
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

825

Abstract—All practical real-time scheduling algorithms in

multiprocessor systems present a trade-off between their

computational complexity and performance. In real-time systems,

tasks have to be performed correctly and timely. Finding minimal

schedule in multiprocessor systems with real-time constraints is

shown to be NP-hard. Although some optimal algorithms have

been employed in uni-processor systems, they fail when they are

applied in multiprocessor systems. The practical scheduling

algorithms in real-time systems have not deterministic response

time. Deterministic timing behavior is an important parameter for

system robustness analysis. The intrinsic uncertainty in dynamic

real-time systems increases the difficulties of scheduling problem.

To alleviate these difficulties, we have proposed a fuzzy scheduling

approach to arrange real-time periodic and non-periodic tasks in

multiprocessor systems. Static and dynamic optimal scheduling

algorithms fail with non-critical overload. In contrast, our approach

balances task loads of the processors successfully while consider

starvation prevention and fairness which cause higher priority tasks

have higher running probability. A simulation is conducted to

evaluate the performance of the proposed approach. Experimental

results have shown that the proposed fuzzy scheduler creates

feasible schedules for homogeneous and heterogeneous tasks. It

also and considers tasks priorities which cause higher system

utilization and lowers deadline miss time. According to the results,

it performs very close to optimal schedule of uni-processor

systems.

Keywords—Computational complexity, Deadline, Feasible

scheduling, Fuzzy scheduling, Priority, Real-time multiprocessor

systems, Robustness, System utilization.

I. INTRODUCTION

ANY applications namely avionics, traffic control,

automated factory, and military systems require real-

time communication and computation. In real-time systems,

all tasks have specific parameters such as deadline, priority,

etc. Modern embedded computing systems are becoming

increasingly complex [1]. Meanwhile, the traditional notions

of best-effort and real-time processing have fractured into a

spectrum of processing classes with different timeliness

requirements including desktop multimedia, soft real-time,

firm real-time, adaptive soft real-time, rate-based, and

traditional hard real-time [2-5]. Many real-time systems are

hard and missing deadline is catastrophic [5-8], whereas in

Mahdi Hamzeh is with the Silicon Intelligence and VLSI Signal

Processing Lab, School of Electrical and computer engineering, University

of Tehran, Tehran, Iran (phone: +98-21-8800-6064; e-mail: mhamzeh@

ece.ut.ac.ir).

Prof. Sied Mehdi Fakhraie is with the School of Electrical and

Computer Engineering, University of Tehran, Tehran, Iran (e-mail:

fakhraie@ut.ac.ir).

Prof. Caro Lucas is with the Center of Excellence for Control and

Intelligent Processing, University of Tehran, and School of Cognitive

Science, IPM, Iran (e-mail: lucas@ipm.ir).

soft real-time system occasional violation of deadline

constraints may not result in a useless execution of the

application or calamitous consequences, but decreases

utilization[9]. A schedule which is executing all real-time

tasks within their deadlines and all the other constraints are

met, is called a feasible schedule [10]. Real-time scheduling

can be classified in two categories, static [7] and dynamic

[11] scheduling. A static real-time scheduling algorithm such

as Rate Monotonic schedules all real-time tasks off-line

using static parameters and requires complete knowledge

about tasks and system parameters [12], while dynamic task

scheduler calculates the feasible schedule on-line and allows

tasks to be invoked dynamically. These algorithms use

dynamic parameters such as deadline and laxity[2, 3, 10, 11,

13-16]. Scheduling in real-time system involves allocation of

CPU and other resources to run corresponding tasks to meet

certain timing constraints [13]. Nonetheless, scheduling is

more significant in real-time systems than non-real-time

systems[1, 9, 13, 15-20]. In real-time systems, tasks have to

be performed correctly and in a timely fashion as well [21].

Tasks are classified as periodic and non-periodic [22, 23].

The execution requests of a periodic task repeatedly occur at

regular intervals. On the contrary, execution requests of a

non-periodic task are unpredictable.

