
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1980

Abstract—Today’s economy is in a permanent change, causing

merger and acquisitions and co operations between enterprises. As a
consequence, process adaptations and realignments result in systems
integration and software development projects. Processes and
procedures to execute such projects are still reliant on craftsman-ship
of highly skilled workers. A generally accepted, industrialized
production, characterized by high efficiency and quality, seems
inevitable.

In spite of this, current concepts of software industrialization are
aimed at traditional software engineering and do not consider the
characteristics of systems integration. The present work points out
these particularities and discusses the applicability of existing
industrial concepts in the systems integration domain. Consequently
it defines further areas of research necessary to bring the field of
systems integration closer to an industrialized production, allowing a
higher efficiency, quality and return on investment.

Keywords—Software Industrialization, Systems Integration,
Software Product Lines, Component Based Development, Model
Driven Development.

I. INDUSTRIALIZATION
ROM a generic point of view, the term industrialization is
defined as the dissemination of industries within an

economy, in proportion to agriculture, handicraft and small
trade. Relating to the production of goods and services, it is
defined as the implementation of standardized and highly
productive methods in order to increase efficiency and reduce
cost [1, 2]. The process of industrialization began at the end of
the 18th century in Great Britain and was characterized by an
increasing division and specialization of labor, capital
intensive technologies, mass production, rationalization and
the application of new energy sources [2]. Industrialization is
seen as a necessary step for economic growth, technological
advances and increasing wealth. Only industrial production
methods allow to produce a multiplicity of goods in a
sufficient amount and quality [2].

The present paper will focus on the application of

M. Minich is with the University of Plymouth, Plymouth, PL4 8AA United

Kingdom and the University of Applied Sciences Darmstadt, 64283
Darmstadt, Germany (phone: +49 1713885673; e-mail:
matthias.minich@plymouth.ac.uk).

B. Harriehausen-Muehlbauer, Prof. Dr., is with the University of Applied
Sciences Darmstadt, 64283 Darmstadt, Germany (phone: +49 6151 16-8485;
e-mail: b.harriehausen@fbi.h-da.de).

C. Wentzel, Prof. Dr., is with the University of Applied Sciences
Darmstadt, 64283 Darmstadt, Germany (phone: +49 6151 16-8459; e-mail:
c.wentzel@fbi.h-da.de).

standardized and highly productive methods to the field of
software development in systems integration. Applied to the
process of industrialization as introduced above, the key
concepts of such methods can be summarized in
specialization, standardization & systematic reuse, and
automation.

As of today, the above principles can be found in almost all
industries at different levels of penetration. Standardization
and specialization advance the level of reuse and enable
automation of rote and menial tasks, whereas creative tasks
(that cannot be standardized), such as product design, are still
performed by highly skilled workers. Omitting the availability
of the required commodities and energy, the fundamental
principles of industrialization can be described as follows.

A. Specialization
In the given context, the term specialization describes the

concentration of an economic subject (worker, business,
society, etc.) to a particular area within a larger scope, such as
certain industries, product families, technologies or skills. A
production process is subdivided into less complex functions
that can be assigned to well-trained workers or purpose-built
machinery. This division of labor allows the specialization of
individuals, expanding their knowledge and abilities in a
particular area. In turn, they achieve a higher efficiency and
quality. Specialization also allows reusing production or
product artifacts. The former for example include processes,
tools and machinery, while the latter include architectures,
frameworks and components. Systematic reuse can only occur
in a precisely delimited scope, defined by specialization and
standardization [3].

The disadvantages of specialization lie in a reduced
flexibility and thus the dependency on market demand of the
area or skill in scope, as well as the dependency of upstream
production. A highly specialized economic subject cannot
quickly change its area of focus. A farsighted, strategic
planning of specialization is mandatory.

Well known implementations of specialization can, for
instance, be found in the automotive sector. A whole industry
subcontracting to automotive manufacturers emerged,
specializing in certain product families such as engines, brake
systems or electronic control units. Furthermore, employees
specialize in particular skills and tasks in the production
process.

Software Industrialization in Systems
Integration

Matthias Minich, B. Harriehausen-Muehlbauer, and C. Wentzel

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1981

B. Standardization & Systematic Reuse
Standardization describes the unification of specific

attributes of production or product artifacts. The objective is
to establish a common understanding of these attributes in
order to exchange artifacts, integrate upstream work products,
align production processes or simplify information exchange
[4]. Together with specialization, standards provide the base
for systematic reuse. Only if an artifact follows clearly defined
principles, it can be reused as is in another product. Standards
can be officially defined (by a binding regulation or contract),
de facto (by market position or dominant usage), or voluntary.

