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Abstract—All practical real-time scheduling algorithms in 

multiprocessor systems present a trade-off between their 

computational complexity and performance. In real-time systems, 

tasks have to be performed correctly and timely. Finding minimal 

schedule in multiprocessor systems with real-time constraints is 

shown to be NP-hard. Although some optimal algorithms have 

been employed in uni-processor systems, they fail when they are 

applied in multiprocessor systems. The practical scheduling 

algorithms in real-time systems have not deterministic response 

time. Deterministic timing behavior is an important parameter for 

system robustness analysis. The intrinsic uncertainty in dynamic 

real-time systems increases the difficulties of scheduling problem. 

To alleviate these difficulties, we have proposed a fuzzy scheduling 

approach to arrange real-time periodic and non-periodic tasks in 

multiprocessor systems. Static and dynamic optimal scheduling 

algorithms fail with non-critical overload. In contrast, our approach 

balances task loads of the processors successfully while consider 

starvation prevention and fairness which cause higher priority tasks 

have higher running probability. A simulation is conducted to 

evaluate the performance of the proposed approach. Experimental 

results have shown that the proposed fuzzy scheduler creates 

feasible schedules for homogeneous and heterogeneous tasks. It 

also and considers tasks priorities which cause higher system 

utilization and lowers deadline miss time. According to the results, 

it performs very close to optimal schedule of uni-processor 

systems. 

 

Keywords—Computational complexity, Deadline, Feasible 

scheduling, Fuzzy scheduling, Priority, Real-time multiprocessor 

systems, Robustness, System utilization. 

I. INTRODUCTION 

ANY applications namely avionics, traffic control, 

automated factory, and military systems require real-

time communication and computation. In real-time systems, 

all tasks have specific parameters such as deadline, priority, 

etc. Modern embedded computing systems are becoming 

increasingly complex [1]. Meanwhile, the traditional notions 

of best-effort and real-time processing have fractured into a 

spectrum of processing classes with different timeliness 

requirements including desktop multimedia, soft real-time, 

firm real-time, adaptive soft real-time, rate-based, and 

traditional hard real-time [2-5]. Many real-time systems are 

hard and missing deadline is catastrophic [5-8], whereas in  
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soft real-time system occasional violation of deadline 

constraints may not result in a useless execution of the 

application or calamitous consequences, but decreases 

utilization[9]. A schedule which is executing all real-time 

tasks within their deadlines and all the other constraints are 

met, is called a feasible schedule [10]. Real-time scheduling 

can be classified in two categories, static [7] and dynamic 

[11] scheduling. A static real-time scheduling algorithm such 

as Rate Monotonic schedules all real-time tasks off-line 

using static parameters and requires complete knowledge 

about tasks and system parameters [12], while dynamic task 

scheduler calculates the feasible schedule on-line and allows 

tasks to be invoked dynamically. These algorithms use 

dynamic parameters such as deadline and laxity[2, 3, 10, 11, 

13-16]. Scheduling in real-time system involves allocation of 

CPU and other resources to run corresponding tasks to meet 

certain timing constraints [13]. Nonetheless, scheduling is 

more significant in real-time systems than non-real-time 

systems[1, 9, 13, 15-20]. In real-time systems, tasks have to 

be performed correctly and in a timely fashion as well [21]. 

Tasks are classified as periodic and non-periodic [22, 23]. 

The execution requests of a periodic task repeatedly occur at 

regular intervals. On the contrary, execution requests of a 

non-periodic task are unpredictable. 

Nowadays, using of real-time multiprocessor systems is 

dramatically increasing. Unfortunately, less is known about 

how to schedule multiprocessor-based real-time systems than 

that for uni-processors [14]. Optimal scheduling of real-time 

tasks on multiprocessor systems is known to be 

computationally intractable for large task sets [15]. Any 

practical scheduling algorithm in multiprocessor systems 

presents a trade-off between performance and computational 

complexity. Having more computational complexity in 

practical algorithm cause wide range of algorithm’s response 

time hence, deterministic timing behavior is the most 

important parameter for system’s robustness especially in 

hard real-time system[2, 3, 24-26]. This behavior cause 

decrease in utilization of the system when unpredictable 

conditions happened. In heterogeneous systems which tasks 

have different time constraints algorithm have to avoid 

starvation[26]. 