Nowadays, using of real-time multiprocessor systems is

dramatically increasing. Unfortunately, less is known about

how to schedule multiprocessor-based real-time systems than

that for uni-processors [14]. Optimal scheduling of real-time

tasks on multiprocessor systems is known to be

computationally intractable for large task sets [15]. Any

practical scheduling algorithm in multiprocessor systems

presents a trade-off between performance and computational

complexity. Having more computational complexity in

practical algorithm cause wide range of algorithm’s response

time hence, deterministic timing behavior is the most

important parameter for system’s robustness especially in

hard real-time system[2, 3, 24-26]. This behavior cause

decrease in utilization of the system when unpredictable

conditions happened. In heterogeneous systems which tasks

have different time constraints algorithm have to avoid

starvation[26].

The performance of a scheduling algorithm is measured in

terms of additional processor required to be added at a

schedule without deadline violations as compared to optimal

algorithm [15]. In [18] it has been proved that finding a

minimal schedule for a set of real-time tasks in

multiprocessor system is NP-hard.

In this paper, we focus on a real-time multiprocessor

system with heterogeneous periodic and non-periodic tasks

and compare performance and complexity of our proposed

Soft Real-Time Fuzzy Task Scheduling for

Multiprocessor Systems

Mahdi Hamzeh, Sied Mehdi Fakhraie, and Caro Lucas

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

826

fuzzy scheduler with other algorithms using computer

simulation.

The rest of this paper is organized as follows. Section II

describes scheduling algorithms and task model. Section III

describes fuzzy inference engine. Section IV introduces the

proposed fuzzy real-time scheduler. Experimental results are

presented in section V.

II. SCHEDULING ALGORITHMS AND TASK MODEL

A. Task Model

A task is a complete sequence of instructions. Task

execution starts when a task is selected by task dispatcher

and one of the system’s processors starts to run task’s

instructions. Tasks are classified according to their deadline,

priority, arrival characteristic, and computation cycles

requests.

B. Scheduling Algorithms

First-Come-First-Served (FCFS) algorithm [20] selects

the task with the earliest arrival time. If system contains

periodic tasks, their release time will be considered. This

algorithm makes no effort to consider a task’s deadline.

Earliest Deadline First (EDF) algorithm [15, 20] always

chooses the task with the earliest deadline. It has been

proved that this algorithm is optimal in a uni-processor

system. Since it cannot consider priority and therefore

cannot analyze it, this algorithm fails under overloading

conditions.

Least Laxity First (LLF) algorithm [13] selects the task

that has the lowest laxity among all the ready ones whenever

a processor becomes idle, and executes it to completion.

This algorithm is non-preemptive and avoids the well-known

problem of its preemptive counterpart that sometimes

degenerates to a processor-sharing policy.

Robust Earliest Deadline (RED) algorithm proposed in [3,

14, 15] calculates residual time and workload of tasks as

their schedulability. It has some task rejection mechanism to

handle system load when there is no feasible schedule [19].

Lee et al. [21] present a fuzzy scheduling algorithm. Their

proposed algorithm uses task laxity and task criticality as

system parameters. Their simulation model contains small

number of tasks on a uni-processor system and they did not

consider system overloads. All the tasks in a system are seen

as real-time and fairness is not considered.

Thai [15] proposed a real-time scheduling algorithm for

multi-processor distributed systems. In their approach, the

task with higher computation time is assigned to bottleneck

processor and system’s worst case processing time is

computed. However it is not clear how this task is detected.

Their algorithm needs communication time between

processors and assume tasks processing times are different

but real-time. They do not consider heterogeneous tasks and

fairness. The proposed algorithm has acceptable resistance

to system overload especially when number of processors is

increased.

The model described in [27] uses fuzzy inference for

scheduling non-preemptive periodic tasks in soft real-time

multiprocessing systems. They use priority and deadline as

tasks’ parameters and use a fuzzy inference engine to

compute each task’s priority and select the task with

maximum priority to process. Although they wish to use

TSK inference engine in their model, their rules are

Mamdani. They assume all task are periodic and it is not

clear that their processor on system is homogeneous or

heterogeneous. The proposed model does not consider task’s

processing time. Therefore results are more similar to EDF

and not suitable for multiprocessing systems.