With regard to market position or profit margin they can
also be disadvantageous as standards encourage competition
between suppliers. Furthermore, they may require tradeoffs in
functionality that may affect a unique selling point of the own
product or the lack of customization possibilities.

A good example of standardization can be found in the
modular construction system of automotive manufacturers.
Uniquely designed product artifacts such as axles or
suspensions can be reused in many different models of a
product family. Likewise, production artifacts such as
assembly lines, tools or machinery, can be reutilized to
produce many different products.

C. Automation
By division of labor, standardization, and systematic reuse,

rote, menial or dangerous tasks can be taken over by purpose-
built machinery. The operational sequence, regulation and
monitoring of the production process is also performed by
technical equipment. Such machines often are more precise
and time & cost efficient as compared to human workers.
Important prerequisites are specialization and standardization,
as machinery cannot solve unknown problems. In an
industrialized production, the worker’s role shifts towards
planning, monitoring and correction of the production process.
The objective here also is to reduce cost and time and increase
quality.

Drawbacks in automation inherit from the previously
mentioned principles. High upfront investments require a
minimum utilization rate to break even. Reduced flexibility
implicates a high market dependency of the segment in scope.

Automation is as well an important factor in the automotive
sector. The industry heavily relies on automated production
such as welding robots or automated assembly lines.

II. INDUSTRIALIZED SOFTWARE DEVELOPMENT
Software development is “[…] slow and expensive, and

yields products containing serious defects that cause problems
of usability, reliability, performance and security” [3]. At the
beginning of this chapter, industrialization was defined as a
method to increase efficiency and quality and to reduce cost
by implementing standardized and highly productive methods.
The objectives of every software project can be categorized
into quality, quantity, time and cost [5, 6]. Harry M. Sneed
depicted their interaction as the Devil’s Square [7], in which
the four factors are in an antagonistic relationship. As the

available productivity of the performing organization is
limited and cannot satisfy all needs, tradeoffs have to be
made. For example, doing more work in a higher quality will
result in higher cost and a longer development time. However,
by applying industrial methods and thus increasing
productivity, quality and product complexity can possibly be
increased and at the same time cost and production time
reduced.

Productivity

+ +

--
CostTime

Quality Quantity

Industrialized Productivity

+ +

--
CostTime

Quality Quantity

ProductivityProductivity

+ +

--
CostTime

Quality Quantity

Industrialized Productivity

+ +

--
CostTime

Quality Quantity

Productivity

Fig. 1 Sneed’s Devil’s Square: Dimensional tradeoff

versus industrialized productivity

Several efforts have been taken to apply such methods to
software development. Referring back to the previous chapter,
the key industrial principles now can also be found in the field
of software engineering. Specialization is represented by
Software Product Lines, Standardization & systematic reuse
may be found in Component Based Development, and
Automation can be achieved with Model Driven Engineering.
Unfortunately, the most important concept, specialization, was
invented last. As of gracious generality, caused by the lack of
a clearly delimited scope, Component Based Development and
Model Driven Engineering in their initial occurrence seem to
have failed [3]. Only recently all the concepts are in place and
can be used to facilitate industrialized software development,
as for example described in Greenfield & Short’s book
“Software Factories” [3]. The referenced concepts will be
briefly described in the following.

A. Software Product Lines
The latest and maybe most important concept is the one of

Software Product Lines that maps to the industrial principle of
specialization. It seems to be very difficult or even impossible
to determine how mechanisms for reuse or automation should
be implemented in an arbitrary context. Systematic reuse must
be planned for and cannot occur coincidentally. A Software
Product Line (SPL) therefore spans a clearly delimited frame
around a family of software products, sharing “[…] a
common, managed set of features satisfying the specific needs
of a particular segment or mission” [8]. It first emerged in
1995 in a Swedish naval software firm and was further
developed at the Carnegie Mellon Software Engineering
Institute [8]. The concept requires to separate product
development from product line development. The former
produces the actual software product, while the latter produces

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1982

the required assets to support the development process. By
concentrating on a clearly delimited scope, production assets
can be much more powerful as, for instance, reusable
components or frameworks and architectures. However,
specialization alone would not allow for any diversification as
required by different customers. Software Product Lines
therefore identify recurring functionality and points of
variation to define a common framework or architecture in
which customer specific requirements can be considered. This
concept is also known as mass customization in other
industries.