The performance of a scheduling algorithm is measured in 

terms of additional processor required to be added at a 

schedule without deadline violations as compared to optimal 

algorithm [15]. In [18] it has been proved that finding a 

minimal schedule for a set of real-time tasks in 

multiprocessor system is NP-hard. 

In this paper, we focus on a real-time multiprocessor 

system with heterogeneous periodic and non-periodic tasks 

and compare performance and complexity of our proposed 
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fuzzy scheduler with other algorithms using computer 

simulation. 

The rest of this paper is organized as follows. Section II 

describes scheduling algorithms and task model. Section III 

describes fuzzy inference engine. Section IV introduces the 

proposed fuzzy real-time scheduler. Experimental results are 

presented in section V.  

II. SCHEDULING ALGORITHMS AND TASK MODEL  

A. Task Model 

A task is a complete sequence of instructions. Task 

execution starts when a task is selected by task dispatcher 

and one of the system’s processors starts to run task’s 

instructions. Tasks are classified according to their deadline, 

priority, arrival characteristic, and computation cycles 

requests. 

B. Scheduling Algorithms 

First-Come-First-Served (FCFS) algorithm [20] selects 

the task with the earliest arrival time. If system contains 

periodic tasks, their release time will be considered. This 

algorithm makes no effort to consider a task’s deadline. 

Earliest Deadline First (EDF) algorithm [15, 20] always 

chooses the task with the earliest deadline. It has been 

proved that this algorithm is optimal in a uni-processor 

system. Since it cannot consider priority and therefore 

cannot analyze it, this algorithm fails under overloading 

conditions. 

Least Laxity First (LLF) algorithm [13] selects the task 

that has the lowest laxity among all the ready ones whenever 

a processor becomes idle, and executes it to completion. 

This algorithm is non-preemptive and avoids the well-known 

problem of its preemptive counterpart that sometimes 

degenerates to a processor-sharing policy. 

Robust Earliest Deadline (RED) algorithm proposed in [3, 

14, 15] calculates residual time and workload of tasks as 

their schedulability. It has some task rejection mechanism to 

handle system load when there is no feasible schedule [19]. 

Lee et al. [21] present a fuzzy scheduling algorithm. Their 

proposed algorithm uses task laxity and task criticality as 

system parameters. Their simulation model contains small 

number of tasks on a uni-processor system and they did not 

consider system overloads. All the tasks in a system are seen 

as real-time and fairness is not considered. 

Thai [15] proposed a real-time scheduling algorithm for 

multi-processor distributed systems. In their approach, the 

task with higher computation time is assigned to bottleneck 

processor and system’s worst case processing time is 

computed. However it is not clear how this task is detected. 

Their algorithm needs communication time between 

processors and assume tasks processing times are different 

but real-time. They do not consider heterogeneous tasks and 

fairness. The proposed algorithm has acceptable resistance 

to system overload especially when number of processors is 

increased. 

The model described in [27] uses fuzzy inference for 

scheduling non-preemptive periodic tasks in soft real-time 

multiprocessing systems. They use priority and deadline as 

tasks’ parameters and use a fuzzy inference engine to 

compute each task’s priority and select the task with 

maximum priority to process. Although they wish to use 

TSK inference engine in their model, their rules are 

Mamdani. They assume all task are periodic and it is not 

clear that their processor on system is homogeneous or 

heterogeneous. The proposed model does not consider task’s 

processing time. Therefore results are more similar to EDF 

and not suitable for multiprocessing systems. 

Chen et al. [28] proposed a scheduling model and a 

related algorithm that is suitable for both uni-processor and 

multiprocessor systems. They provide a method to detect 

work overloading and try to balance load with task 

dispatching. 

Dynamic integrated scheduling of hard real-time, soft 

real-time, and none real-time tasks are discussed in [29]. 

