lowest
pheromone level P(Vi) = P(Vj) and T(Vi) = T(Vj),
randomly select one vertex

Destination is the vertex selected using the above rules
Update Pheromone - Update the pheromone level for the
current vertex to

 P() = max(P(), P()+1) if T() = 1
 or
 P() = max(P(), P()+1)+TP if T() = 0

where TP is a high pheromone level which decays in one
iteration of the two steps, namely, TP quickly decays to
0 before ant's next move at the end of Step 2
Move - Move to the destination vertex , set := , and
return to Step 1.

In the above algorithm, TP is used to encourage an ant to
perform forward exploration and to prevent an ant from
immediately moving back to the previously stayed vertex. In
the Statechart sense, TP prevents an ant from doing redundant
moves between a super-state and its sub-state.

Multiple ants can be sent to explore the converted graphs
simultaneously in order to accelerate the exploration process
and to produce shorter test sequences. Each ant is assigned a
unique ID which represents its priority in the cooperative
team. The following rule is used in the cooperative
exploration by the ants:

Rule: When there are two or more ants at a vertex , the

ants have to leave according to their priorities in the team.

An ant with a higher priority leaves and sets pheromone level

for first, followed by lower priority ants.

The final pheromone level left over is the highest one set
by all ants.

Similar to [14], it can be shown that all vertices can be
visited in limited steps (upper bound). The details however are
omitted due to space limitation. The algorithm for an ant
terminates when one of the following two conditions is
satisfied:

The union of all track sets Sk contains all vertices of
the graph which means the coverage criterion has been
satisfied, i.e., all states have been visited at least once;
The search upper bound has been reached. In this case,
this group of ants fails to find a solution which achieves
the required coverage. More ants will have to be

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

36

deployed in order to find a solution.
The final optimal solution can be obtained by examining all

of the solution candidates created by ant exploration.
Next we demonstrate the proposed algorithm using the

CCVM given in Figure 2. For illustration purpose, we send
two ants, namely Ant 1 and Ant 2, to simultaneously walk the
directed CCVM graph. Both ants start from the default state
S1. Using the proposed algorithm, two ants’ traces are
recorded in their trace set S1 and S2. Initially both ants have to
make a random decision at vertex S2 according to our
algorithm. Assume that both ants randomly select to move
from S2 to S23, one variation of their traces for the CCVM
Statechart, which is illustrated using the dotted and the dashed
traces respectively in Figure 3, turns out to be the optimal test
suite which contains two test cases and satisfies all three
required criteria:

Ant 1: {S1, S2, S23, S231, S232, S23, S2, S22, S221, S222}

Ant 2: {S1, S2, S23, S231, S232, S23, S2, S21, S211, S212}

OFF ON

COFFEE

MONEY

IDLE BUSY

EMPTY NOTEMP

T5

T6

T3

T4

T1

T2

T9
T10

S1 S2

S21

S23

S211 S212

S231 S232

COCOA STOP STREAM

T7

T8
S221S22 S222

Ant 1:

Ant 2:

Figure 3 Optimal Solution

If in the random decision stage, Ant 1 decides to move from
S2 to S23, but Ant 2 decides to move from S2 to S21 instead,
different traces are created for both ants. One solution
candidate is illustrated in Figure 4 which also provides a
feasible test suite for the CCVM graph:

Ant 1: {S1, S2, S23, S231, S232, S23, S2, S22, S221, S222}

Ant 2: {S1, S2, S21, S211, S21, S2, S22, S211, S22, S2, S23, S231,
S232, S23, S2, S21, S211, S212}

OFF ON

COFFEE

MONEY

IDLE BUSY

EMPTY NOTEMP

T5

T6

T3

T4

T1

T2

T9
T10

S1 S2

S21

S23

S211 S212

S231 S232

COCOA STOP STREAM

T7

T8
S221S22 S222

Ant 1:

Ant 2:

Figure 4 Solution Candidate

However, it can be easily observed that this alternative test
suite doesn’t satisfy the third criterion as the second test case
in the suite contains many redundant nodes.