Chen et al. [28] proposed a scheduling model and a

related algorithm that is suitable for both uni-processor and

multiprocessor systems. They provide a method to detect

work overloading and try to balance load with task

dispatching.

Dynamic integrated scheduling of hard real-time, soft

real-time, and none real-time tasks are discussed in [29].

They can generate feasible schedules but their model is

restricted to periodic tasks and change the tasks’ periods

dynamically when overloading occurs.

III. FUZZY INFERENCE ENGINE

Fuzzy logic [30, 31] is a superset of conventional Boolean

logic and extends it to deal with new aspects such as partial

truth and uncertainty.

Fuzzy inference is the process of formulating the mapping

from a given input set to an output using fuzzy logic. The

basic elements of fuzzy logic are linguistic variables, fuzzy

sets, and fuzzy rules [32]. The linguistic variables’ values

are words, specifically adjectives like “small,” “little,”

“medium,” “high,” and so on. A fuzzy set is a collection of

couples of elements. It generalizes the concept of a classical

set, allowing its elements to have a partial membership. The

degree to which the generic element “x” belongs to the fuzzy

set A (expressed by the linguistic statement x is A) is

characterized by a membership function (MF), fA(x). The

membership function of a fuzzy set corresponds to the

indicator function of the classical sets. It can be expressed in

the form of a curve that defines how each point in the input

space is mapped to a membership value or a degree of truth

between 0 and 1. The most common shape of a membership

function is triangular, although trapezoidal and bell curves

are also used. This operation normalizes all inputs to the

same range and has a direct effect on system performance

and accuracy.

Fig. 1 Proposed inference model

A fuzzy set A is defined within a finite interval called

universe of discourse U as follows:

]}1,0[:)()),(,{(→= UxfxfxA AA

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

827

U is the whole input range allowed for a given fuzzy

linguistic variable. All fuzzy sets related to a given variable

make up the term set, the set of labels within the linguistic

variable described or, more properly, granulated. Fuzzy

rules form the basis of fuzzy reasoning. They describe

relationships among imprecise, qualitative, linguistic

expressions of the system’s input and output. Generally,

these rules are natural language representations of human or

expert knowledge and provide an easily understood

knowledge representation scheme. A typical conditional

fuzzy rule assumes a form such as

IF Speed is “Low” AND Race is “Dry” THEN Braking

is “Soft”.

Speed is Low AND Race is Dry is the rule’s premise;

while Braking is Soft is the consequent. The premise

predicate might not be completely true or false, and its

degree of truth ranges from 0 to 1. We compute this value by

applying the membership functions of the fuzzy sets labeled

“Low” and “Dry” to the actual value of the input variables

Speed and Race. After that, fuzzification is applied to the

conclusion; the way in which this happens depends on the

inference model.

There are two types of fuzzy inference models:

1. Mamdani [33],

2. TSK or Sugeno [34].

Interpreting an if-then rule involves two distinct parts:

first evaluating the antecedent and then applying results to

the consequent (known as implication) [35, 36]. In the case

of two-valued or binary logic, if-then rules do not present

much difficulty. If the premise is true, then the conclusion is

true, whereas with fuzzy approach, if the antecedent is true

to some degree of membership, then the consequent is also

true to that same degree.

Mamdani-type [33] inference expects the output

membership functions to be fuzzy sets. After the aggregation

process, there is a fuzzy set for each output variable that

needs defuzzification. It is possible, and in many cases much

more efficient, to use a single spike as the output’s

membership function rather than a distributed fuzzy set. This

is sometimes known as a singleton output membership

function, and it can be thought of as a pre-defuzzified fuzzy

set. It enhances the efficiency of the defuzzification process

because it greatly simplifies the computation required by the

more general Mamdani method, which finds the centroid of

a two-dimensional function. Rather than integrating across

the two-dimensional function to find the centroid, Sugeno-

type systems use weighted sum of a few data points. In

general, Sugeno-type systems can be used to model any

inference system in which the output membership functions

are either linear or constant.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

Priority

D
e
g
re
e
 o
f
m
e
m
b
e
rs
h
ip

Very low

Low

Medium

High

Very high

Fig. 2 Fuzzy sets corresponding to priority

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

CPU time

D
e
g
re
e
 o
f
m
e
m
b
e
rs
h
ip

Low

Medium

High

Fig. 3 Fuzzy sets corresponding to CPU time

IV. PROPOSED MODEL

As shown in Fig. 1, the major factors considered in our

approach to determine the scheduling are task priority,

deadline, required computation time, and used CPU time.