They can generate feasible schedules but their model is 

restricted to periodic tasks and change the tasks’ periods 

dynamically when overloading occurs. 

III. FUZZY INFERENCE ENGINE 

Fuzzy logic [30, 31] is a superset of conventional Boolean 

logic and extends it to deal with new aspects such as partial 

truth and uncertainty. 

Fuzzy inference is the process of formulating the mapping 

from a given input set to an output using fuzzy logic. The 

basic elements of fuzzy logic are linguistic variables, fuzzy 

sets, and fuzzy rules [32]. The linguistic variables’ values 

are words, specifically adjectives like “small,” “little,” 

“medium,” “high,” and so on. A fuzzy set is a collection of 

couples of elements. It generalizes the concept of a classical 

set, allowing its elements to have a partial membership. The 

degree to which the generic element “x” belongs to the fuzzy 

set A (expressed by the linguistic statement x is A) is 

characterized by a membership function (MF), fA(x). The 

membership function of a fuzzy set corresponds to the 

indicator function of the classical sets. It can be expressed in 

the form of a curve that defines how each point in the input 

space is mapped to a membership value or a degree of truth 

between 0 and 1. The most common shape of a membership 

function is triangular,  although trapezoidal and bell curves 

are also used. This operation normalizes all inputs to the 

same range and has a direct effect on system performance 

and accuracy.  

 

 

Fig. 1 Proposed inference model 

 

A fuzzy set A is defined within a finite interval called 

universe of discourse U as follows: 

]}1,0[:)()),(,{( →= UxfxfxA AA  
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U is the whole input range allowed for a given fuzzy 

linguistic variable. All fuzzy sets related to a given variable 

make up the term set, the set of labels within the linguistic 

variable described or, more properly, granulated. Fuzzy 

rules form the basis of fuzzy reasoning. They describe 

relationships among imprecise, qualitative, linguistic 

expressions of the system’s input and output. Generally, 

these rules are natural language representations of human or 

expert knowledge and provide an easily understood 

knowledge representation scheme. A typical conditional 

fuzzy rule assumes a form such as 

IF Speed is “Low” AND Race is “Dry” THEN Braking 

is “Soft”. 

Speed is Low AND Race is Dry is the rule’s premise; 

while Braking is Soft is the consequent. The premise 

predicate might not be completely true or false, and its 

degree of truth ranges from 0 to 1. We compute this value by 

applying the membership functions of the fuzzy sets labeled 

“Low” and “Dry” to the actual value of the input variables 

Speed and Race. After that, fuzzification is applied to the 

conclusion; the way in which this happens depends on the 

inference model. 

There are two types of fuzzy inference models: 

1. Mamdani [33], 

2. TSK or Sugeno [34]. 

Interpreting an if-then rule involves two distinct parts: 

first evaluating the antecedent and then applying results to 

the consequent (known as implication) [35, 36]. In the case 

of two-valued or binary logic, if-then rules do not present 

much difficulty. If the premise is true, then the conclusion is 

true, whereas with fuzzy approach, if the antecedent is true 

to some degree of membership, then the consequent is also 

true to that same degree. 

Mamdani-type [33] inference expects the output 

membership functions to be fuzzy sets. After the aggregation 

process, there is a fuzzy set for each output variable that 

needs defuzzification. It is possible, and in many cases much 

more efficient, to use a single spike as the output’s 

membership function rather than a distributed fuzzy set. This 

is sometimes known as a singleton output membership 

function, and it can be thought of as a pre-defuzzified fuzzy 

set. It enhances the efficiency of the defuzzification process 

because it greatly simplifies the computation required by the 

more general Mamdani method, which finds the centroid of 

a two-dimensional function. Rather than integrating across 

the two-dimensional function to find the centroid, Sugeno-

type systems use weighted sum of a few data points. In 

general, Sugeno-type systems can be used to model any 

inference system in which the output membership functions 

are either linear or constant.  
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Fig. 2 Fuzzy sets corresponding to priority 
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Fig. 3 Fuzzy sets corresponding to CPU time 

 

IV. PROPOSED MODEL 

As shown in Fig. 1, the major factors considered in our 

approach to determine the scheduling are task priority, 

deadline, required computation time, and used CPU time. 