During actual product development, knowledge and
reusable assets, such as business functionality components,
are captured to include them in the Software Product Line for
future products. The following figure depicts the described
concept:

Application 1 - Artefacts
Application 2 - Artefacts

System Family - Artefacts

Application
Requiremens
Engineering

Application
Design

Application
Realisation

Application
Testing

Product Line
Requiremens
Engineering

Product Line
Design

Product Line
Realisation

Product Line
Testing

Product
Management

P
ro

du
ct

D
ev

el
op

m
en

t
P

ro
du

ct
Li

ne
 D

ev
el

op
m

en
t

Application 1 - Artefacts
Application 2 - Artefacts

System Family - Artefacts

Application
Requiremens
Engineering

Application
Design

Application
Realisation

Application
Testing

Product Line
Requiremens
Engineering

Product Line
Design

Product Line
Realisation

Product Line
Testing

Product
Management

P
ro

du
ct

D
ev

el
op

m
en

t
P

ro
du

ct
Li

ne
 D

ev
el

op
m

en
t

Fig. 2 Software development in a Software Product Line (q.v. [9])

Product line developers produce product and production

assets, utilized by product developers to produce the particular
family member. During product development new assets are
created and fed back into the product line. It is therefore very
important that any customer specific variability is developed
with a potential reuse in mind. Further advantages can also be
found in a higher quality and a shorter time to market: As
reusable product assets are reviewed, implemented and tested
in many different products, chances to find faults and
correcting them are significantly higher [10]. Furthermore, a
once identified fault can be corrected before it becomes
evident in other products. Although time to market is higher in
the beginning due to product line development, it decreases
significantly once assets are in place that can be reused for
each new product [10].

Of course, this specialization to a particular segment or
mission is not for free. Upfront investments are required to
define the scope and the initial asset base for the Software
Product Line. Unlike in manufacturing industries, these costs
cannot be recovered by economies of scale as software can be

copied very easily and customer requirements are hardly the
same. SPL must therefore focus on economies of scope,
producing distinct but similar products, all based on a
common set of functionality. Literature suggests about three
systems to reach the break-even-point as compared to
conventional, one-off development [8].

B. Component Based Development
One of the first ideas of using industrial principles came up

in October 1986 on the NATO conference on software
engineering. It can be mapped to the industrial principle of
standardization which is the foundation for the exchange of
artifacts and systematic reuse. In his contribution “Mass
produced Software Components” [11], M.D. McIlroy
suggested to develop applications by assembling previously
produced components, as most of a software’s functionality
has already been developed or will be required in many other
applications as well. In his book about component software
[12], Szyperski defines such a component as follows:

“A software component is a unit of composition with
contractually specified interfaces and context dependencies
only. A software component can be deployed independently
and is subject to composition by third parties.”

As in manufacturing industries, systematic reuse requires a
clearly delimited context. It is for example much easier to
build GUI components for Microsoft’s .NET platform than
within an arbitrary context [3]. By using current component
standards it is possible to encapsulate business logic within
reusable software building blocks. The context in which this
occurs can be set by Software Product Lines. They define a
delimited scope to employ reusable components for the
development of new product line members. Current CBD
standards define the requirements such a component has to
fulfill from a syntactic and semantic point of view [13]. They
furthermore define interface specifications, component
allocation and component interaction across different
programming languages and platforms. The underlying
architecture can also be provided by these technologies in a
way that it becomes possible to completely implement the
commonalities of a certain product line, while allowing to
“plug in” customer specific requirements [3].

The four most widely adopted component standards today
are Sun’s Java Platform Enterprise Edition (Java EE), the
Corba Component Model (CCM) by the Object Management
Group, and Microsoft’s Distributed Component Object Model
(DCOM), as well as their .NET Framework. All of them
support language independent integration of other components
or systems by providing clearly defined interfaces and data
types which can be accessed on a binary level. CCM and Java
EE are also platform independent.