The notion of laxity is used in the proposed approach to

facilitate the computation. Laxity is the maximum time that a

task can wait before being executed (i.e., laxity = deadline -

computation time).

A task’s priority shows the importance of the task. The

inputs of these parameters are justified and represented as

linguistic variables and fuzzy rules are then applied to those

linguistic variables to compute the level value for deciding

which task to select to schedule next.

CPU time is another parameter which could guarantee

scheduling fairness. We considered 5 trapezoid membership

functions for task’s priority. “Very high”, “High”,

“Medium”, “Low” and “Very low” are these membership

functions. This number and naming of membership is same

for task’s laxity however CPU time membership function

considered 3 and also trapezoid. “High”, “Medium” and low

are the name of these functions. For the fa(x) as the

membership function, a large class of functions can be taken

such as triangular, trapezoidal, Gaussian and bell function

however we selected trapezoidal for its usability in fuzzy

dedicated hardware [35-37].The used membership functions

for this model illustrated in Fig. 2 and 3.

In our proposed algorithm as shown in Fig. 4, a newly

arrived task will be added to the input queue. This queue

consists of the remaining tasks from last cycle that has not

yet been assigned.

1. For each task of input queue

a. Feeds task’s run-time priority using fuzzy

inference engine

2. While system has a free processor

a. assign the task with highest run-time

priority to the processor

3. Loop forever

a. If processor event occurs

i. Go to 2.

b. If scheduling event occurs

i. Update tasks parameters.

ii. Go to 1.

Fig. 4 Proposed algorithm

Fuzzy scheduler processes each task separately and

computes its run-time priority and sends it to task

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

828

dispatcher’s priority queue. In a multiprocessor system, this

queue offers tasks to dispatcher by their run-time priority

order. Dispatcher offers a new task whenever one of the

processors of the system finishes its task.

Fig. 5 System view of soft real-time fuzzy scheduler

Periodic tasks which their execution requests occur

repeatedly will remain in the system queue while non-

periodic tasks will be finished and their next request starts

with task initialization. In this model all kinds of tasks are

considered (Fig. 5).

In firm real-time systems with more real-time constraints,

our model can be adapted with multiple input queues with

multiple schedulers where task’s priorities differ. With this

technique, when the number of system tasks is very high,

scheduler can select most important tasks and send them to

dispatcher queue while with last model processing all tasks

parameters could be time consuming and waste system time.

Scheduler and dispatcher are independent components

and they are connected with a queue; consequently our

proposed scheduler is extendable.

Due to the model extendibility and adaptability, this

model can be used in a variety of systems with multi-criteria

constraints.

Satisfactory performance is achieved by using 39 Sugeno

rules only. This number is obtained by simplifying 169 rules

in different examples. Some of them are mentioned below:

• If (Laxity is “Very low”) and (Priority is

“Very high”) then

laxitypriorityiorityR ×−×= 10100Pr .

• If (Laxity is “Low”) and (Priority is “Very

high”) then

laxitypriorityiorityR ×−×= 2050Pr .

• If (Laxity is “Medium”) and (Priority is

“Normal”) and (CPU time is “High”) then

CPUtime

laxitypriorityiorityR

×−

×−×=

50

4025Pr

Choosing number of rules and membership functions

directly affects system accuracy while performance of the

system increases with rule size decrease. There are some

techniques for adjusting membership functions however; in

this paper we did not consider these approaches.