Note that instead of two ants, a single ant or more than two

ants can also be used to explore the CCVM graph. However,
none of these cases provides solutions which satisfy the
required criteria. For example, one of the best possible
solution candidates created by single ant exploration is:

Ant: {S1, S2, S23, S231, S232, S23, S2, S21, S211, S212, S21, S2,
S22, S221, S222 }
 While this test suite contains the minimum number of test

cases, the test case within the test suite has longer sequence
length which violates the third requirement criterion. Similar
observation can be drawn when the number of ants exceeds 3.

IV. CONCLUSION

This paper presented an ACO approach to test sequence
generation for state-based software testing. A directed
dynamic graph is created to represent the Statechart model
structure of a software system under test. Using the developed
ACO algorithm, a group of ants can effectively explore the
graph and generate optimal test data to achieve test coverage
requirement.

REFERENCES

[1] Binder, R. V., Testing Object-oriented Systems: Models, Patterns, and

Tools, Addison-Wesley. 2000.
[2] Briand, L. C.,“On the many ways Software Engineering can benefit from

Knowledge Engineering”, Proc. 14th SEKE, Italy, pp. 3-6, 2002.
[3] Doerner, K., Gutjahr, W. J., “Extracting Test Sequences from a Markov

Software Usage Model by ACO”, LNCS, Vol. 2724, pp. 2465-2476,
Springer Verlag, 2003.

[4] Dorigo M., Maniezzo, V., Colorni, A., “Positive Feedback as a Search
Strategy”, Technical Report No. 91-016, Politecnico di Milano, Italy,
1991.

[5] Dorigo M., Maniezzo, V., Colorni, A., “The Ant System: Optimization
by a Colony of Cooperating Agents”, IEEE Transactions on Systems,

Man, and Cybernetics-Part B, Vol. 26, No.1, pp.29-41, 1996.
[6] Horgan, J., London, S., and Lyu, M., “Achieving Software Quality with

Testing Coverage Measures”, IEEE Computer, Vol. 27 No.9 pp. 60-69,
1994.

[7] Howe, A. E., Mayrhauser A. V., and Mraz, R. T., “Test Case Generation
as an AI Planning Problem”, Automated Software Engineering, Vol. 4,

pp 77-106, 1997.

[8] Li, H., Lam, C.P., “Optimization of State-based Test Suites for Software
Systems: An Evolutionary Approach”, International Journal of
Computer & Information Science, Vol. 5, No. 3, pp. 212-223, 2004.

[9] McMinn, P., “Search-based Software Test Data Generation: A Survey”,
Software Testing, Verification and Reliability, Vol.14, No. 2, pp. 105-
156, 2004.

[10] McMinn, P., Holcombe, M., “The State Problem for Evolutionary
Testing”, Proc. GECCO 2003, LNCS Vol. 2724, pp. 2488-2500,
Springer Verlag, 2003.

[11] Pargas, R. P., Harrold, M. J., and Peck, R., “Test-Data Generation Using
Genetic Algorithms”, Software Testing, Verification and Reliability,
Vol. 9, pp. 263 - 282, 1999.

[12] Pedrycz, W., Peters, J. F., Computational Intelligence in Software
Engineering, World Scientific Publishers, 1998.

[13] Tracey, N., Clark, N., .Mander K., and McDermid, N., “A Search Based
Automated Test Data Generation Framework for Safety Critical
Systems”, in Systems Engineering for Business Process Change (New
Directions), Henderson P., Editor, Springer Verlag, 2002.

[14] Wagner, I. A., Lindenbaum, M., Bruckstein, A. M., “ANTS: Agents,
Networks, Trees, and Subgraphs”, Special issue on Ant Colony
Optimization (M. Dorigo, G. Di Caro, T.Stützle (eds)), Future

Generation Computer Systems, Vol. 16, No. 8, pp. 915-926, North
Holland, June 2000.