C. Model Driven Development
The final aspect of industrialization, automating certain

tasks, can be achieved with Model Driven Development
(MDD) and was initiated by Computer Aided Software
Engineering (CASE) in the 1980s. It encouraged development

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1983

methods based on graphical representations of software
(models) with state machines, structure diagrams or dataflow
diagrams [14] to generate source code. The graphical
representations, however, were too generic to precisely
describe the intended solution and did poorly map to the
underlying technologies. The result was highly complex
source code which had to be altered by hand. The
corresponding models were out of date very soon as the
CASE tools could hardly depict manual changes to the code.
Today, model driven engineering has been further advanced,
overcoming the problems discovered with CASE tools.

Using visually represented models as a description of
software, it aims to raise the level of abstraction in order to fill
the gap between the problem solution and the technical
implementation, bringing the latter closer to a vocabulary
understood by subject matter experts [3]. Omitted details are
subsequently added until executable software is available. Of
course, this process is by far not trivial: The extensive degree
of freedom and context sensitivity becomes an issue if the
model is to be interpreted by a code generator. To overcome
this issue, MDD combines Domain Specific Languages and
Transformation Engines & Generators [14]. Both are uniquely
designed for a particular application domain, reducing the
degree of freedom and possible contexts by providing a
clearly specialized vocabulary and grammar. Once a system
has been defined with an appropriate DSL, the resulting set of
models may be transformed into either intermediate models or
directly generated into source code. Similar to component
based software development, MDD requires a clearly defined
context in which it occurs.

III. SYSTEMS INTEGRATION
Software systems are being developed and used for more

than 40 years now and become more and more important in
day to day business. At the same time, IT faces high demands
in quickly adapting to new business requirements. As legacy
systems often do not offer the flexibility to do so, new systems
are implemented which need to interact with the existing IT
landscape. It is often not possible to simply replace legacy
applications due to the extreme cost involved. This situation
inevitably leads to systems integration efforts, joining the
different subsystems into a cohesive whole, in order to
alleviate functionality or data access via a common interface
[15, 16].

The term integration can either be defined as a state in
which entities continue to exist after being integrated, or as
the process of integrating them into a larger entity. Integration
as a state defines classes by which the degree of integration of
IT systems can be differentiated and evaluated. Integration as
a process deals with the steps required to move an IT system
from a given degree of integration to a higher one, which is
done by merging distinct entities into a cohesive whole or
integrating them into already existing systems [15, 17]. The
present work follows the latter definition of the term
integration, i.e. the process of integrating distinct entities into

a cohesive whole.
This process of integration can be further divided into data

integration and application integration [16, 18]. Data
integration concentrates on the integration of different data
sources, for instance, by data consolidation or data
warehousing. Application integration in turn covers the
combination of different software systems that support
business processes. The integration of such systems is also
referred to as Enterprise Application Integration (EAI) and
depicts a core area in today’s business engineering. However,
several interpretations exist for the term [19]:

 EAI as an integration middleware solution
 EAI as a high level integration on a semantic or

process level
 EAI as an integration framework architecture
 EAI as an approach to implement business

requirements, including strategic and process related
considerations, utilizing different integration
techniques

The present work focuses on Enterprise Application
Integration and adheres to the fourth definition of the term, i.e.
EAI as an integration approach from a strategic, process and
technology related perspective. It does so because each layer
may have severe influence on its neighboring ones and thus
may not be considered in isolation, as suggested by the first
three interpretations.

A. Dimensions of Integration
Within the previously adopted definition of the term EAI,

literature usually defines several layers or dimensions of
integration. They start from a strategic and business process
point of view, through process partitioning for different
systems, to the actual data and functionality management on
an implementation level.

In her book “Prozess- und Systemintegration”, Vogler for
example defines process, desktop and systems as the three sub
domains of integration [19]. The process domain defines how
business processes are depicted onto the IT landscape and
how they support the overall workflow from a more strategic
point of view. The second domain (desktop) defines when and
how different (heterogeneous) applications are involved, and
how they exchange information with the user (e.g., via a
common user interface) or with each other. The underlying
systems domain then defines which application accesses
which data, how data exchange takes place, and how data
redundancy is managed.

Hasselbring offers a similar classification in [20] by
defining a business, application and technology architecture.
He limits the term EAI to the second layer only, while
applying interorganizational process engineering and
middleware integration to the first and last layer, respectively.
Despite the different interpretation of the EAI term,
Hasselbring indeed considers the remaining aspects in his
work.