Fig. 6 The decision surface corresponding to inference rules

The corresponding decision surface to these rules and

membership functions is illustrates in Fig. 6.

V. EXPERIMENTAL RESULTS

We are simulated our algorithm using our custom-

designed simulator implemented using Java. In our simulator

we have 100 tasks, among which 10 has very high priority,

30 has high prioritym 20 has medium and 20 has very low

priority. We considered priority in 0-1000.

Each task’s deadline and required computation cycles

considered in 0-1000 which means maximum allowed laxity

is 1000. These parameters are generated or updated

randomly when a new arrived task generated of its

computation finished.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35

Processor

T
a
s
k
 G
e
n
e
ra
ti
o
n

Fuzzy

EDF

LLF

FCFS

Fig. 7 High priority task generation

Simulation results show that by increasing the number of

system’s processors, generation of high priority tasks

increases until high priority task’s waiting times is reduced

to an acceptable range (Fig. 7). By increasing processor,

high priority tasks have higher probability of execution

while their laxity would not decrease to critical region. This

behavior results in more execution for low priority tasks in

medium load cycles. Next, low priority tasks generation

increases to handle low priority task’s waiting time.

Simulation results show that the model can feasibly

schedule tasks when system load increases and keep system

processors loads close to one even at crowded times.

However, other algorithms like LLF and EDF break down

when the system is overloaded. In this model, we did not

consider scheduler processing time and this process is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

829

independent of the number of system’s processors. We note

that processor’s load remain always below one because of

dispatcher’s processing time. By analysis of task scheduler,

periodic task’s period increases automatically by scheduler

with consideration of their priority and CPU time. This

behavior of the system is similar elastic scheduling proposed

by [19].

While number of the system’s processors increases, our

model balances the load between processors. This well

balancing will causes efficient processing time in symmetric

systems. The proposed scheduler’s average waiting time is

close to LLF and EDF algorithms. Simulations demonstrate

the algorithm is capable of task balancing when the number

of processors increases. However in comparison to other

algorithms high priority tasks have smaller waiting times.

This implies a better response time for the system and it

selects high priority tasks with higher probability.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40

Processor

T
im
e

Fuzzy

EDF

LLF

FCFS

Fig. 8 High priority tasks miss time

Since the total system computation power is constant, so

when some high priority tasks get a higher portion of

system’s computation power, the other ones will receive

lower attention. This causes a reduction in selection of low

priority tasks (Fig. 8).

TABLE I

REQUIRED PROCESSOR FOR FEASIBLE SCHEDULING IN DIFFERENT

ALGORITHM WITH DIFFERENT HIGH PERFORMANCE TASKS RATIO

HP to all

ratio

Proposed Priority

based

EDF LLF FCFS

20% 1 1 2 2 4

40% 2 2 4 4 5

80% 4 4 7 7 8

TABLE II

REQUIRED PROCESSOR FOR FEASIBLE SCHEDULING IN DIFFERENT

ALGORITHM WITH DIFFERENT LOW PERFORMANCE TASKS RATIO

LP to all

ratio

Proposed Priority

based

EDF LLF FCFS

20% 6 12 4 4 4

40% 4 8 2 2 2

80% 1 2 1 1 1

As shown in Table I, by considering ratio of high priority

task to all, our model select high priority tasks with higher

probability which makes acceptable system’s waiting time

and miss ratio for high priority tasks by use the lower

number of processors. For applications which average

waiting time for all tasks is an important parameter and

designer have to care about low priority task to restrict

average waiting time. Number of processor required for

acceptable miss ratio is listed in Table II which its first

column is the ratio of low priority tasks to all tasks. Our

algorithm provides an average utilization similar to other

algorithm. However, Fig. 8 demonstrate, our algorithm

significantly performs better for high priority tasks in a real-

time environment.

VI. CONCLUSION AND FUTURE WORK

The proposed scheduler which proposed in this paper has

low complexity due to the simplicity of fuzzy inference

engine. As a consequence, its computation complexity and

response time is constant and by increasing the number of

processors will not increase. This model is efficient when

system has heterogeneous tasks with different constraints.