The notion of laxity is used in the proposed approach to 

facilitate the computation. Laxity is the maximum time that a 

task can wait before being executed (i.e., laxity = deadline - 

computation time). 

A task’s priority shows the importance of the task. The 

inputs of these parameters are justified and represented as 

linguistic variables and fuzzy rules are then applied to those 

linguistic variables to compute the level value for deciding 

which task to select to schedule next. 

CPU time is another parameter which could guarantee 

scheduling fairness. We considered 5 trapezoid membership 

functions for task’s priority. “Very high”, “High”, 

“Medium”, “Low” and “Very low” are these membership 

functions. This number and naming of membership is same 

for task’s laxity however CPU time membership function 

considered 3 and also trapezoid. “High”, “Medium” and low 

are the name of these functions. For the fa(x) as the 

membership function, a large class of functions can be taken 

such as triangular, trapezoidal, Gaussian and bell function 

however we selected trapezoidal for its usability in fuzzy 

dedicated hardware [35-37].The used membership functions 

for this model illustrated in Fig. 2 and 3.  

In our proposed algorithm as shown in Fig. 4, a newly 

arrived task will be added to the input queue. This queue 

consists of the remaining tasks from last cycle that has not 

yet been assigned.  

 

1. For each task of input queue 

a. Feeds task’s run-time priority using fuzzy 

inference engine 

2. While system has a free processor 

a. assign the task with highest run-time 

priority to the processor 

3. Loop forever 

a. If processor event occurs 

i. Go to 2. 

b. If scheduling event occurs 

i. Update tasks parameters. 

ii. Go to 1. 

Fig. 4 Proposed algorithm 

 

Fuzzy scheduler processes each task separately and 

computes its run-time priority and sends it to task 
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dispatcher’s priority queue. In a multiprocessor system, this 

queue offers tasks to dispatcher by their run-time priority 

order. Dispatcher offers a new task whenever one of the 

processors of the system finishes its task.  

 

 

Fig. 5 System view of soft real-time fuzzy scheduler 

 

Periodic tasks which their execution requests occur 

repeatedly will remain in the system queue while non-

periodic tasks will be finished and their next request starts 

with task initialization. In this model all kinds of tasks are 

considered (Fig. 5).  

In firm real-time systems with more real-time constraints, 

our model can be adapted with multiple input queues with 

multiple schedulers where task’s priorities differ. With this 

technique, when the number of system tasks is very high, 

scheduler can select most important tasks and send them to 

dispatcher queue while with last model processing all tasks 

parameters could be time consuming and waste system time. 

Scheduler and dispatcher are independent components 

and they are connected with a queue; consequently our 

proposed scheduler is extendable. 

Due to the model extendibility and adaptability, this 

model can be used in a variety of systems with multi-criteria 

constraints. 

Satisfactory performance is achieved by using 39 Sugeno 

rules only. This number is obtained by simplifying 169 rules 

in different examples. Some of them are mentioned below: 

• If (Laxity is “Very low”) and (Priority is 

“Very high”) then 

laxitypriorityiorityR ×−×= 10100Pr . 

• If (Laxity is “Low”) and (Priority is “Very 

high”) then 

laxitypriorityiorityR ×−×= 2050Pr . 

• If (Laxity is “Medium”) and (Priority is 

“Normal”) and (CPU time is “High”) then 

CPUtime

laxitypriorityiorityR

×−

×−×=

50

4025Pr
 

Choosing number of rules and membership functions 

directly affects system accuracy while performance of the 

system increases with rule size decrease. There are some 

techniques for adjusting membership functions however; in 

this paper we did not consider these approaches. 

 

Fig. 6 The decision surface corresponding to inference rules 

 

The corresponding decision surface to these rules and 

membership functions is illustrates in Fig. 6.  

V. EXPERIMENTAL RESULTS 

We are simulated our algorithm using our custom-

designed simulator implemented using Java. In our simulator 

we have 100 tasks, among which 10 has very high priority, 

30 has high prioritym 20 has medium and 20 has very low 

priority. We considered priority in 0-1000. 