A comparable classification can be found with Fischer in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1984

[15], who identifies a business, organizational, functional and
technical dimension. The business dimension defines which
IT systems are required based on the strategic business needs.
The organizational dimension aligns IT systems and
workflows, and optionally adapts either. Data collection and
storage of information (data integration), as well as
controlling intermeshing activities (process integration) is
done within the functional dimension. The fourth dimension
(technology) aims at proper coupling of the different IT
systems, independent of their location or underlying
technology (systems interconnection).

Taking the previous definitions and explanations into
consideration, the present paper defines the following three
dimensions of integration:

1) Business Process
On the business process dimension the organizational

objectives, structure and core business processes of an
enterprise are characterized. They define which business
functionality and information is required and how the
involved IT systems must interact from a semantic point of
view. Integration decisions on this dimension are usually
driven by mergers & acquisitions, collaboration agreements,
or realignment of company objectives.

2) Workflow
The workflow dimension subdivides a business process into

distinct activities and maps these to the different IT systems. It
defines the data sources and functionality required from the
available IT systems from a technical point of view, as well as
the interaction among each other and with the end users. On
the business process dimension these data sources and
functionalities map to the semantic steps of the business
process. Integration decisions on this dimension may inherit
from higher or lower dimensions, or are driven by process
adaptations due to regulatory influences or improvement
activities, for instance.

3) Technology
Information and communication infrastructure of an

integrated systems landscape is implemented at the technology
domain. It defines which applications may access which data
or functionality, how this is done, and how data management
(e.g., redundancy) takes place. Integration decisions on this
dimension inherit from higher dimensions, or are driven by
technological changes, such as introducing or replacing
applications.

B. Common Problems in Systems Integration
Despite the fact that systems integration supports and

simplifies the execution of business processes, it involves
several particularities and challenges during implementation.
Based on Vogler in [19], the following sections briefly
describe the potential problems per integration domain:

1) Business Process Domain
New business processes are often defined from a semantic

point of view or are based on preconceptions from earlier
projects regarding their representation in IT systems. As the
IT landscape has direct implications on the business
processes, it is important to understand the integration
relationships in order to identify and choose an optimal
solution. In many companies, however, the particular situation
is hardly known. Furthermore, business processes designers
may not know about the solutions available on the market and
often do not have the knowledge to design an overall concept.

Similarly, the unawareness of the particular IT landscape
may lead to unforeseen consequences. Only minor changes in
a process may lead to adaptations of the underlying systems,
which in turn may require the adaptation of other processes
due to changed interfaces or data structures. If these
consequences were known early enough, business processes
could be designed around them.

2) Workflow Domain
Subdividing a business process into workflows and

depicting them ad hoc on different IT systems may lead to a
suboptimal degree of integration. Due to time or cost
constraints, these systems are often interconnected on a point
to point basis instead of using shared integration architecture.
In extreme circumstances this leads to n*(n-1) relationships,
making later changes more and more complex.

In such an environment the integration relationships may
be unknown due to insufficient documentation and the lack of
a big picture. New implementations may be redundant and the
consistency and integrity of interfaces cannot be ensured,
which leads to unforeseen consequences for other systems. A
prominent example was the Y2K problem where it was hardly
known which systems rely on the data to be changed.

Enterprises still do not use a methodological approach with
best practices or standardized processes for their systems
integration projects. However, suitable methodology has been
defined in literature during the last years but is not yet known
or adopted in the industry. This also becomes evident as SI is
not sufficiently considered in current software development
models [21]. Integration projects are often done ad hoc and for
a single purpose only that leads to the initially mentioned
suboptimal degree of integration.

Due to uncoordinated efforts and the lack of methodologies,
integrated systems show a high complexity, leading to
increased time and cost for future adaptations.

Heterogeneity caused by the previous problems prevents
the implementation of holistic integration platforms or
architectures within enterprises. Although there are certain
middleware systems or transaction monitors in place, these are
usually not part of a bigger picture.

3) Technology Domain
From a technical point of view, heterogeneity is the major

issue in systems integration. Depending on the differences,
data representation and functionality, as well as underlying
technologies must be aligned. The required effort thus
disproportionally rises with the number of systems to be

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1985

integrated, unless a common architecture or platform is used.
Another big problem is the integration with legacy

applications. These were often designed as stand alone
solutions with no integration in mind. Obsolete data
management, interfaces, or a lack of documentation or
maintenance make integration extremely difficult.
Furthermore these systems often cannot be altered or replaced
and therefore impose restrictions on the overall integration
concept.