Our future work is to map this algorithm on our real-time

fuzzy processor.

REFERENCES

[1] F. Gruian, "Energy-centric scheduling for real-time systems," in

Department of Computer Science. Ph.D dissertation: Lund

University, 2002, p. 164.

[2] Z. Deng, J. W. Liu, and S. Sun, "Dynamic scheduling of hard real-

time applications in open system environment," Tech. Rep.,

University of Illinois at Urbana-Champaign 1996.

[3] G. Buttazzo and J. A. Stankovic, "RED: robust earliest deadline

scheduling," in Proc. 3rd Intl. Workshop Responsive Computing

Systems, Lincoln, NH, 1993, pp. 100-111.

[4] S. M. Petters, "Bounding the execution time of real-time tasks on

modern processors," in Proc. 7th Intl. Conf. Real-Time Computing

Systems and Applications, Cheju Island, 2000, pp. 498-502.

[5] J. Zhu, T. G. Lewis, W. Jackson, and R. L. Wilson, "Scheduling in

hard real-time applications," IEEE Softw., vol. 12, pp. 54-63, 1995.

[6] K. Taewoong, S. Heonshik, and C. Naehyuck, "Scheduling algorithm

for hard real-time communication in demand priority network," in

Proc. 10th Euromicro Workshop Real-Time Systems, Berlin,

Germany, 1998, pp. 45-52.

[7] C. L. Liu and J. W. Layland, "Scheduling algorithms for

multiprogramming in a hard-real-time environment," J. ACM, vol. 20

pp. 46-61, 1973.

[8] D. Babbar and P. Krueger, "On-line hard real-time scheduling of

parallel tasks on partitionable multiprocessors," in Proc. Intl. Conf.

Parallel Processing, 1994, pp. 29-38.

[9] W. Lifeng and Y. Haibin, "Research on a soft real-time scheduling

algorithm based on hybrid adaptive control architecture," in Proc.

American Control Conf, Lisbon, Portugal, 2003, pp. 4022-4027

vol.5.

[10] T. F. Abdelzaher and K. G. Shin, "Comment on a pre-run-time

scheduling algorithm for hard real-time systems," IEEE Trans

Software Engineering, vol. 23, pp. 599-600, Sep 1997.

[11] K. Ramamritham and J. A. Stankovic, "Dynamic task scheduling in

hard real-time distributed systems," IEEE Softw., vol. 1, pp. 65-75,

July 1984.

[12] P. A. Laplante, "The certainty of uncertainty in real-time systems,"

IEEE Instrum. Meas. Mag., vol. 7, pp. 44-50, Dec 2004.

[13] K. Ramamritham and J. A. Stankovic, "Scheduling algorithms and

operating systems support for real-time systems," Proc. IEEE, vol. 82,

pp. 55-67, Jan 1994.

[14] J. Kreuzinger, A. Schulz, M. Pfeffer, T. Ungerer, U. Brinkschulte,

and C. Krakowski, "Real-time scheduling on multithreaded

processors," in Proc. 7th Intl. Conf. Real-Time Computing Systems

and Applications, Cheju Island, South Korea, 2000, pp. 155-159.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

830

[15] N. D. Thai, "Real-time scheduling in distributed systems," in Proc.

Intl. Conf. Parallel Computing in Electrical Engineering, Warsaw,

Poland, 2002, pp. 165- 170.

[16] C. Lin and S. A. Brandt, "Efficient soft real-time processing in an

integrated system," in Proc. 25th IEEE Real-Time Systems Symp.,

2004.

[17] I. E. W. Giering and T. P. Baker, "A tool for the deterministic

scheduling of real-time programs implemented as periodic Ada

tasks," Ada Lett., vol. XIV, pp. 54-73, 1994.

[18] L. Hluchý, M. Dobrucký, and J. Astalos, "Hybrid approach to task

allocation in distributed systems," in Proc. 4th Intl. Conf. Parallel

Computing Technologies, Yaroslavl, Russia, 1997 pp. 210-215.

[19] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, "Elastic

scheduling for flexible workload management," IEEE Trans.