Each task’s deadline and required computation cycles 

considered in 0-1000 which means maximum allowed laxity 

is 1000. These parameters are generated or updated 

randomly when a new arrived task generated of its 

computation finished. 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35

Processor

T
a
s
k
 G
e
n
e
ra
ti
o
n

Fuzzy

EDF

LLF

FCFS

 

Fig. 7 High priority task generation 

 

Simulation results show that by increasing the number of 

system’s processors, generation of high priority tasks 

increases until high priority task’s waiting times is reduced 

to an acceptable range (Fig. 7). By increasing processor, 

high priority tasks have higher probability of execution 

while their laxity would not decrease to critical region. This 

behavior results in more execution for low priority tasks in 

medium load cycles. Next, low priority tasks generation 

increases to handle low priority task’s waiting time. 

Simulation results show that the model can feasibly 

schedule tasks when system load increases and keep system 

processors loads close to one even at crowded times. 

However, other algorithms like LLF and EDF break down 

when the system is overloaded. In this model, we did not 

consider scheduler processing time and this process is 
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independent of the number of system’s processors. We note 

that processor’s load remain always below one because of 

dispatcher’s processing time. By analysis of task scheduler, 

periodic task’s period increases automatically by scheduler 

with consideration of their priority and CPU time. This 

behavior of the system is similar elastic scheduling proposed 

by [19].  

While number of the system’s processors increases, our 

model balances the load between processors. This well 

balancing will causes efficient processing time in symmetric 

systems. The proposed scheduler’s average waiting time is 

close to LLF and EDF algorithms. Simulations demonstrate 

the algorithm is capable of task balancing when the number 

of processors increases. However in comparison to other 

algorithms high priority tasks have smaller waiting times. 

This implies a better response time for the system and it 

selects high priority tasks with higher probability. 
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Fig. 8 High priority tasks miss time 

 

Since the total system computation power is constant, so 

when some high priority tasks get a higher portion of 

system’s computation power, the other ones will receive 

lower attention. This causes a reduction in selection of low 

priority tasks (Fig. 8). 

 
TABLE I 

REQUIRED PROCESSOR FOR FEASIBLE SCHEDULING IN DIFFERENT 

ALGORITHM WITH DIFFERENT HIGH PERFORMANCE TASKS RATIO 

HP to all 

ratio 

Proposed Priority 

based 

EDF LLF FCFS 

20% 1 1 2 2 4 

40% 2 2 4 4 5 

80% 4 4 7 7 8 

 

 

TABLE II 

REQUIRED PROCESSOR FOR FEASIBLE SCHEDULING IN DIFFERENT 

ALGORITHM WITH DIFFERENT LOW PERFORMANCE TASKS RATIO 

LP to all 

ratio 

Proposed Priority 

based 

EDF LLF FCFS 

20% 6 12 4 4 4 

40% 4 8 2 2 2 

80% 1 2 1 1 1 

 

 

 

 

As shown in Table I, by considering ratio of high priority 

task to all, our model select high priority tasks with higher 

probability which makes acceptable system’s waiting time 

and miss ratio for high priority tasks by use the lower 

number of processors. For applications which average 

waiting time for all tasks is an important parameter and 

designer have to care about low priority task to restrict 

average waiting time. Number of processor required for 

acceptable miss ratio is listed in Table II which its first 

column is the ratio of low priority tasks to all tasks. Our 

algorithm provides an average utilization similar to other 

algorithm. However, Fig. 8 demonstrate, our algorithm 

significantly performs better for high priority tasks in a real-

time environment. 

VI. CONCLUSION AND FUTURE WORK 

The proposed scheduler which proposed in this paper has 

low complexity due to the simplicity of fuzzy inference 

engine. As a consequence, its computation complexity and 

response time is constant and by increasing the number of 

processors will not increase. This model is efficient when 

system has heterogeneous tasks with different constraints. 

Our future work is to map this algorithm on our real-time 

fuzzy processor. 
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