The final issue lies in the redundancy of data. In integrated
environments it becomes difficult to define which data resides
where, how it is accessed and how redundancy is managed.
Without such management, information may easily become
outdated and inconsistent, leading to serious issues in business
process execution.

IV. THE INDUSTRIALIZATION OF SYSTEMS INTEGRATION
Today systems integration solutions are still implemented

from scratch by utilizing traditional software development
methods, such as the Waterfall Model or the V-Model. These
however were designed with regard to monolithic systems, as
integration was not of interest at the time of their
development. Recent works such as the V-Model XT briefly
reference integration with external environments [5] but still
do not pursue a standardized and methodological approach.
The result may be an “integrated monolithic system” with
highly complex dependencies as described in section B above.
Moreover, these development models do not incorporate the
basic principles of industrialization and thus may not leverage
potential improvements in cost, efficiency and quality as
initially stated.

As discussed in chapter II, Software Product Lines,
Component Based Development and Model Driven
Engineering represent specialization, standardization &
systematic reuse, and automation for software development.
The respective concepts are well understood and first
literature is available on combining them in factory like
development environments, as for example in Greenfield and
Short’s book on Software Factories [3].

As shown in chapter III, SI comes with several
particularities, distinguishing it from the domain of
conventional software development. It has to challenge a
multiplicity of technologies, inflexible legacy systems, once
only technology combinations and a very high complexity. It
seems disputable whether the concepts for industrialized
software development in their original form can be applied to
the field of systems integration, as depicted in the following:

A. Software Industrialization Concepts with Regard to SI
Particularities

1) Software Product Lines
In Software Product Lines, design and development occur

in a particular context, sharing common features and solving
common problems. Product families may either be tailored
around complete business solutions or a series of related

products. They concentrate on reusable implementation
artifacts, as well as frameworks, processes and tools.

With reference to systems integration, the multiplicity of
different technologies, caused by high heterogeneity,
inflexible legacy systems and different data sources, seems to
be a major drawback to the definition of distinguished product
lines. In a product line covering Customer Relationship
Management (CRM) systems for example, products may be
highly integrated with third party logistics and finance
systems. Including support for any potentially attached
systems undermines the advantages of a delimited context,
while excluding them will force development to occur outside
the industrialized concepts. An additional drawback is the de-
facto development of one-off solutions per customer. Barely
any solution operates in the same environment or is
interconnected with the same type of systems. The initial set-
up cost for software product lines may therefore be
contraindicative as the return of investment cannot be ensured.

2) Component Based Development
According to Greenfield & Short [3], development by

assembly with software components has certain requirements
that must be met: Platform independent protocols (e.g., XML),
self-description of components (formalized and enhanced
meta-data within components), deferred encapsulation
(allowing to interweave additional functionality), assembly by
orchestration (machine controlled interaction and management
of components), and architecture driven development (to
promote the availability of well-matched components).

With regard to systems integration, the author does not see
any major difficulties to technically apply development by
assembly. However, the assembly approach relies on
systematic reuse and thus on a methodical approach in a
clearly delimited context that may not be easy to define as
shown in 1). This context also has an influence on the
availability of predefined software architectures, as well as the
number of reusable components. Furthermore systems
integration standards are not common as of today [19]. The
most important challenge to be met is the definition of a
component based systems integration architecture in which
development by assembly may occur.

3) Model Driven Engineering
Model Driven Development, and in a greater sense Model

Driven Engineering, raises the level of abstraction to reduce
complexity and express business concepts more efficiently. It
consists of domain specific modeling languages and model
transformation engines & code generators. The former allow a
context free description of the intended products of a product
line, whereas the latter provide model transformation to a
lower, more specific model or eventually the generation of
source code.

For systems integration, the efforts required to define a
domain specific language (DSL) could become an obstacle,
especially if applied to product lines with a limited number of
expected products. With reference to Software Product Lines,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1986

the scope of a DSL cannot be clearly delimited as each
product may need to be integrated with other external systems.
Furthermore, to automate the development process by
transforming models to a lower level or generating source
code, transformation engines and code generators have to be
implemented which also impose high set up cost.

B. Areas requiring further research
As can be seen in section A, existing concepts of software

industrialization may not necessarily suit the particularities
found in the field of systems integration. Thus further research
is required to either adapt or enhance existing concepts, while
considering how to align organizational structures to support
the application of industrial production paradigms.