Comput., vol. 51, pp. 289-302, Mar 2002.

[20] A. S. Tanenbaum, Distributed operating systems: Prentice Hall, 1994.

[21] J. Lee, A. Tiao, and J. Yen, "A fuzzy rule-based approach to real-time

scheduling," in Proc. 3rd IEEE Conf. Fuzzy Systems, IEEE World

Congress Computational Intelligence, FL, 1994, pp. 1394-1399 vol.2.

[22] M. Silly-Chetto, "Dynamic acceptance of aperiodic tasks with

periodic tasks under resource sharing constraints," IEE Proc.

Software, vol. 146, pp. 120-127, Apr 1999.

[23] M. Caccamo and G. Buttazzo, "Exploiting skips in periodic tasks for

enhancing aperiodic responsiveness," in Proc. 18th IEEE Real-Time

Systems Symp., San Francisco, CA, 1997, p. 330.

[24] J. Mario J. Gonzalez, "Deterministic processor scheduling," ACM

Comput. Surv., vol. 9, pp. 173-204, 1977.

[25] R. Jiminez-Peris, M. Patino-Martinez, and S. Arevalo, "Deterministic

scheduling for transactional multithreaded replicas," in Proc. 19th

IEEE Symp. Reliable Distributed Systems, Nurnberg, Germany,

2000, pp. 164-173.

[26] S. Zhiao, E. Jeannot, and J. J. Dongarra, "Robust task scheduling in

non-deterministic heterogeneous computing systems," in Proc. IEEE

Intl. Conf. Cluster Computing, Barcelona, Spain, 2006, pp. 1-10.

[27] M. Sabeghi, M. Naghibzadeh, and T. Taghavi, "Scheduling non-

preemptive periodic tasks in soft real-time systems using fuzzy

inference," in Proc. 9th IEEE Intl. Symp. Object and Component-

Oriented Real-Time Distributed Computing, Gyeongju, KOREA,

2006, pp. 27-32.

[28] G. Chen, G. Chen, O. Ozturk, and M. Kandemir, "An adaptive

locality-conscious process scheduler for embedded systems," in Proc.

11th IEEE Real-Time and Embedded Technology and Applications

Symposium, San Francisco, CA, 2005 pp. 354-364.

[29] S. A. Brandt, S. Banachowski, L. Caixue, and T. Bisson, "Dynamic

integrated scheduling of hard real-time, soft real-time, and non-real-

time processes," in Proc. 24th IEEE Intl. Real-Time Systems

Symposium, Cancun, Mexico, 2003, pp. 396-407.

[30] L. A. Zadeh, "Fuzzy sets versus probability," Proc. IEEE, vol. 68, pp.

421-421, March 1980.

[31] L. A. Zadeh, "Fuzzy logic, neural networks, and soft computing,"

Commun. ACM, vol. 37, pp. 77-84, March 1994.

[32] W. Pedrycz and F. Gomide, An introduction to fuzzy sets: analysis

and design: The MIT Press, 1998.

[33] E. H. Mamdani, "Application of fuzzy algorithms for the control of a

dynamic plant," Proc. IEE, vol. 121, pp. 1585-1588, Dec 1974.

[34] T. Takagi and M.Sugeno, "Fuzzy identification of systems and its

applications to modeling and control," IEEE Trans. Syst., Man,

Cybern., vol. 15, pp. 116-132, 1985.

[35] H. Surmann and A. P. Ungering, "Fuzzy rule-based systems on

general-purpose processors," IEEE Micro, vol. 15, pp. 40-48, Aug

1995.

[36] G. Ascia and V. Catania, "A general purpose processor oriented to

fuzzy reasoning," in Proc. 10th IEEE International Conf. Fuzzy

Systems, Melbourne, Australia, 2001, pp. 352-355.

[37] K. Youngdal and L.-K. Hyung, "An architecture of fuzzy logic

controller with parallel defuzzification," in Proc. Biennial Conf. of

the North American Fuzzy Information Processing Society, Berkeley,

CA, 1996, pp. 497-501.

Mahdi Hamzeh was born in Isfahan, Iran, in 1982.

He received the B.S. degree in computer engineering

from Azad University of Qazvin in 2005. He is

currently working toward the M.S. degree in

electrical and computer engineering from the

University of Tehran, Tehran, Iran.

His research interests include hardware

implementation of intelligent systems, High

performance intelligent computing, Reconfigurable computing,

Multiprocessor SoC and real-time systems and applications. .Since 2005,

he is member of Silicon Intelligence and VLSI Signal Processing

Laboratory (SILab).

Sied Mehdi Fakhraie was born in Dezfoul, Iran, in

1960. He received his M.Sc. degree in electronics

from the University of Tehran, Tehran, Iran, in 1989

an the Ph.D. degree in electrical and computer

engineering from the University of Toronto,

Toronto, ON, Canada in 1995. Since 1995, he has

been with the School of Electrical and Computer

Engineering, University of Tehran, where he is now

an Associate Professor. He has been the founder of

the VLSI Circuits and Systems Laboratory and is now Director of Silicon

Intelligence and VLSI Signal Processing Laboratory. From September 2000

to April 2003, he was with Valence Semiconductor Inc. and has worked in

Dubai, UAE, and Markham, Canada offices of Valence as Director of

ASIC/SoC Design and also technical lead of Integrated Broadband

Gateway and Family Radio System baseband processors.

During the summers of 1998, 1999, and 2000, he was a visiting professor

at the University of Toronto, where he continued his work on efficient

implementation of artificial neural networks. He is coauthor of the book

VLSI-Compatible Implementation of Artificial Neural Networks (Boston,

MA: Kluwer, 1997). He has also published more than 70 reviewed

conference and journal papers. He has worked on many industrial IC

design projects including design of network processors and home gateway

access devices, DSL modems, pagers, and one- and two-way wireless

messaging systems, and digital signal processors for personal and mobile

communication devices. His research interests include system design and

ASIC implementation of integrated systems, novel techniques for high-

speed digital circuit design, and system-integration and efficient VLSI

implementation of intelligent systems.

Caro Lucas received the Ms. degree from the

University of Tehran, Iran, in 1973, and the Ph.D

degree from the university of California, Berkeley,

in 1976. He is a Professor of Center of Excellence

for Control and Intelligent Processing at the

School of Electrical and Computer Engineering,

University of Tehran, Iran, as well as a researcher

at the School of Intelligent Systems (SIS),

Institute for Studies in Theoretical Physics and

Mathematics (IPM), Tehran, Iran. He has served

as the Director of SIS (1993-1997), Chairman of the ECE Department at

the University of Tehran (1986-1988), Managing Editor of the Memories

of the Engineering Faculty, University of Tehran (1979-1991), Reviewer of

Mathematical Reviewers (since 1987), Associate Editor of Journal of

Intelligent and Fuzzy systems (1992-1999) , and Chairman of the IEEE,

Iran section (1990-1992). He was also a Visiting Associate Professor at the

University of Toronto (summer, 1989-1990), University of California,

Berkeley (1988-1989), an Assistant Professor at Garyounis University

(1984-1985), University of California at Los Angeles (1975-1976), a

Senior Researcher at the International Center for Theoretical Physics and

the International Center for Genetic Engineering and Biotechnology, both

in Trieste, Italy, the Institute of Applied Mathematics Chinese Academy of

Sciences, Harbin Institute of Electrical Technology, a Research Associate

at the Manufacturing Research Corporation of Ontario, and a Research

Assistant at the Electronic Research Laboratory, University of California,

Berkeley. He is the holder of Patent on “Speaker Independent Farsi Isolated

Word Neurorecognizer”. His research interests include biological

computing, computational intelligence, uncertain systems, intelligent

control, neural networks, multi-agent systems, data mining, business

intelligence, financial modelling and knowledge management. Professor

Lucas has served as the chairman of several International Conferences. He

was the founder of the SIS and has assisted in founding several new

research organizations and engineering disciplines in Iran. He is the

recipient of several research grants at the University of Tehran and SIS.