The focus of the present research is therefore aimed at the
application of industrial production principles in the specific
domain of systems integration from a solution provider’s point
of view. The research deals with the following areas.

1) Organizational Aspects
Organizational aspects focus on the surrounding conditions

of industrialization in SI. They are reflected in roles,
responsibilities, and corporate structures, and should be
carefully considered before performing a paradigm shift
throughout the organization. With specialization and SI
particularities in mind, an organizational structure needs to be
developed which enables systems integration providers to
implement industrial concepts. This subsequently imposes the
question whether enterprises can afford to organize
themselves in fully featured Software Product Lines or if other
forms of organization, for instance, shared service centers for
product line definition and management, or a combination of
both, are more feasible.

Therefore an organizational concept, describing the
definition of divisions and departments of a systems
integration provider, may shape up to be useful as foundation
for industrialization.

2) Software Product Lines
Given a typical systems integration provider, an approach

to implement software product lines in a way that they are
neither too small nor too large, has to be developed. How can
the wide variety of customer requirements, heterogeneity of
integrated systems, and one-off developments be covered,
without endangering the return on investment? As it delineates
their scope, product line design for systems integration also
has to bear the concepts of systematic reuse and automation in
mind.

Further research must discuss the detailed requirements of
Software Product Line implementation and identify ways of
applying or adapting them in a systems integration context.

3) Component Based Development
Given that an expedient classification of software products

into product lines or families has taken place, is it possible to
define software components to be reused in different
integration solutions for different customers? As shown

before, component based development requires an adequate
architecture in which it takes place. With reference to the
common problems of systems integration, a combination of
component based architectures and systems integration
frameworks seems necessary.

In a joint analysis of existing component architectures and
SI frameworks, it should be figure out if a combination of
both is feasible and may be used as the technical foundation
for software product lines.

4) Model Driven Engineering
The probably most ambitious objective of an industrialized

software development is the automated creation of artifacts
such as model transformations or code generation. For SI it
offers interesting possibilities to resolve problems related to
the business process and workflow domain of SI, such as
integration consequences and depicting intersystem
relationships. However, it is unclear to which degree an SI
service provider can economically implement such a concept
and if it can be used for different customers. The role and
potential advantages of domain specific languages in the given
context is also unknown. Are separate tools such as model
transformators or code generators required for each product
line or can their foundations be reused?

Based on the previous three aspects, the feasibility of
Model Driven Engineering in systems integration should be
analyzed and suggestions for the degree of its implementation
derived. In this context MDE may shape up to be useful to
solve SI related problems such as unknown integration
consequences or intersystem relationships.

V. CONCLUSION & RESEARCH APPROACH
Systematic reuse of existing software artifacts hardly takes

place and the majority of goods is still produced from scratch.
With increasing complexity and size of today’s IT systems, a
generally accepted and industrialized production principle
becomes necessary. Promising approaches, notably Software
Product Lines, Component Based Development, and Model
Driven Engineering, are currently being developed and
implemented in practice, as described in chapter II.

However, as software engineering takes place in a wide
variety of application domains, it cannot be assured whether
the available industrialization models can be applied to every
one of them. One of these domains is systems integration in
which IT systems are adapted and interconnected to support
new or changing business processes or requirements. To better
understand the particularities of this field, chapter III depicts
its substantial differences that are primarily the lack of
knowledge about the integrated IT landscape of an enterprise,
the lack of a methodological approach and integration
framework, and a high heterogeneity of systems.

Chapter IV picks up these particularities and maps them to
the introduced concepts of industrialized software
engineering. The first section shows why these concepts
cannot be applied to systems integration in their initial
occurrence, while the second suggests further research to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

1987

advance the field of software engineering in systems
integration towards an industrialized production process:

 Organizational aspects: Which changes are required to the
organizational structure of a systems integration provider
in order to implement industrial production methods in an
economically feasible way?

 Software Product Lines: Is the concept of SPL in its
original form viable for systems integration providers?
How can the gap between a standardized product family
and customer specific requirements in a highly
heterogeneous environment be bridged at feasible cost?

 Component Based Development: CBD and SI require a
specific architecture or framework. Can both be combined
to form a basis on which Software Product Line
development and systematic reuse can be built on? How
can the high heterogeneity of systems to be integrated
taken into account?

 Model Driven Engineering: To what extend does it
economically make sense to implement MDE in systems
integration? Does MDE offer additional benefits to SI as,
for instance, an integration management approach?

The present work can be classified into the scientific area of
business informatics as it covers matters from business
(organizational forms of enterprises and product family
management) and computer sciences (implementation of CBD
and MDE). To meet concerns about the fact that very little of
software engineering research finds its way into practice [22],
research in the described area could be conducted in close
collaboration with the industry. Thereby the approach of
action research, aiming at the retrieval of scientifically proven
procedures and guidelines and applying them in practice,
seems to be suitable. The approach consists of three major
phases: During the first phase, scientists and practitioners
outline the problem definition and a first concept is developed,
based on domain analysis and theoretical research. In the
second phase the derived concepts are discussed with subject
matter expert and subsequently implemented in practice. The
third phase then reflects the results of the implemented
solution and derives suggestions for improvement and further
research, out of which a new cycle of action research can be
initiated. For each of the above aspects at least one action
research cycle will be accomplished, further ones may be
added as needed.

The overall objective of the depicted areas of research may
be a guideline which will draw a holistic picture of
industrialized systems integration and provide a software
development approach that addresses the application of
industrial concepts in systems integration.

REFERENCES
[1] Butschek, F., Industrialisierung. 2007, Ulm: Ebner & Spiegel.
[2] Brockhaus-Enzyklopädie, in Brockhaus-Enzyklopädie. 2005,

Brockhaus: Mannheim.

[3] Greenfield, J. and K. Short, Software Factories - Assembling
Applications with Patterns, Models, Frameworks, and Tools. 1 ed. 2004,
Indianapolis: John Wiley & Sons.

[4] Brockhaus-Enzyklopädie, in Brockhaus-Enzyklopädie. 2005, F.A.
Brockhaus: Mannheim.

[5] Balzert, H., Lehrbuch der Software-Technik: Software Management. 2
ed. 2008, Heidelberg: Spektrum Verlag.

[6] Sneed, H.M., Software-Qualitätssicherung für kommerzielle
Anwendungssysteme. 1 ed. 1983, Bergisch Gladbach:
Verlagsgesellschaft Rudolf Müller.

[7] Sneed, H.M., Software Management. 1987, Cologne: Müller GmbH.
[8] Clements, P. and L. Northrop, Software Product Lines. 2007, Boston:

Addison-Wesley.
[9] Linden, F.v.d., K. Schmid, and E. Rommes, Software Product Lines in

Action. 2007, Berlin, Heidelberg, New York: Springer.
[10] Pohl, K., G. Böckle, and F. van der Linden, Software Product Line

Engineering. 1 ed. 2005, Berlin, Heidelberg, New York: Springer.
[11] Software Engineering. in NATO Software Engineering Conference.

1968. Garmisch Partenkirchen: NATO Science Committee.
[12] Szyperski, C., Component Software: Beyond Object-Oriented

Programming. 1998, Massachussetts: Addison-Wesley.
[13] Andresen, A., Komponentenbasierte Softwareentwicklung mit MDA,

UML 2 und XML. 2 ed. 2004, Munich, Vienna: Carl Hanser Verlag.
[14] Schmidt, D.C., Model Driven Engineering. IEEE Computer, 2006.

39(2): p. 7.
[15] Fischer, J., Informationswirtschaft: Anwendungsmanagement. Lehr- und

Handbücher zu Controlling, Informationsmanagement und
Wirtschaftsinformatik 1999, Munich, Vienna: Oldenbourg.

[16] Leser, U. and F. Naumann, Informationsintegration. 2007, dpunkt:
Heidelberg.

[17] Riehm, R., Integration von heterogenen Applikationen. 1997, Universität
St. Gallen: St. Gallen.

[18] Conrad, S., et al., Enterprise Application Integration - Grundlagen,
Konzepte, Entwurfsmuster, Praxisbeispiele. 2006, Elsevier: Munich.

[19] Vogler, P., Prozess- und Systemintegration - Evolutionäre
Weiterentwicklung bestehender Informationssysteme mit Hilfe von
Enterprise Application Integration. 2004, Wiesbaden: Deutscher
Universitäts-Verlag.

[20] Hasselbring, W., Information System Integration. Communications of
the ACM, 2000. 43(6): p. 7.

[21] Gassner, C., Konzeptionelle Integration heterogener
Transaktionssysteme. 1996, Universität St. Gallen: St. Gallen.

[22] Potts, C., Software-Engineering Research Revisited. IEEE Software,
1993. 10(5): p. 9.

